Search results for: elliptic curve digital signature algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7387

Search results for: elliptic curve digital signature algorithm

5287 Virtual and Augmented Reality Based Heritage Gamification: Basilica of Smyrna in Turkey

Authors: Tugba Saricaoglu

Abstract:

This study argues about the potential representation and interpretation of Basilica of Smyrna through gamification. Representation can be defined as a key which plays a role as a converter in order to provide interpretation of something according to the person who perceives. Representation of cultural heritage is a hypothetical and factual approach in terms of its sustainable conservation. Today, both site interpreters and public of cultural heritage have varying perspectives due to their different demographic, social, and even cultural backgrounds. Additionally, gamification application offers diversion of methods suchlike video games to improve user perspective of non-game platforms, contexts, and issues. Hence, cultural heritage and video game decided to be analyzed. Moreover, there are basically different ways of representation of cultural heritage such as digital, physical, and virtual methods in terms of conservation. Virtual reality (VR) and augmented reality (AR) technologies are two of the contemporary digital methods of heritage conservation. In this study, 3D documented ruins of the Basilica will be presented in the virtual and augmented reality based technology as a theoretical gamification sample. Also, this paper will focus on two sub-topics: First, evaluation of the video-game platforms applied to cultural heritage sites, and second, potentials of cultural heritage to be represented in video game platforms. The former will cover the analysis of some case(s) with regard to the concepts and representational aspects of cultural heritage. The latter will include the investigation of cultural heritage sites which carry such a potential and their sustainable conversation. Consequently, after mutual collection of information from cultural heritage and video game platforms, a perspective will be provided in terms of interpretation of representation of cultural heritage by sampling that on Basilica of Smyrna by using VR and AR based technologies.

Keywords: Basilica of Smyrna, cultural heritage, digital heritage, gamification

Procedia PDF Downloads 466
5286 Metabolic Pathway Analysis of Microbes using the Artificial Bee Colony Algorithm

Authors: Serena Gomez, Raeesa Tanseen, Netra Shaligram, Nithin Francis, Sandesh B. J.

Abstract:

The human gut consists of a community of microbes which has a lot of effects on human health disease. Metabolic modeling can help to predict relative populations of stable microbes and their effect on health disease. In order to study and visualize microbes in the human gut, we developed a tool that offers the following modules: Build a tool that can be used to perform Flux Balance Analysis for microbes in the human gut using the Artificial Bee Colony optimization algorithm. Run simulations for an individual microbe in different conditions, such as aerobic and anaerobic and visualize the results of these simulations.

Keywords: microbes, metabolic modeling, flux balance analysis, artificial bee colony

Procedia PDF Downloads 101
5285 A Quantitative Study of Blackboard Utilisation at a University of Technology in South Africa

Authors: Lawrence Meda, Christopher Dumas, Moses Moyo, Zayd Waghid

Abstract:

As a result of some schools embracing technology to enhance students’ learning experiences in the digital era, the Faculty of Education at a University of Technology in South Africa has mandated lecturers to scale up their utilisation of technology in their teaching. Lecturers have been challenged to utilise the institution’s Learning Management System - Blackboard among other technologies - to adequately prepare trainee teachers to be able to teach competently in schools. The purpose of this study is to investigate the extent to which lecturers are utilising Blackboard to enhance their teaching. The study will be conducted using a quantitative approach, and its paradigmatic position will be positivist. The study will be done as a case study of the university’s Faculty of Education. Data will be extracted from all 100 lecturers’ Blackboard sites according to their respective modules, and it will be analysed using the four pillars of Blackboard as a conceptual framework. It is presumed that there is an imbalance on the lecturers’ utilisation of the four pillars of Blackboard as the majority use it as a content dumping site.

Keywords: blackboard, digital, education, technology

Procedia PDF Downloads 140
5284 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method

Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati

Abstract:

Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.

Keywords: coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow

Procedia PDF Downloads 315
5283 Studies on Influence of Rub on Vibration Signature of Rotating Machines

Authors: K. N. Umesh, K. S. Srinivasan

Abstract:

The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.

Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures

Procedia PDF Downloads 314
5282 Aircraft Automatic Collision Avoidance Using Spiral Geometric Approach

Authors: M. Orefice, V. Di Vito

Abstract:

This paper provides a description of a Collision Avoidance algorithm that has been developed starting from the mathematical modeling of the flight of insects, in terms of spirals and conchospirals geometric paths. It is able to calculate a proper avoidance manoeuver aimed to prevent the infringement of a predefined distance threshold between ownship and the considered intruder, while minimizing the ownship trajectory deviation from the original path and in compliance with the aircraft performance limitations and dynamic constraints. The algorithm is designed in order to be suitable for real-time applications, so that it can be considered for the implementation in the most recent airborne automatic collision avoidance systems using the traffic data received through an ADS-B IN device. The presented approach is able to take into account the rules-of-the-air, due to the possibility to select, through specifically designed decision making logic based on the consideration of the encounter geometry, the direction of the calculated collision avoidance manoeuver that allows complying with the rules-of-the-air, as for instance the fundamental right of way rule. In the paper, the proposed collision avoidance algorithm is presented and its preliminary design and software implementation is described. The applicability of this method has been proved through preliminary simulation tests performed in a 2D environment considering single intruder encounter geometries, as reported and discussed in the paper.

Keywords: ADS-B Based Application, Collision Avoidance, RPAS, Spiral Geometry.

Procedia PDF Downloads 242
5281 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments

Authors: David X. Dong, Qingming Zhang, Meng Lu

Abstract:

Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.

Keywords: optical sensor, regression model, nitrites, water quality

Procedia PDF Downloads 72
5280 Scheduling of Cross-Docking Center: An Auction-Based Algorithm

Authors: Eldho Paul, Brijesh Paul

Abstract:

This work proposes an auction mechanism based solution methodology for the optimum scheduling of trucks in a cross-docking centre. The cross-docking centre is an important element of lean supply chain. It reduces the amount of storage and transportation costs in the distribution system compared to an ordinary warehouse. Better scheduling of trucks in a cross-docking center is the best way to reduce storage and transportation costs. Auction mechanism is commonly used for allocation of limited resources in different real-life applications. Here, we try to schedule inbound trucks by integrating auction mechanism with the functioning of a cross-docking centre. A mathematical model is developed for the optimal scheduling of inbound trucks based on the auction methodology. The determination of exact solution for problems involving large number of trucks was found to be computationally difficult, and hence a genetic algorithm based heuristic methodology is proposed in this work. A comparative study of exact and heuristic solutions is done using five classes of data sets. It is observed from the study that the auction-based mechanism is capable of providing good solutions to scheduling problem in cross-docking centres.

Keywords: auction mechanism, cross-docking centre, genetic algorithm, scheduling of trucks

Procedia PDF Downloads 412
5279 Story-Wise Distribution of Slit Dampers for Seismic Retrofit of RC Shear Wall Structures

Authors: Minjung Kim, Hyunkoo Kang, Jinkoo Kim

Abstract:

In this study, a seismic retrofit scheme for a reinforced concrete shear wall structure using steel slit dampers was presented. The stiffness and the strength of the slit damper used in the retrofit were verified by cyclic loading test. A genetic algorithm was applied to find out the optimum location of the slit dampers. The effects of the slit dampers on the seismic retrofit of the model were compared with those of jacketing shear walls. The seismic performance of the model structure with optimally positioned slit dampers was evaluated by nonlinear static and dynamic analyses. Based on the analysis results, the simple procedure for determining required damping ratio using capacity spectrum method along with the damper distribution pattern proportional to the inter-story drifts was validated. The analysis results showed that the seismic retrofit of the model structure using the slit dampers was more economical than the jacketing of the shear walls and that the capacity spectrum method combined with the simple damper distribution pattern led to satisfactory damper distribution pattern compatible with the solution obtained from the genetic algorithm.

