Search results for: stability optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6474

Search results for: stability optimization

4404 Optimization of a Flexible Thermoelectric Generator for Energy Harvesting from Human Skin to Power Wearable Electronics

Authors: Dessalegn Abera Waktole, Boru Jia, Zhengxing Zuo, Wei Wang, Nianling Kuang

Abstract:

A flexible thermoelectric generator is one method for recycling waste heat. This research provides the optimum performance of a flexible thermoelectric generator with optimal geometric parameters and a detailed structural design. In this research, a numerical simulation and experiment were carried out to develop an efficient, flexible thermoelectric generator for energy harvesting from human skin. Heteromorphic electrodes and a polyimide substrate with a copper-printed circuit board were introduced into the structural design of a flexible thermoelectric generator. The heteromorphic electrode was used as a heat sink and component of a flexible thermoelectric generator to enhance the temperature difference within the thermoelectric legs. Both N-type and P-type thermoelectric legs were made of bismuth selenium telluride (Bi1.7Te3.7Se0.3) and bismuth antimony telluride (Bi0.4Sb1.6Te3). The output power of the flexible thermoelectric generator was analyzed under different heat source temperatures and heat dissipation conditions. The COMSOL Multiphysics 5.6 software was used to conduct the simulation, which was validated by experiment. It is recorded that the maximum power output of 232.064μW was obtained by considering different wind speed conditions, the ambient temperature of 20℃, and the heat source temperature of 36℃ under various load resistance conditions, which range from 0.24Ω to 0. 91Ω. According to this finding, heteromorphic electrodes have a significant impact on the performance of the device.

Keywords: flexible thermoelectric generator, optimization, performance, temperature gradient, waste heat recovery

Procedia PDF Downloads 161
4403 Supplier Risk Management: A Multivariate Statistical Modelling and Portfolio Optimization Based Approach for Supplier Delivery Performance Development

Authors: Jiahui Yang, John Quigley, Lesley Walls

Abstract:

In this paper, the authors develop a stochastic model regarding the investment in supplier delivery performance development from a buyer’s perspective. The authors propose a multivariate model through a Multinomial-Dirichlet distribution within an Empirical Bayesian inference framework, representing both the epistemic and aleatory uncertainties in deliveries. A closed form solution is obtained and the lower and upper bound for both optimal investment level and expected profit under uncertainty are derived. The theoretical properties provide decision makers with useful insights regarding supplier delivery performance improvement problems where multiple delivery statuses are involved. The authors also extend the model from a single supplier investment into a supplier portfolio, using a Lagrangian method to obtain a theoretical expression for an optimal investment level and overall expected profit. The model enables a buyer to know how the marginal expected profit/investment level of each supplier changes with respect to the budget and which supplier should be invested in when additional budget is available. An application of this model is illustrated in a simulation study. Overall, the main contribution of this study is to provide an optimal investment decision making framework for supplier development, taking into account multiple delivery statuses as well as multiple projects.

Keywords: decision making, empirical bayesian, portfolio optimization, supplier development, supply chain management

Procedia PDF Downloads 287
4402 Review on Crew Scheduling of Bus Transit: A Case Study in Kolkata

Authors: Sapan Tiwari, Namrata Ghosh

Abstract:

In urban mass transit, crew scheduling always plays a significant role. It deals with the formulation of work timetables for its staff so that an organization can meet the demand for its products or services. The efficient schedules of a specified timetable have an enormous impact on staff demand. It implies that an urban mass transit company's financial outcomes are strongly associated with planning operations in the region. The research aims to demonstrate the state of the crew scheduling studies and its practical implementation in mass transit businesses in metropolitan areas. First, there is a short overview of past studies in the field. Subsequently, the restrictions and problems with crew scheduling and some models, which have been developed to solve the related issues with their mathematical formulation, are defined. The comments are completed by a description of the solution opportunities provided by computer-aided scheduling program systems for operational use and exposures from urban mass transit organizations. Furthermore, Bus scheduling is performed using the Hungarian technique of problem-solving tasks and mathematical modeling. Afterward, the crew scheduling problem, which consists of developing duties using predefined tasks with set start and end times and places, is resolved. Each duty has to comply with a set line of work. The objective is to minimize a mixture of fixed expenses (number of duties) and varying costs. After the optimization of cost, the outcome of the research is that the same frequency can be provided with fewer buses and less workforce.

