Search results for: Statistical Approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17293

Search results for: Statistical Approach

15193 Internationalization and Multilingualism in Brazil: Possibilities of Content and Language Integrated Learning and Intercomprehension Approaches

Authors: Kyria Rebeca Finardi

Abstract:

The study discusses the role of foreign languages in general and of English in particular in the process of internationalization of higher education (IHE), defined as the intentional integration of an international, intercultural or global dimension in the purpose, function or offer of higher education. The study is bibliographical and offers a brief outline of the current political, economic and educational scenarios in Brazil, before discussing some possibilities and challenges for the development of multilingualism and IHE there. The theoretical background includes a review of Brazilian language and internationalization policies. The review and discussion concludes that the use of the Content and Language Integrated Learning (CLIL) approach and the Intercomprehension approach to foreign language teaching/learning are relevant alternatives to foster multilingualism in that context.

Keywords: Brazil, higher education, internationalization, multilingualism

Procedia PDF Downloads 158
15192 Interpretation of Two Indices for the Prediction of Cardiovascular Risk in Pediatric Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity and weight gain are associated with increased risk of developing cardiovascular diseases and the progression of liver fibrosis. Aspartate transaminase–to-platelet count ratio index (AST-to-PLT, APRI) and fibrosis-4 (FIB-4) were primarily considered as the formulas capable of differentiating hepatitis from cirrhosis. Recently, they have found clinical use as measures of liver fibrosis and cardiovascular risk. However, their status in children has not been evaluated in detail yet. The aim of this study is to determine APRI and FIB-4 status in obese (OB) children and compare them with values found in children with normal body mass index (N-BMI). A total of sixty-eight children examined in the outpatient clinics of the Pediatrics Department in Tekirdag Namik Kemal University Medical Faculty were included in the study. Two groups were constituted. In the first group, thirty-five children with N-BMI, whose age- and sex-dependent BMI indices vary between 15 and 85 percentiles, were evaluated. The second group comprised thirty-three OB children whose BMI percentile values were between 95 and 99. Anthropometric measurements and routine biochemical tests were performed. Using these parameters, values for the related indices, BMI, APRI, and FIB-4, were calculated. Appropriate statistical tests were used for the evaluation of the study data. The statistical significance degree was accepted as p<0.05. In the OB group, values found for APRI and FIB-4 were higher than those calculated for the N-BMI group. However, there was no statistically significant difference between the N-BMI and OB groups in terms of APRI and FIB-4. A similar pattern was detected for triglyceride (TRG) values. The correlation coefficient and degree of significance between APRI and FIB-4 were r=0.336 and p=0.065 in the N-BMI group. On the other hand, they were r=0.707 and p=0.001 in the OB group. Associations of these two indices with TRG have shown that this parameter was strongly correlated (p<0.001) both with APRI and FIB-4 in the OB group, whereas no correlation was calculated in children with N-BMI. Triglycerides are associated with an increased risk of fatty liver, which can progress to severe clinical problems such as steatohepatitis, which can lead to liver fibrosis. Triglycerides are also independent risk factors for cardiovascular disease. In conclusion, the lack of correlation between TRG and APRI as well as FIB-4 in children with N-BMI, along with the detection of strong correlations of TRG with these indices in OB children, was the indicator of the possible onset of the tendency towards the development of fatty liver in OB children. This finding also pointed out the potential risk for cardiovascular pathologies in OB children. The nature of the difference between APRI vs FIB-4 correlations in N-BMI and OB groups (no correlation versus high correlation), respectively, may be the indicator of the importance of involving age and alanine transaminase parameters in addition to AST and PLT in the formula designed for FIB-4.

Keywords: APRI, children, FIB-4, obesity, triglycerides

Procedia PDF Downloads 348
15191 Texture-Based Image Forensics from Video Frame

Authors: Li Zhou, Yanmei Fang

Abstract:

With current technology, images and videos can be obtained more easily than ever. It is so easy to manipulate these digital multimedia information when obtained, and that the content or source of the image and video could be easily tampered. In this paper, we propose to identify the image and video frame by the texture-based approach, e.g. Markov Transition Probability (MTP), which is in space domain, DCT domain and DWT domain, respectively. In the experiment, image and video frame database is constructed, and is used to train and test the classifier Support Vector Machine (SVM). Experiment results show that the texture-based approach has good performance. In order to verify the experiment result, and testify the universality and robustness of algorithm, we build a random testing dataset, the random testing result is in keeping with above experiment.

Keywords: multimedia forensics, video frame, LBP, MTP, SVM

Procedia PDF Downloads 429
15190 A Posteriori Trading-Inspired Model-Free Time Series Segmentation

Authors: Plessen Mogens Graf

Abstract:

Within the context of multivariate time series segmentation, this paper proposes a method inspired by a posteriori optimal trading. After a normalization step, time series are treated channelwise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Trading signals, as well as trading signals obtained on the reversed time series, are used for unsupervised channelwise labeling before a consensus over all channels is reached that determines the final segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency, and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models and found to be consistently faster while producing more intuitive results in the sense of segmenting time series at peaks and valleys.