Keywords: seismic retrofit, slit dampers, genetic algorithm, jacketing, capacity spectrum method

Procedia PDF Downloads 275
5278 Design of Chaos Algorithm Based Optimal PID Controller for SVC

Authors: Saeid Jalilzadeh

Abstract:

SVC is one of the most significant devices in FACTS technology which is used in parallel compensation, enhancing the transient stability, limiting the low frequency oscillations and etc. designing a proper controller is effective in operation of svc. In this paper the equations that describe the proposed system have been linearized and then the optimum PID controller has been designed for svc which its optimal coefficients have been earned by chaos algorithm. Quick damping of oscillations of generator is the aim of designing of optimum PID controller for svc whether the input power of generator has been changed suddenly. The system with proposed controller has been simulated for a special disturbance and the dynamic responses of generator have been presented. The simulation results showed that a system composed with proposed controller has suitable operation in fast damping of oscillations of generator.

Keywords: chaos, PID controller, SVC, frequency oscillation

Procedia PDF Downloads 441
5277 Feasibility of Implementing Digital Healthcare Technologies to Prevent Disease: A Mixed-Methods Evaluation of a Digital Intervention Piloted in the National Health Service

Authors: Rosie Cooper, Tracey Chantler, Ellen Pringle, Sadie Bell, Emily Edmundson, Heidi Nielsen, Sheila Roberts, Michael Edelstein, Sandra Mounier Jack

Abstract:

Introduction: In line with the National Health Service’s (NHS) long-term plan, the NHS is looking to implement more digital health interventions. This study explores a case study in this area: a digital intervention used by NHS Trusts in London to consent adolescents for Human Papilloma Virus (HPV) immunisation. Methods: The electronic consent intervention was implemented in 14 secondary schools in inner city, London. These schools were statistically matched with 14 schools from the same area that were consenting using paper forms. Schools were matched on deprivation and English as an additional language. Consent form return rates and HPV vaccine uptake were compared quantitatively between intervention and matched schools. Data from observations of immunisation sessions and school feedback forms were analysed thematically. Individual and group interviews were undertaken with implementers parents and adolescents and a focus group with adolescents were undertaken and analysed thematically. Results: Twenty-eight schools (14 e-consent schools and 14 paper consent schools) comprising 3219 girls (1733 in paper consent schools and 1486 in e-consent schools) were included in the study. The proportion of pupils eligible for free school meals, with English as an additional language and students' ethnicity profile, was similar between the e-consent and paper consent schools. Return of consent forms was not increased by the implementation of the e-consent intervention. There was no difference in the proportion of pupils that were vaccinated at the scheduled vaccination session between the paper (n=14) and e-consent (n=14) schools (80.6% vs. 81.3%, p=0.93). The transition to using the system was not straightforward, whilst schools and staff understood the potential benefits, they found it difficult to adapt to new ways of working which removed some level or control from schools. Part of the reason for lower consent form return in e-consent schools was that some parents found the intervention difficult to use due to limited access to the internet, finding it hard to open the weblink, language barriers, and in some cases, the system closed a few days prior to sessions. Adolescents also highlighted the potential for e-consent interventions to by-pass their information needs. Discussion: We would advise caution against dismissing the e-consent intervention because it did not achieve its goal of increasing the return of consent forms. Given the problems embedding a news service, it was encouraging that HPV vaccine uptake remained stable. Introducing change requires stakeholders to understand, buy in, and work together with others. Schools and staff understood the potential benefits of using e-consent but found the new ways of working removed some level of control from schools, which they found hard to adapt to, possibly suggesting implementing digital technology will require an embedding process. Conclusion: The future direction of the NHS will require implementation of digital technology. Obtaining electronic consent from parents could help streamline school-based adolescent immunisation programmes. Findings from this study suggest that when implementing new digital technologies, it is important to allow for a period of embedding to enable them to become incorporated in everyday practice.