Keywords: crew scheduling, duty, optimization of cost, urban mass transit

Procedia PDF Downloads 149
4401 Process Optimization for 2205 Duplex Stainless Steel by Laser Metal Deposition

Authors: Siri Marthe Arbo, Afaf Saai, Sture Sørli, Mette Nedreberg

Abstract:

This work aims to establish a reliable approach for optimizing a Laser Metal Deposition (LMD) process for a critical maritime component, based on the material properties and structural performance required by the maritime industry. The component of interest is a water jet impeller, for which specific requirements for material properties are defined. The developed approach is based on the assessment of the effects of LMD process parameters on microstructure and material performance of standard AM 2205 duplex stainless steel powder. Duplex stainless steel offers attractive properties for maritime applications, combining high strength, enhanced ductility and excellent corrosion resistance due to the specific amounts of ferrite and austenite. These properties are strongly affected by the microstructural characteristics in addition to microstructural defects such as porosity and welding defects, all strongly influenced by the chosen LMD process parameters. In this study, the influence of deposition speed and heat input was evaluated. First, the influences of deposition speed and heat input on the microstructure characteristics, including ferrite/austenite fraction, amount of porosity and welding defects, were evaluated. Then, the achieved mechanical properties were evaluated by standard testing methods, measuring the hardness, tensile strength and elongation, bending force and impact energy. The measured properties were compared to the requirements of the water jet impeller. The results show that the required amounts of ferrite and austenite can be achieved directly by the LMD process without post-weld heat treatments. No intermetallic phases were observed in the material produced by the investigated process parameters. A high deposition speed was found to reduce the ductility due to the formation of welding defects. An increased heat input was associated with reduced strength due to the coarsening of the ferrite/austenite microstructure. The microstructure characterizations and measured mechanical performance demonstrate the great potential of the LMD process and generate a valuable database for the optimization of the LMD process for duplex stainless steels.

Keywords: duplex stainless steel, laser metal deposition, process optimization, microstructure, mechanical properties

Procedia PDF Downloads 216
4400 High Catalytic Activity and Stability of Ginger Peroxidase Immobilized on Amino Functionalized Silica Coated Titanium Dioxide Nanocomposite: A Promising Tool for Bioremediation

Authors: Misha Ali, Qayyum Husain, Nida Alam, Masood Ahmad

Abstract:

Improving the activity and stability of the enzyme is an important aspect in bioremediation processes. Immobilization of enzyme is an efficient approach to amend the properties of biocatalyst required during wastewater treatment. The present study was done to immobilize partially purified ginger peroxidase on amino functionalized silica coated titanium dioxide nanocomposite. Interestingly there was an enhancement in enzyme activity after immobilization on nanosupport which was evident from effectiveness factor (η) value of 1.76. Immobilized enzyme was characterized by transmission electron microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Immobilized peroxidase exhibited higher activity in a broad range of pH and temperature as compared to free enzyme. Also, the thermostability of peroxidase was strikingly improved upon immobilization. After six repeated uses, the immobilized peroxidase retained around 62% of its dye decolorization activity. There was a 4 fold increase in Vmax of immobilized peroxidase as compared to free enzyme. Circular dichroism spectroscopy demonstrated conformational changes in the secondary structure of enzyme, a possible reason for the enhanced enzyme activity after immobilization. Immobilized peroxidase was highly efficient in the removal of acid yellow 42 dye in a stirred batch process. Our study shows that this bio-remediating system has remarkable potential for treatment of aromatic pollutants present in wastewater.

Keywords: acid yellow 42, decolorization, ginger peroxidase, immobilization

Procedia PDF Downloads 247
4399 Efficient Use of Power Light-Emitting Diode Chips in the Main Lighting System and in Generating Heat in Intelligent Buildings

Authors: Siamak Eskandari, Neda Ebadi

Abstract:

Among common electronic parts which have been invented and have made a great revolution in the lighting system through the world, certainly LEDs have no rival. These small parts with their very low power consumption, very dazzling and powerful light and small size and with their extremely high lifetime- compared to incandescent bulbs and compact fluorescent lamp (CFLs) have undoubtedly revolutionized the lighting industry of the world. Based on conducted studies and experiments, in addition to their acceptable light and low power consumption -compared to incandescent bulbs and CFLs-, they have very low and in some cases zero environmental pollution and negative effects on human beings. Because of their longevity, in the case of using high-quality circuits and proper and consistent use of LEDs in conventional and intelligent buildings, there will be no need to replace the burnout lamps, for a long time (10 years). In this study which was conducted on 10-watt power LEDs with suitable heatsink/cooling, considerable amount of heat was generated during lighting after 5 minutes and 45 seconds. The temperature rose to above 99 degrees Celsius and this amount of heat can raise the water temperature to 60 degrees Celsius and more. Based on conducted experiments, this can provide the heat required for bathing, washing, radiators (in cold seasons) easily and only by imposing very low cost and it will be a big step in the optimization of energy consumption in the future.