Keywords: time series segmentation, model-free, trading-inspired, multivariate data

Procedia PDF Downloads 137
15189 Customer Acquisition through Time-Aware Marketing Campaign Analysis in Banking Industry

Authors: Harneet Walia, Morteza Zihayat

Abstract:

Customer acquisition has become one of the critical issues of any business in the 21st century; having a healthy customer base is the essential asset of the bank business. Term deposits act as a major source of cheap funds for the banks to invest and benefit from interest rate arbitrage. To attract customers, the marketing campaigns at most financial institutions consist of multiple outbound telephonic calls with more than one contact to a customer which is a very time-consuming process. Therefore, customized direct marketing has become more critical than ever for attracting new clients. As customer acquisition is becoming more difficult to archive, having an intelligent and redefined list is necessary to sell a product smartly. Our aim of this research is to increase the effectiveness of campaigns by predicting customers who will most likely subscribe to the fixed deposit and suggest the most suitable month to reach out to customers. We design a Time Aware Upsell Prediction Framework (TAUPF) using two different approaches, with an aim to find the best approach and technique to build the prediction model. TAUPF is implemented using Upsell Prediction Approach (UPA) and Clustered Upsell Prediction Approach (CUPA). We also address the data imbalance problem by examining and comparing different methods of sampling (Up-sampling and down-sampling). Our results have shown building such a model is quite feasible and profitable for the financial institutions. The Time Aware Upsell Prediction Framework (TAUPF) can be easily used in any industry such as telecom, automobile, tourism, etc. where the TAUPF (Clustered Upsell Prediction Approach (CUPA) or Upsell Prediction Approach (UPA)) holds valid. In our case, CUPA books more reliable. As proven in our research, one of the most important challenges is to define measures which have enough predictive power as the subscription to a fixed deposit depends on highly ambiguous situations and cannot be easily isolated. While we have shown the practicality of time-aware upsell prediction model where financial institutions can benefit from contacting the customers at the specified month, further research needs to be done to understand the specific time of the day. In addition, a further empirical/pilot study on real live customer needs to be conducted to prove the effectiveness of the model in the real world.

Keywords: customer acquisition, predictive analysis, targeted marketing, time-aware analysis

Procedia PDF Downloads 125
15188 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning

Authors: Rik van Leeuwen, Ger Koole

Abstract:

Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.

Keywords: hierarchical cluster analysis, hospitality, market segmentation

Procedia PDF Downloads 108
15187 A Modified Open Posterior Approach for the Fixation of Posterior Cruciate Ligament Tibial Avulsion Fractures

Authors: Babak Mirzashahi, Arvin Najafi, Pejman Mansouri, Mahmoud Farzan

Abstract:

Background: The most effective treatment of posterior cruciate ligament (PCL) tears and the consequence of untreated PCL injuries remain controversial. Objectives: The aim of this study is to assess outcomes of fixation of tibial posterior cruciate ligament (PCL) avulsion fractures via a modified technique. Patients and Methods: From January, 2009 to March, 2012, there were 45 cases of PCL tibial avulsion fractures that were referred to our hospital and were managed through a modified open posterior approach. Fixation of Tibial PCL avulsion fractures were fixed by means of a lag screw and washer placed through our modified open posterior approach. Range of motion was begun on the first postoperative day. Clinical stability, range of motion, gastrocnemius muscle strength, radiographic investigation, and patient’s overall quality of life was analyzed at final follow up visit. Results: The average of overall musculoskeletal functional evaluation scores was 15 (range 3–35). All patients achieved union of their fracture and had clinically stable knees at the latest follow-up. The mean preoperative Lysholm score for 15 knees was 62 ± 8 (range, 50-75); the mean postoperative Lysholm score was 92± 7 (range, 75-101). A significant difference in Lysholm scores between preoperative and final follow-up evaluations was found (P < .05). At first-year follow-up, 42 (93%) patients revealed a difference of less than 10 mm in thigh circumference between their injured and healthy knees. Conclusions: The management of displaced large PCL avulsion fractures with placement of a cancellous lag screw with washer by means of the modified open posterior approach leads to satisfactory clinical, radiographic, and functional results and reduces the operation time and less blood loss. Level of evidence: IV.