Keywords: consent, digital, immunisation, prevention

Procedia PDF Downloads 146
5276 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 129
5275 Robust Medical Image Watermarking based on Contourlet and Extraction Using ICA

Authors: S. Saju, G. Thirugnanam

Abstract:

In this paper, a medical image watermarking algorithm based on contourlet is proposed. Medical image watermarking is a special subcategory of image watermarking in the sense that images have special requirements. Watermarked medical images should not differ perceptually from their original counterparts because clinical reading of images must not be affected. Watermarking techniques based on wavelet transform are reported in many literatures but robustness and security using contourlet are better when compared to wavelet transform. The main challenge in exploring geometry in images comes from the discrete nature of the data. In this paper, original image is decomposed to two level using contourlet and the watermark is embedded in the resultant sub-bands. Sub-band selection is based on the value of Peak Signal to Noise Ratio (PSNR) that is calculated between watermarked and original image. To extract the watermark, Kernel ICA is used and it has a novel characteristic is that it does not require the transformation process to extract the watermark. Simulation results show that proposed scheme is robust against attacks such as Salt and Pepper noise, Median filtering and rotation. The performance measures like PSNR and Similarity measure are evaluated and compared with Discrete Wavelet Transform (DWT) to prove the robustness of the scheme. Simulations are carried out using Matlab Software.

Keywords: digital watermarking, independent component analysis, wavelet transform, contourlet

Procedia PDF Downloads 528
5274 Image Quality and Dose Optimisations in Digital and Computed Radiography X-ray Radiography Using Lumbar Spine Phantom

Authors: Elhussaien Elshiekh

Abstract:

A study was performed to management and compare radiation doses and image quality during Lumbar spine PA and Lumbar spine LAT, x- ray radiography using Computed Radiography (CR) and Digital Radiography (DR). Standard exposure factors such as kV, mAs and FFD used for imaging the Lumbar spine anthropomorphic phantom obtained from average exposure factors that were used with CR in five radiology centres. Lumbar spine phantom was imaged using CR and DR systems. Entrance surface air kerma (ESAK) was calculated X-ray tube output and patient exposure factor. Images were evaluated using visual grading system based on the European Guidelines on Quality Criteria for diagnostic radiographic images. The ESAK corresponding to each image was measured at the surface of the phantom. Six experienced specialists evaluated hard copies of all the images, the image score (IS) was calculated for each image by finding the average score of the Six evaluators. The IS value also was used to determine whether an image was diagnostically acceptable. The optimum recommended exposure factors founded here for Lumbar spine PA and Lumbar spine LAT, with respectively (80 kVp,25 mAs at 100 cm FFD) and (75 kVp,15 mAs at 100 cm FFD) for CR system, and (80 kVp,15 mAs at100 cm FFD) and (75 kVp,10 mAs at 100 cm FFD) for DR system. For Lumbar spine PA, the lowest ESAK value required to obtain a diagnostically acceptable image were 0.80 mGy for DR and 1.20 mGy for CR systems. Similarly for Lumbar spine LAT projection, the lowest ESAK values to obtain a diagnostically acceptable image were 0.62 mGy for DR and 0.76 mGy for CR systems. At standard kVp and mAs values, the image quality did not vary significantly between the CR and the DR system, but at higher kVp and mAs values, the DR images were found to be of better quality than CR images. In addition, the lower limit of entrance skin dose consistent with diagnostically acceptable DR images was 40% lower than that for CR images.

Keywords: image quality, dosimetry, radiation protection, optimization, digital radiography, computed radiography

Procedia PDF Downloads 51
5273 Aspects and Studies of Fractal Geometry in Automatic Breast Cancer Detection

Authors: Mrinal Kanti Bhowmik, Kakali Das Jr., Barin Kumar De, Debotosh Bhattacharjee

Abstract:

Breast cancer is the most common cancer and a leading cause of death for women in the 35 to 55 age group. Early detection of breast cancer can decrease the mortality rate of breast cancer. Mammography is considered as a ‘Gold Standard’ for breast cancer detection and a very popular modality, presently used for breast cancer screening and detection. The screening of digital mammograms often leads to over diagnosis and a consequence to unnecessary traumatic & painful biopsies. For that reason recent studies involving the use of thermal imaging as a screening technique have generated a growing interest especially in cases where the mammography is limited, as in young patients who have dense breast tissue. Tumor is a significant sign of breast cancer in both mammography and thermography. The tumors are complex in structure and they also exhibit a different statistical and textural features compared to the breast background tissue. Fractal geometry is a geometry which is used to describe this type of complex structure as per their main characteristic, where traditional Euclidean geometry fails. Over the last few years, fractal geometrics have been applied mostly in many medical image (1D, 2D, or 3D) analysis applications. In breast cancer detection using digital mammogram images, also it plays a significant role. Fractal is also used in thermography for early detection of the masses using the thermal texture. This paper presents an overview of the recent aspects and initiatives of fractals in breast cancer detection in both mammography and thermography. The scope of fractal geometry in automatic breast cancer detection using digital mammogram and thermogram images are analysed, which forms a foundation for further study on application of fractal geometry in medical imaging for improving the efficiency of automatic detection.

Keywords: fractal, tumor, thermography, mammography

Procedia PDF Downloads 389
5272 Optimization of Structures Subjected to Earthquake

Authors: Alireza Lavaei, Alireza Lohrasbi, Mohammadali M. Shahlaei

Abstract:

To reduce the overall time of structural optimization for earthquake loads two strategies are adopted. In the first strategy, a neural system consisting self-organizing map and radial basis function neural networks, is utilized to predict the time history responses. In this case, the input space is classified by employing a self-organizing map neural network. Then a distinct RBF neural network is trained in each class. In the second strategy, an improved genetic algorithm is employed to find the optimum design. A 72-bar space truss is designed for optimal weight using exact and approximate analysis for the El Centro (S-E 1940) earthquake loading. The numerical results demonstrate the computational advantages and effectiveness of the proposed method.

Keywords: optimization, genetic algorithm, neural networks, self-organizing map

Procedia PDF Downloads 311
5271 A Digital Health Approach: Using Electronic Health Records to Evaluate the Cost Benefit of Early Diagnosis of Alpha-1 Antitrypsin Deficiency in the UK

Authors: Sneha Shankar, Orlando Buendia, Will Evans

Abstract:

Alpha-1 antitrypsin deficiency (AATD) is a rare, genetic, and multisystemic condition. Underdiagnosis is common, leading to chronic pulmonary and hepatic complications, increased resource utilization, and additional costs to the healthcare system. Currently, there is limited evidence of the direct medical costs of AATD diagnosis in the UK. This study explores the economic impact of AATD patients during the 3 years before diagnosis and to identify the major cost drivers using primary and secondary care electronic health record (EHR) data. The 3 years before diagnosis time period was chosen based on the ability of our tool to identify patients earlier. The AATD algorithm was created using published disease criteria and applied to 148 known AATD patients’ EHR found in a primary care database of 936,148 patients (413,674 Biobank and 501,188 in a single primary care locality). Among 148 patients, 9 patients were flagged earlier by the tool and, on average, could save 3 (1-6) years per patient. We analysed 101 of the 148 AATD patients’ primary care journey and 20 patients’ Hospital Episode Statistics (HES) data, all of whom had at least 3 years of clinical history in their records before diagnosis. The codes related to laboratory tests, clinical visits, referrals, hospitalization days, day case, and inpatient admissions attributable to AATD were examined in this 3-year period before diagnosis. The average cost per patient was calculated, and the direct medical costs were modelled based on the mean prevalence of 100 AATD patients in a 500,000 population. A deterministic sensitivity analysis (DSA) of 20% was performed to determine the major cost drivers. Cost data was obtained from the NHS National tariff 2020/21, National Schedule of NHS Costs 2018/19, PSSRU 2018/19, and private care tariff. The total direct medical cost of one hundred AATD patients three years before diagnosis in primary and secondary care in the UK was £3,556,489, with an average direct cost per patient of £35,565. A vast majority of this total direct cost (95%) was associated with inpatient admissions (£3,378,229). The DSA determined that the costs associated with tier-2 laboratory tests and inpatient admissions were the greatest contributors to direct costs in primary and secondary care, respectively. This retrospective study shows the role of EHRs in calculating direct medical costs and the potential benefit of new technologies for the early identification of patients with AATD to reduce the economic burden in primary and secondary care in the UK.