Keywords: posterior cruciate ligament, tibial fracture, lysholm knee score, patient outcome assessment

Procedia PDF Downloads 302
15186 Common Laws Principles: A Way to Solve Global Environmental Change

Authors: Neelam Kadyan

Abstract:

Global environmental change is happening at an alarming rate in the present world. Floods, Tsunamis’, Avalanches, Change in Weather patterns, Rise in sea temperature, Landslides, are only few evidences of this change. To regulate such alarming growth of global change in environment certain regulatory system or mechanism is required. Nuisance,negligence,absolute liability,strict liability and trespass are some of the effective common law principles which are helpful in environmental problems. What we need today is sufficient law and adequate machinery to enforce the legal standards. Without law environmental standards cannot be enforced and once again there is need to adopt the common law approach in solving the problem of environmental change as through this approach the affected person can get compensation and as the same time it puts check on wrongdoer.

Keywords: global environmental problems, nuisance, negligence, trespass, strict liability, absolute liability

Procedia PDF Downloads 568
15185 Investigating Links in Achievement and Deprivation (ILiAD): A Case Study Approach to Community Differences

Authors: Ruth Leitch, Joanne Hughes

Abstract:

This paper presents the findings of a three-year government-funded study (ILiAD) that aimed to understand the reasons for differential educational achievement within and between socially and economically deprived areas in Northern Ireland. Previous international studies have concluded that there is a positive correlation between deprivation and underachievement. Our preliminary secondary data analysis suggested that the factors involved in educational achievement within multiple deprived areas may be more complex than this, with some areas of high multiple deprivation having high levels of student attainment, whereas other less deprived areas demonstrated much lower levels of student attainment, as measured by outcomes on high stakes national tests. The study proposed that no single explanation or disparate set of explanations could easily account for the linkage between levels of deprivation and patterns of educational achievement. Using a social capital perspective that centralizes the connections within and between individuals and social networks in a community as a valuable resource for educational achievement, the ILiAD study involved a multi-level case study analysis of seven community sites in Northern Ireland, selected on the basis of religious composition (housing areas are largely segregated by religious affiliation), measures of multiple deprivation and differentials in educational achievement. The case study approach involved three (interconnecting) levels of qualitative data collection and analysis - what we have termed Micro (or community/grassroots level) understandings, Meso (or school level) explanations and Macro (or policy/structural) factors. The analysis combines a statistical mapping of factors with qualitative, in-depth data interpretation which, together, allow for deeper understandings of the dynamics and contributory factors within and between the case study sites. Thematic analysis of the qualitative data reveals both cross-cutting factors (e.g. demographic shifts and loss of community, place of the school in the community, parental capacity) and analytic case studies of explanatory factors associated with each of the community sites also permit a comparative element. Issues arising from the qualitative analysis are classified either as drivers or inhibitors of educational achievement within and between communities. Key issues that are emerging as inhibitors/drivers to attainment include: the legacy of the community conflict in Northern Ireland, not least in terms of inter-generational stress, related with substance abuse and mental health issues; differing discourses on notions of ‘community’ and ‘achievement’ within/between community sites; inter-agency and intra-agency levels of collaboration and joined-up working; relationship between the home/school/community triad and; school leadership and school ethos. At this stage, the balance of these factors can be conceptualized in terms of bonding social capital (or lack of it) within families, within schools, within each community, within agencies and also bridging social capital between the home/school/community, between different communities and between key statutory and voluntary organisations. The presentation will outline the study rationale, its methodology, present some cross-cutting findings and use an illustrative case study of the findings from a community site to underscore the importance of attending to community differences when trying to engage in research to understand and improve educational attainment for all.

Keywords: educational achievement, multiple deprivation, community case studies, social capital

Procedia PDF Downloads 391
15184 Career Path: A Tool to Support Talent Management

Authors: Rashi Mahato

Abstract:

Talent management represents an organization’s effort to attract, develop and retain highly skilled and valuable employees. The goal is to have people with capabilities and commitment needed for current and future organizational success. The organizational talent pool is its managerial talent referred to as leadership pipeline. It is managed through various systems and processes to help the organization source, reward, evaluate, develop and move employees into various functions and roles. The pipeline bends, turns, and sometimes breaks as organizations identify who is 'ready now' and who is 'on track' for larger leadership roles. From this perspective, talent management designs structured approach and a robust mechanism for high potential employees to meet organization’s needs. The paper attempts to provide a roadmap and a structured approach towards building a high performing organization through well-defined career path. Managers want career paths to be defined, so that an adequate number of individuals may be identified and prepared to fill future vacancies. Once career progression patterns are identified, more systematic forecasting of talent requirements is possible. For the development of senior management talent or leadership team, career paths are needed as guidelines for talent management across functional and organizational lines. Career path is one of the important tools for talent management and aligning talent with business strategy. This paper briefly describes the approach for career path and the concept of

Keywords: career path, career path framework, lateral movement, talent management

Procedia PDF Downloads 217
15183 Micromechanical Modelling of Ductile Damage with a Cohesive-Volumetric Approach