Keywords: alpha-1 antitrypsin deficiency, costs, digital health, early diagnosis

Procedia PDF Downloads 167
5270 Developing a Recommendation Library System based on Android Application

Authors: Kunyanuth Kularbphettong, Kunnika Tenprakhon, Pattarapan Roonrakwit

Abstract:

In this paper, we present a recommendation library application on Android system. The objective of this system is to support and advice user to use library resources based on mobile application. We describe the design approaches and functional components of this system. The system was developed based on under association rules, Apriori algorithm. In this project, it was divided the result by the research purposes into 2 parts: developing the Mobile application for online library service and testing and evaluating the system. Questionnaires were used to measure user satisfaction with system usability by specialists and users. The results were satisfactory both specialists and users.

Keywords: online library, Apriori algorithm, Android application, black box

Procedia PDF Downloads 489
5269 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods

Authors: Bandar Alahmadi, Lethia Jackson

Abstract:

Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.

Keywords: adversarial examples, attack, computer vision, image processing

Procedia PDF Downloads 340
5268 Effect of Cardio-Specific Overexpression of MUL1, a Mitochondrial Protein on Myocardial Function

Authors: Ximena Calle, Plinio Cantero-López, Felipe Muñoz-Córdova, Mayarling-Francisca Troncoso, Sergio Lavandero, Valentina Parra

Abstract:

MUL1, a mitochondrial E3 ubiquitin ligase anchored to the outer mitochondrial membrane, is highly expressed in the heart. MUL1 is involved in multiple biological pathways associated with mitochondrial dynamics. Increased MUL1 affects the balance between fission and fusion, affecting mitochondrial function, which plays a crucial role in myocardial function. Therefore, it is interesting to evaluate the effect of cardiac-specific overexpression of MUL1 on myocardial function. Aim: To determine heart functionality in a mouse model with cardio-specific overexpression MUL1 protein. Methods and Results: Male C57BL/Tg transgenic mice with cardiomyocyte-specific overexpression of MUL1 (n=10) and control (n=4) were evaluated at 12, 27, and 35 weeks of age. Glucose tolerance curve determination was performed after a 6-hours fast to assess metabolic capacity, treadmill test, and systolic, and diastolic pressure was evaluated by the mouse tail-cuff blood pressure system equipment. The result showed no glucose tolerance curve, and the treadmill test demonstrated no significant changes between groups. However, substantial changes in diastolic function were observed by ultrasound and determination of cardiac hypertrophy proteins by western blot. Conclusions: Cardio-specific overexpression of MUL1 in mice without any treatment affects diastolic cardiac function, thus showing the important role contributed by MUL1 in the heart. Future research should evaluate the effect of cardiomyocyte-specific overexpression of MUL1 in pathological conditions such as a high-fat diet is one of the main risk factors for cardiovascular disease.

Keywords: diastolic dysfunction, hypertrophy cardiac, mitochondrial E3 ubiquitin ligase 1, MUL1

Procedia PDF Downloads 74
5267 Building Information Modeling Acting as Protagonist and Link between the Virtual Environment and the Real-World for Efficiency in Building Production

Authors: Cristiane R. Magalhaes

Abstract:

Advances in Information and Communication Technologies (ICT) have led to changes in different sectors particularly in architecture, engineering, construction, and operation (AECO) industry. In this context, the advent of BIM (Building Information Modeling) has brought a number of opportunities in the field of the digital architectural design process bringing integrated design concepts that impact on the development, elaboration, coordination, and management of ventures. The project scope has begun to contemplate, from its original stage, the third dimension, by means of virtual environments (VEs), composed of models containing different specialties, substituting the two-dimensional products. The possibility to simulate the construction process of a venture in a VE starts at the beginning of the design process offering, through new technologies, many possibilities beyond geometrical digital modeling. This is a significant change and relates not only to form, but also to how information is appropriated in architectural and engineering models and exchanged among professionals. In order to achieve the main objective of this work, the Design Science Research Method will be adopted to elaborate an artifact containing strategies for the application and use of ICTs from BIM flows, with pre-construction cut-off to the execution of the building. This article intends to discuss and investigate how BIM can be extended to the site acting as a protagonist and link between the Virtual Environments and the Real-World, as well as its contribution to the integration of the value chain and the consequent increase of efficiency in the production of the building. The virtualization of the design process has reached high levels of development through the use of BIM. Therefore it is essential that the lessons learned with the virtual models be transposed to the actual building production increasing precision and efficiency. Thus, this paper discusses how the Fourth Industrial Revolution has impacted on property developments and how BIM could be the propellant acting as the main fuel and link between the virtual environment and the real production for the structuring of flows, information management and efficiency in this process. The results obtained are partial and not definite up to the date of this publication. This research is part of a doctoral thesis development, which focuses on the discussion of the impact of digital transformation in the construction of residential buildings in Brazil.