Authors: Noe Brice Nkoumbou Kaptchouang, Pierre-Guy Vincent, Yann Monerie

Abstract:

The present work addresses the modelling and the simulation of crack initiation and propagation in ductile materials which failed by void nucleation, growth, and coalescence. One of the current research frameworks on crack propagation is the use of cohesive-volumetric approach where the crack growth is modelled as a decohesion of two surfaces in a continuum material. In this framework, the material behavior is characterized by two constitutive relations, the volumetric constitutive law relating stress and strain, and a traction-separation law across a two-dimensional surface embedded in the three-dimensional continuum. Several cohesive models have been proposed for the simulation of crack growth in brittle materials. On the other hand, the application of cohesive models in modelling crack growth in ductile material is still a relatively open field. One idea developed in the literature is to identify the traction separation for ductile material based on the behavior of a continuously-deforming unit cell failing by void growth and coalescence. Following this method, the present study proposed a semi-analytical cohesive model for ductile material based on a micromechanical approach. The strain localization band prior to ductile failure is modelled as a cohesive band, and the Gurson-Tvergaard-Needleman plasticity model (GTN) is used to model the behavior of the cohesive band and derived a corresponding traction separation law. The numerical implementation of the model is realized using the non-smooth contact method (NSCD) where cohesive models are introduced as mixed boundary conditions between each volumetric finite element. The present approach is applied to the simulation of crack growth in nuclear ferritic steel. The model provides an alternative way to simulate crack propagation using the numerical efficiency of cohesive model with a traction separation law directly derived from porous continuous model.

Keywords: ductile failure, cohesive model, GTN model, numerical simulation

Procedia PDF Downloads 151
15182 Heavy Metal Concentration in Orchard Area, Amphawa District, Samut Songkram Province, Thailand

Authors: Sisuwan Kaseamsawat, Sivapan Choo-In

Abstract:

A study was conducted in May to July 2013 with the aim of determination of heavy metal concentration in orchard area. 60 samples were collected and analyzed for Cadmium (Cd), Copper (Cu), Lead (Pb), and Zinc (Zn) by Atomic Absorption Spectrophotometer (AAS). The heavy metal concentrations in sediment of orchards, that use chemical for Cd (1.13 ± 0.26 mg/l), Cu (8.00 ± 1.05 mg/l), Pb (13.16 ± 2.01) and Zn (37.41 ± 3.20 mg/l). The heavy metal concentrations in sediment of the orchards, that do not use chemical for Cd (1.28 ± 0.50 mg/l), Cu (7.60 ± 1.20 mg/l), Pb (29.87 ± 4.88) and Zn (21.79 ± 2.98 mg/l). Statistical analysis between heavy metal in sediment from the orchard, that use chemical and the orchard, that not use chemical were difference statistic significant of 0.5 level of significant for Cd and Pb while no statistically difference for Cu and Zn.

Keywords: heavy metal, orchard, pollution and monitoring, sediment

Procedia PDF Downloads 386
15181 The Agile Management and Its Relationship to Administrative Ambidexterity: An Applied Study in Alexandria Library

Authors: Samar Sheikhelsouk, Dina Abdel Qader, Nada Rizk

Abstract:

The plan of the organization may impede its progress and creativity, especially in the framework of its work in independent environments and fast-shifting markets, unless the leaders and minds of the organization use a set of practices, tools, and techniques encapsulated in so-called “agile methods” or “lightweight” methods. Thus, this research paper examines the agile management approach as a flexible and dynamic approach and its relationship to the administrative ambidexterity at the Alexandria library. The sample of the study is the employees of the Alexandria library. The study is expected to provide both theoretical and practical implications. The current study will bridge the gap between agile management and administrative approaches in the literature. The study will lead managers to comprehend how the role of agile management in establishing administrative ambidexterity in the organization.

Keywords: agile management, administrative innovation, Alexandria library, Egypt

Procedia PDF Downloads 88
15180 Evaluation of Systemic Immune-Inflammation Index in Obese Children

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

A growing list of cancers might be influenced by obesity. Obesity is associated with an increased risk for the occurrence and development of some cancers. Inflammation can lead to cancer. It is one of the characteristic features of cancer and plays a critical role in cancer development. C-reactive protein (CRP) is under evaluation related to the new and simple prognostic factors in patients with metastatic renal cell cancer. Obesity can predict and promote systemic inflammation in healthy adults. BMI is correlated with hs-CRP. In this study, SII index and CRP values were evaluated in children with normal BMI and those within the range of different obesity grades to detect the tendency towards cancer in pediatric obesity. A total of one hundred and ninety-four children; thirty-five children with normal BMI, twenty overweight (OW), forty-seven obese (OB) and ninety-two morbid obese (MO) participated in the study. Age- and sex-matched groups were constituted using BMI-for age percentiles. Informed consent was obtained. Ethical Committee approval was taken. Weight, height, waist circumference (C), hip C, head C and neck C of the children were measured. The complete blood count test was performed. C-reactive protein analysis was performed. Statistical analyses were performed using SPSS. The degree for statistical significance was p≤0.05. SII index values were progressively increasing starting from normal weight (NW) to MO children. There is a statistically significant difference between NW and OB as well as MO children. No significant difference was observed between NW and OW children, however, a correlation was observed between NW and OW children. MO constitutes the only group, which exhibited a statistically significant correlation between SII index and CRP. Obesity-related bladder, kidney, cervical, liver, colorectal, endometrial cancers are still being investigated. Obesity, characterized as a chronic low-grade inflammation, is a crucial risk factor for colon cancer. Elevated childhood BMI values may be indicative of processes leading to cancer, initiated early in life. Prevention of childhood adiposity may decrease the cancer incidence in adults. To authors’ best knowledge, this study is the first to introduce SII index values during obesity of varying degrees of severity. It is suggested that this index seems to affect all stages of obesity with an increasing tendency and may point out the concomitant status of obesity and cancer starting from very early periods of life.

Keywords: children, C-reactive protein, systemic immune-inflammation index, obesity

Procedia PDF Downloads 180
15179 Generating 3D Battery Cathode Microstructures using Gaussian Mixture Models and Pix2Pix

Authors: Wesley Teskey, Vedran Glavas, Julian Wegener

Abstract:

Generating battery cathode microstructures is an important area of research, given the proliferation of the use of automotive batteries. Currently, finite element analysis (FEA) is often used for simulations of battery cathode microstructures before physical batteries can be manufactured and tested to verify the simulation results. Unfortunately, a key drawback of using FEA is that this method of simulation is very slow in terms of computational runtime. Generative AI offers the key advantage of speed when compared to FEA, and because of this, generative AI is capable of evaluating very large numbers of candidate microstructures. Given AI generated candidate microstructures, a subset of the promising microstructures can be selected for further validation using FEA. Leveraging the speed advantage of AI allows for a better final microstructural selection because high speed allows for the evaluation of many more candidate microstructures. For the approach presented, battery cathode 3D candidate microstructures are generated using Gaussian Mixture Models (GMMs) and pix2pix. This approach first uses GMMs to generate a population of spheres (representing the “active material” of the cathode). Once spheres have been sampled from the GMM, they are placed within a microstructure. Subsequently, the pix2pix sweeps over the 3D microstructure (iteratively) slice by slice and adds details to the microstructure to determine what portions of the microstructure will become electrolyte and what part of the microstructure will become binder. In this manner, each subsequent slice of the microstructure is evaluated using pix2pix, where the inputs into pix2pix are the previously processed layers of the microstructure. By feeding into pix2pix previously fully processed layers of the microstructure, pix2pix can be used to ensure candidate microstructures represent a realistic physical reality. More specifically, in order for the microstructure to represent a realistic physical reality, the locations of electrolyte and binder in each layer of the microstructure must reasonably match the locations of electrolyte and binder in previous layers to ensure geometric continuity. Using the above outlined approach, a 10x to 100x speed increase was possible when generating candidate microstructures using AI when compared to using a FEA only approach for this task. A key metric for evaluating microstructures was the battery specific power value that the microstructures would be able to produce. The best generative AI result obtained was a 12% increase in specific power for a candidate microstructure when compared to what a FEA only approach was capable of producing. This 12% increase in specific power was verified by FEA simulation.

Keywords: finite element analysis, gaussian mixture models, generative design, Pix2Pix, structural design

Procedia PDF Downloads 110
15178 Mechanical Characterization of Porcine Skin with the Finite Element Method Based Inverse Optimization Approach

Authors: Djamel Remache, Serge Dos Santos, Michael Cliez, Michel Gratton, Patrick Chabrand, Jean-Marie Rossi, Jean-Louis Milan

Abstract:

Skin tissue is an inhomogeneous and anisotropic material. Uniaxial tensile testing is one of the primary testing techniques for the mechanical characterization of skin at large scales. In order to predict the mechanical behavior of materials, the direct or inverse analytical approaches are often used. However, in case of an inhomogeneous and anisotropic material as skin tissue, analytical approaches are not able to provide solutions. The numerical simulation is thus necessary. In this work, the uniaxial tensile test and the FEM (finite element method) based inverse method were used to identify the anisotropic mechanical properties of porcine skin tissue. The uniaxial tensile experiments were performed using Instron 8800 tensile machine®. The uniaxial tensile test was simulated with FEM, and then the inverse optimization approach (or the inverse calibration) was used for the identification of mechanical properties of the samples. Experimentally results were compared to finite element solutions. The results showed that the finite element model predictions of the mechanical behavior of the tested skin samples were well correlated with experimental results.