Keywords: building information modeling, building production, digital transformation, ICT

Procedia PDF Downloads 122
5266 Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering

Authors: Prasannakumar Palaniappan, Dong Ho Shin, Chul Gyu Song

Abstract:

The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.

Keywords: contour filtering, linear array, photoacoustic tomography, universal back projection

Procedia PDF Downloads 401
5265 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave

Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora

Abstract:

The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.

Keywords: Enterococcus faecalis, image treatment, octave and network neuronal

Procedia PDF Downloads 230
5264 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies

Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov

Abstract:

Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.

Keywords: business processes, discrete-event simulation, management, trading industry

Procedia PDF Downloads 344
5263 Transmission Line Congestion Management Using Hybrid Fish-Bee Algorithm with Unified Power Flow Controller

Authors: P. Valsalal, S. Thangalakshmi

Abstract:

There is a widespread changeover in the electrical power industry universally from old-style monopolistic outline towards a horizontally distributed competitive structure to come across the demand of rising consumption. When the transmission lines of derestricted system are incapable to oblige the entire service needs, the lines are overloaded or congested. The governor between customer and power producer is nominated as Independent System Operator (ISO) to lessen the congestion without obstructing transmission line restrictions. Among the existing approaches for congestion management, the frequently used approaches are reorganizing the generation and load curbing. There is a boundary for reorganizing the generators, and further loads may not be supplemented with the prevailing resources unless more private power producers are added in the system by considerably raising the cost. Hence, congestion is relaxed by appropriate Flexible AC Transmission Systems (FACTS) devices which boost the existing transfer capacity of transmission lines. The FACTs device, namely, Unified Power Flow Controller (UPFC) is preferred, and the correct placement of UPFC is more vital and should be positioned in the highly congested line. Hence, the weak line is identified by using power flow performance index with the new objective function with proposed hybrid Fish – Bee algorithm. Further, the location of UPFC at appropriate line reduces the branch loading and minimizes the voltage deviation. The power transfer capacity of lines is determined with and without UPFC in the identified congested line of IEEE 30 bus structure and the simulated results are compared with prevailing algorithms. It is observed that the transfer capacity of existing line is increased with the presented algorithm and thus alleviating the congestion.

Keywords: available line transfer capability, congestion management, FACTS device, Hybrid Fish-Bee Algorithm, ISO, UPFC

Procedia PDF Downloads 383
5262 Economics Analysis of Chinese Social Media Platform Sina Weibo and E-Commerce Platform Taobao

Authors: Xingyue Yang

Abstract:

This study focused on Chinese social media stars and the relationship between their level of fame on the social media platform Sina Weibo and their sales revenue on the E-commerce platform Taobao/Tmall.com. This was viewed from the perspective of Adler’s superstardom theory and Rosen and MacDonald’s theories examining the economics of celebrities who build their audience using digital, rather than traditional platforms. Theory and empirical research support the assertion that stars of traditional media achieve popular success due to a combination of talent and market concentration, as well as a range of other factors. These factors are also generally considered relevant to the popularisation of social media stars. However, success across digital media platforms also involves other variables - for example, upload strategies, cross-platform promotions, which often have no direct corollary in traditional media. These factors were the focus of our study, which investigated the relationship between popularity, promotional strategy and sales revenue for 15 social media stars who specialised in culinary topics on the Chinese social media platform Sina Weibo. In 2019, these food bloggers made a total of 2076 Sina Weibo posts, and these were compiled alongside calculations made to determine each food blogger’s sales revenue on the eCommerce platforms Taobao/Tmall. Quantitative analysis was then performed on this data, which determined that certain upload strategies on Weibo - such as upload time, posting format and length of video - have an important impact on the success of sales revenue on Taobao/Tmall.com.