Keywords: mechanical skin tissue behavior, uniaxial tensile test, finite element analysis, inverse optimization approach

Procedia PDF Downloads 410
15177 A Stepped Care mHealth-Based Approach for Obesity with Type 2 Diabetes in Clinical Health Psychology

Authors: Gianluca Castelnuovo, Giada Pietrabissa, Gian Mauro Manzoni, Margherita Novelli, Emanuele Maria Giusti, Roberto Cattivelli, Enrico Molinari

Abstract:

Diabesity could be defined as a new global epidemic of obesity and being overweight with many complications and chronic conditions. Such conditions include not only type 2 diabetes, but also cardiovascular diseases, hypertension, dyslipidemia, hypercholesterolemia, cancer, and various psychosocial and psychopathological disorders. The financial direct and indirect burden (considering also the clinical resources involved and the loss of productivity) is a real challenge in many Western health-care systems. Recently the Lancet journal defined diabetes as a 21st-century challenge. In order to promote patient compliance in diabesity treatment reducing costs, evidence-based interventions to improve weight-loss, maintain a healthy weight, and reduce related comorbidities combine different treatment approaches: dietetic, nutritional, physical, behavioral, psychological, and, in some situations, pharmacological and surgical. Moreover, new technologies can provide useful solutions in this multidisciplinary approach, above all in maintaining long-term compliance and adherence in order to ensure clinical efficacy. Psychological therapies with diet and exercise plans could better help patients in achieving weight loss outcomes, both inside hospitals and clinical centers and during out-patient follow-up sessions. In the management of chronic diseases clinical psychology play a key role due to the need of working on psychological conditions of patients, their families and their caregivers. mHealth approach could overcome limitations linked with the traditional, restricted and highly expensive in-patient treatment of many chronic pathologies: one of the best up-to-date application is the management of obesity with type 2 diabetes, where mHealth solutions can provide remote opportunities for enhancing weight reduction and reducing complications from clinical, organizational and economic perspectives. A stepped care mHealth-based approach is an interesting perspective in chronic care management of obesity with type 2 diabetes. One promising future direction could be treating obesity, considered as a chronic multifactorial disease, using a stepped-care approach: -mhealth or traditional based lifestyle psychoeducational and nutritional approach. -health professionals-driven multidisciplinary protocols tailored for each patient. -inpatient approach with the inclusion of drug therapies and other multidisciplinary treatments. -bariatric surgery with psychological and medical follow-up In the chronic care management of globesity mhealth solutions cannot substitute traditional approaches, but they can supplement some steps in clinical psychology and medicine both for obesity prevention and for weight loss management.

Keywords: clinical health psychology, mhealth, obesity, type 2 diabetes, stepped care, chronic care management

Procedia PDF Downloads 346
15176 Impact of Civil Engineering and Economic Growth in the Sustainability of the Environment: Case of Albania

Authors: Rigers Dodaj

Abstract:

Nowadays, the environment is a critical goal for civil engineers, human activity, construction projects, economic growth, and whole national development. Regarding the development of Albania's economy, people's living standards are increasing, and the requirements for the living environment are also increasing. Under these circumstances, environmental protection and sustainability this is the critical issue. The rising industrialization, urbanization, and energy demand affect the environment by emission of carbon dioxide gas (CO2), a significant parameter known to impact air pollution directly. Consequently, many governments and international organizations conducted policies and regulations to address environmental degradation in the pursuit of economic development, for instance in Albania, the CO2 emission calculated in metric tons per capita has increased by 23% in the last 20 years. This paper analyzes the importance of civil engineering and economic growth in the sustainability of the environment focusing on CO2 emission. The analyzed data are time series 2001 - 2020 (with annual frequency), based on official publications of the World Bank. The statistical approach with vector error correction model and time series forecasting model are used to perform the parameter’s estimations and long-run equilibrium. The research in this paper adds a new perspective to the evaluation of a sustainable environment in the context of carbon emission reduction. Also, it provides reference and technical support for the government toward green and sustainable environmental policies. In the context of low-carbon development, effectively improving carbon emission efficiency is an inevitable requirement for achieving sustainable economic and environmental protection. Also, the study reveals that civil engineering development projects impact greatly the environment in the long run, especially in areas of flooding, noise pollution, water pollution, erosion, ecological disorder, natural hazards, etc. The potential for reducing industrial carbon emissions in recent years indicates that reduction is becoming more difficult, it needs another economic growth policy and more civil engineering development, by improving the level of industrialization and promoting technological innovation in industrial low-carbonization.

Keywords: CO₂ emission, civil engineering, economic growth, environmental sustainability

Procedia PDF Downloads 89
15175 UK GAAP and IFRS Standards: Similarities and Differences

Authors: Feddaoui Amina

Abstract:

This paper aimed to help researchers and international companies to the differences and similarities between IFRS (International financial reporting standards) and UK GAAP or UK accounting principles, and to the accounting changes between standard setting of the International Accounting Standards Board and the Accounting Standards Board in United Kingdom. We will use in this study statistical methods to calculate similarities and difference frequencies between the UK standards and IFRS standards, according to the PricewaterhouseCoopers report in 2005. We will use the one simple test to confirm or refuse our hypothesis. In conclusion, we found that the gap between UK GAAP and IFRS is small.

Keywords: accounting, UK GAAP, IFRS, similarities, differences

Procedia PDF Downloads 211
15174 Establishing a Surrogate Approach to Assess the Exposure Concentrations during Coating Process

Authors: Shan-Hong Ying, Ying-Fang Wang

Abstract:

A surrogate approach was deployed for assessing exposures of multiple chemicals at the selected working area of coating processes and applied to assess the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. For the selected area, 6 to 12 portable photoionization detector (PID) were placed uniformly in its workplace to measure its total VOCs concentrations (CT-VOCs) for 6 randomly selected workshifts. Simultaneously, one sampling strain was placed beside one of these portable PIDs, and the collected air sample was analyzed for individual concentration (CVOCi) of 5 VOCs (xylene, butanone, toluene, butyl acetate, and dimethylformamide). Predictive models were established by relating the CT-VOCs to CVOCi of each individual compound via simple regression analysis. The established predictive models were employed to predict each CVOCi based on the measured CT-VOC for each the similar working area using the same portable PID. Results show that predictive models obtained from simple linear regression analyses were found with an R2 = 0.83~0.99 indicating that CT-VOCs were adequate for predicting CVOCi. In order to verify the validity of the exposure prediction model, the sampling analysis of the above chemical substances was further carried out and the correlation between the measured value (Cm) and the predicted value (Cp) was analyzed. It was found that there is a good correction between the predicted value and measured value of each measured chemical substance (R2=0.83~0.98). Therefore, the surrogate approach could be assessed the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. However, it is recommended to establish the prediction model between the chemical substances belonging to each coater and the direct-reading PID, which is more representative of reality exposure situation and more accurately to estimate the long-term exposure concentration of operators.

Keywords: exposure assessment, exposure prediction model, surrogate approach, TVOC

Procedia PDF Downloads 152
15173 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 294
15172 A Case for Q-Methodology: Teachers as Policymakers

Authors: Thiru Vandeyar

Abstract:

The present study set out to determine how Q methodology may be used as an inclusive education policy development process. Utilising Q-methodology as a strategy of inquiry, this qualitative instrumental case study set out to explore how teachers, as a crucial but often neglected human resource, may be included in developing policy. A social constructivist lens and the theoretical moorings of Proudford’s emancipatory approach to educational change anchored in teachers’ ‘writerly’ interpretation of policy text was employed. Findings suggest that Q-method is a unique research approach to include teachers’ voices in policy development. Second, that beliefs, attitudes, and professionalism of teachers to improve teaching and learning using ICT are integral to policy formulation. The study indicates that teachers have unique beliefs about what statements should constitute a school’s information and communication (ICT) policy. Teachers’ experiences are an extremely valuable resource in and should not be ignored in the policy formulation process.

Keywords: teachers, q-methodology, education policy, ICT

Procedia PDF Downloads 88
15171 Impact of Popular Passive Physiological Diversity Drivers on Thermo-Physiology

Authors: Ilango Thiagalingam, Erwann Yvin, Gabriel Crehan, Roch El Khoury

Abstract:

An experimental investigation is carried out in order to evaluate the relevance of a customization approach of the passive thermal mannikin. The promise of this approach consists in the following assumption: physiological differences lead to distinct thermo-physiological responses that explain a part of the thermal appraisal differences between people. Categorizing people and developing an appropriate thermal mannikin for each group would help to reduce the actual dispersion on the subjective thermal comfort perception. The present investigation indicates that popular passive physiological diversity drivers such as sex, age and BMI are not the correct parameters to consider. Indeed, very little or no discriminated global thermo-physiological responses arise from the physiological classification of the population using these parameters.

Keywords: thermal comfort, thermo-physiology, customization, thermal mannikin

Procedia PDF Downloads 101
15170 Diversity for Safety and Security of Autonomous Vehicles against Accidental and Deliberate Faults

Authors: Anil Ranjitbhai Patel, Clement John Shaji, Peter Liggesmeyer

Abstract:

Safety and security of autonomous vehicles (AVs) is a growing concern, first, due to the increased number of safety-critical functions taken over by automotive embedded systems; second, due to the increased exposure of the software-intensive systems to potential attackers; third, due to dynamic interaction in an uncertain and unknown environment at runtime which results in changed functional and non-functional properties of the system. Frequently occurring environmental uncertainties, random component failures, and compromise security of the AVs might result in hazardous events, sometimes even in an accident, if left undetected. Beyond these technical issues, we argue that the safety and security of AVs against accidental and deliberate faults are poorly understood and rarely implemented. One possible way to overcome this is through a well-known diversity approach. As an effective approach to increase safety and security, diversity has been widely used in the aviation, railway, and aerospace industries. Thus, the paper proposes fault-tolerance by diversity model takes into consideration the mitigation of accidental and deliberate faults by application of structure and variant redundancy. The model can be used to design the AVs with various types of diversity in hardware and software-based multi-version system. The paper evaluates the presented approach by employing an example from adaptive cruise control, followed by discussing the case study with initial findings.