Keywords: attention economics, digital media, network effect, social media stars

Procedia PDF Downloads 231
5261 Attack Redirection and Detection using Honeypots

Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat

Abstract:

A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.

Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner

Procedia PDF Downloads 156
5260 An Analysis of the Relations between Aggregates’ Shape and Mechanical Properties throughout the Railway Ballast Service Life

Authors: Daianne Fernandes Diogenes

Abstract:

Railway ballast aggregates’ shape properties and size distribution can be directly affected by several factors, such as traffic, fouling, and maintenance processes, which cause breakage and wearing, leading to the fine particles’ accumulation through the ballast layer. This research aims to analyze the influence of traffic, tamping process, and sleepers’ stiffness on aggregates' shape and mechanical properties, by using traditional and digital image processing (DIP) techniques and cyclic tests, like resilient modulus (RM) and permanent deformation (PD). Aggregates were collected in different phases of the railway service life: (i) right after the crushing process; (ii) after construction, for the aggregates positioned below the sleepers and (iii) after 5 years of operation. An increase in the percentage of cubic particles was observed for the materials (ii) and (iii), providing a better interlocking, increasing stiffness and reducing axial deformation after 5 years of service, when compared to the initial conditions.

Keywords: digital image processing, mechanical behavior, railway ballast, shape properties

Procedia PDF Downloads 123
5259 Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

Authors: Keyvan Ramin

Abstract:

The geometric nonlinearity of Off-Diagonal Bracing System (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three-dimensional finite element modeling. Non-linear static analysis is considered to obtain performance level and seismic behavior, and then the response modification factors calculated from each model’s pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan, and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behavior and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

Keywords: FEM, seismic behaviour, pushover analysis, geometric nonlinearity, time history analysis, equivalent viscous damping, passive control, crack investigation, hysteresis curve

Procedia PDF Downloads 378
5258 Canada's "Flattened Curve": A Geospatail Temporal Analysis of Canada's Amelioration of The Sars-Cov-2 Pandemic Through Coordinated Government Intervention

Authors: John Ahluwalia

Abstract:

As an affluent first-world nation, Canada took swift and comprehensive action during the outbreak of the SARS-CoV-2 (COVID-19) pandemic compared to other countries in the same socio-economic cohort. The United States has stumbled to overcome obstacles most developed nations have faced, which has led to significantly more per capita cases and deaths. The initial outbreaks of COVID-19 occurred in the US and Canada within days of each other and posed similar potentially catastrophic threats to public health, the economy, and governmental stability. On a macro level, events that take place in the US have a direct impact on Canada. For example, both countries tend to enter and exit economic recessions at approximately the same time, they are each other’s largest trading partners, and their currencies are inexorably linked. Variables intrinsic to Canada’s national infrastructure have been instrumental in the country’s efforts to flatten the curve of COVID-19 cases and deaths. Canada’s coordinated multi-level governmental effort has allowed it to create and enforce policies related to COVID-19 at both the national and provincial levels. Canada’s policy of universal health care is another variable. Health care and public health measures are enforced on a provincial level, and it is within each province’s jurisdiction to dictate standards for public safety based on scientific evidence. Rather than introducing confusion and the possibility of competition for resources such as PPE and vaccines, Canada’s multi-level chain of government authority has provided consistent policies supporting national public health and local delivery of medical care. This paper will demonstrate that the coordinated efforts on provincial and federal levels have been the linchpin in Canada’s relative success in containing the deadly spread of the COVID-19 virus.

Keywords: COVID-19, canada, GIS, geospatial analysis

Procedia PDF Downloads 70