Keywords: autonomous vehicles, diversity, fault-tolerance, adaptive cruise control, safety, security

Procedia PDF Downloads 130
15169 Environmental Impact of Gas Field Decommissioning

Authors: Muhammad Ahsan

Abstract:

The effective decommissioning of oil and gas fields and related assets is one of the most important challenges facing the oil and gas industry today and in the future. Decommissioning decisions can no longer be avoided by the operators and the industry as a whole. Decommissioning yields no return on investment and carries significant regulatory liabilities. The main objective of this paper is to provide an approach and mechanism for the estimation of emissions associated with decommissioning of Oil and Gas fields. The model uses gate to gate approach and considers field life from development phase up to asset end life. The model incorporates decommissioning processes which includes; well plugging, plant dismantling, wellhead, and pipeline dismantling, cutting and temporary fabrication, new manufacturing from raw material and recycling of metals. The results of the GHG emissions during decommissioning phase are 2.31x10-2 Kg CO2 Eq. per Mcf of the produced natural gas. Well plug and abandonment evolved to be the most GHG emitting activity with 84.7% of total field decommissioning operational emissions.

Keywords: LCA (life cycle analysis), gas field, decommissioning, emissions

Procedia PDF Downloads 187
15168 Key Success Factors of Customer Relationship Management: An Empirical Study of Tunisian Firms

Authors: Khlif Hamadi

Abstract:

Customer Relationship Management has become the main interest of researchers and practitioners especially in the domains of Management and Information Systems (IS). This paper is an overview of success factors that could facilitate successful adoption of CRM. There are 2 factors: the organizational climate and the capacity for innovation. The survey was developed with 200 CRM users. Empirical research is in the positivist paradigm based on the hypothetico-deductive method. Indeed, the approach adopted is the quantitative approach based on a questionnaire complied by Tunisian companies operating in different sectors of activity. For the data analyses, the structural equations method was used to conduct our exploratory and confirmatory analysis. The results revealed that the creative organizational climate and high innovation capacity positively influence the success of CRM practice.

Keywords: CRM practices, innovation capacity, organizational climate, the structural equation

Procedia PDF Downloads 118
15167 Shopping Behaviour of Ethnic Groups in Indian Culture

Authors: Hari Govindmishra, Sarabjot Singh

Abstract:

The study offers an approach to understand different determinants of shopping behaviour, and the effect of ethnicity on shopping behaviour. The results reveal that the Indian culture is composite in nature and because of which there is no difference between different ethnic groups in their preference for three shopping behaviour determinants, viz., status consciousness, need for touch and companion opinion. The research model investigates the relevant relationship between these constructs by using a structural equation modelling approach, which reveals that status consciousness, need for touch and companion opinion are significant determinants of shopping behaviour. Consequently, the shopping behaviour managers have to understand the collective nature of Indian ethnic consumers in their shopping behaviour.

Keywords: ethnic groups, status consciousness, companion opinion, need for touch, shopping behaviour

Procedia PDF Downloads 453
15166 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke

Abstract:

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.

Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform

Procedia PDF Downloads 309
15165 Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources

Authors: Jolly Puri, Shiv Prasad Yadav

Abstract:

Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.

Keywords: multi-component DEA, fuzzy multi-component DEA, fuzzy resources, decision making units (DMUs)

Procedia PDF Downloads 409
15164 Recidivism in Brazil: Exploring the Case of the Association of Protection and Assistance to Convicts Methodology

Authors: Robyn Heitzman

Abstract:

The traditional method of punitive justice in Brazil has failed to prevent high levels of recidivism. Combined with overcrowding, a lack of resources, and human rights abuses, the conventional prison approach in Brazil is being questioned; one alternative approach is the association of protection and assistance to convicts (APAC) method. Justice -according to the principles of the APAC methodology- is served through education, reformation, and human development. The model has reported relatively low levels of recidivism and has been internationally recognised for its progress. Through qualitative research such as interviews and case studies, this paper explains why, applying the theory of restorative justice, the APAC methodology yields lower rates of recidivism compared to the traditional models of prisons in Brazil. 

Keywords: Brazil, justice, prisons, restorative

Procedia PDF Downloads 111