Keywords: energy, light, water, optimization of power LED

Procedia PDF Downloads 153
4398 The Microstructural and Mechanical Characterization of Organo-Clay-Modified Bitumen, Calcareous Aggregate, and Organo-Clay Blends

Authors: A. Gürses, T. B. Barın, Ç. Doğar

Abstract:

Bitumen has been widely used as the binder of aggregate in road pavement due to its good viscoelastic properties, as a viscous organic mixture with various chemical compositions. Bitumen is a liquid at high temperature and it becomes brittle at low temperatures, and this temperature-sensitivity can cause the rutting and cracking of the pavement and limit its application. Therefore, the properties of existing asphalt materials need to be enhanced. The pavement with polymer modified bitumen exhibits greater resistance to rutting and thermal cracking, decreased fatigue damage, as well as stripping and temperature susceptibility; however, they are expensive and their applications have disadvantages. Bituminous mixtures are composed of very irregular aggregates bound together with hydrocarbon-based asphalt, with a low volume fraction of voids dispersed within the matrix. Montmorillonite (MMT) is a layered silicate with low cost and abundance, which consists of layers of tetrahedral silicate and octahedral hydroxide sheets. Recently, the layered silicates have been widely used for the modification of polymers, as well as in many different fields. However, there are not too much studies related with the preparation of the modified asphalt with MMT, currently. In this study, organo-clay-modified bitumen, and calcareous aggregate and organo-clay blends were prepared by hot blending method with OMMT, which has been synthesized using a cationic surfactant (Cetyltrymethylammonium bromide, CTAB) and long chain hydrocarbon, and MMT. When the exchangeable cations in the interlayer region of pristine MMT were exchanged with hydrocarbon attached surfactant ions, the MMT becomes organophilic and more compatible with bitumen. The effects of the super hydrophobic OMMT onto the micro structural and mechanic properties (Marshall Stability and volumetric parameters) of the prepared blends were investigated. Stability and volumetric parameters of the blends prepared were measured using Marshall Test. Also, in order to investigate the morphological and micro structural properties of the organo-clay-modified bitumen and calcareous aggregate and organo-clay blends, their SEM and HRTEM images were taken. It was observed that the stability and volumetric parameters of the prepared mixtures improved significantly compared to the conventional hot mixes and even the stone matrix mixture. A micro structural analysis based on SEM images indicates that the organo-clay platelets dispersed in the bitumen have a dominant role in the increase of effectiveness of bitumen - aggregate interactions.

Keywords: hot mix asphalt, stone matrix asphalt, organo clay, Marshall test, calcareous aggregate, modified bitumen

Procedia PDF Downloads 236
4397 Mixed Monolayer and PEG Linker Approaches to Creating Multifunctional Gold Nanoparticles

Authors: D. Dixon, J. Nicol, J. A. Coulter, E. Harrison

Abstract:

The ease with which they can be functionalized, combined with their excellent biocompatibility, make gold nanoparticles (AuNPs) ideal candidates for various applications in nanomedicine. Indeed several promising treatments are currently undergoing human clinical trials (CYT-6091 and Auroshell). A successful nanoparticle treatment must first evade the immune system, then accumulate within the target tissue, before enter the diseased cells and delivering the payload. In order to create a clinically relevant drug delivery system, contrast agent or radiosensitizer, it is generally necessary to functionalize the AuNP surface with multiple groups; e.g. Polyethylene Glycol (PEG) for enhanced stability, targeting groups such as antibodies, peptides for enhanced internalization, and therapeutic agents. Creating and characterizing the biological response of such complex systems remains a challenge. The two commonly used methods to attach multiple groups to the surface of AuNPs are the creation of a mixed monolayer, or by binding groups to the AuNP surface using a bi-functional PEG linker. While some excellent in-vitro and animal results have been reported for both approaches further work is necessary to directly compare the two methods. In this study AuNPs capped with both PEG and a Receptor Mediated Endocytosis (RME) peptide were prepared using both mixed monolayer and PEG linker approaches. The PEG linker used was SH-PEG-SGA which has a thiol at one end for AuNP attachment, and an NHS ester at the other to bind to the peptide. The work builds upon previous studies carried out at the University of Ulster which have investigated AuNP synthesis, the influence of PEG on stability in a range of media and investigated intracellular payload release. 18-19nm citrate capped AuNPs were prepared using the Turkevich method via the sodium citrate reduction of boiling 0.01wt% Chloroauric acid. To produce PEG capped AuNPs, the required amount of PEG-SH (5000Mw) or SH-PEG-SGA (3000Mw Jenkem Technologies) was added, and the solution stirred overnight at room temperature. The RME (sequence: CKKKKKKSEDEYPYVPN, Biomatik) co-functionalised samples were prepared by adding the required amount of peptide to the PEG capped samples and stirring overnight. The appropriate amounts of PEG-SH and RME peptide were added to the AuNP to produce a mixed monolayer consisting of approximately 50% PEG and 50% RME. The PEG linker samples were first fully capped with bi-functional PEG before being capped with RME peptide. An increase in diameter from 18-19mm for the ‘as synthesized’ AuNPs to 40-42nm after PEG capping was observed via DLS. The presence of PEG and RME peptide on both the mixed monolayer and PEG linker co-functionalized samples was confirmed by both FTIR and TGA. Bi-functional PEG linkers allow the entire AuNP surface to be capped with PEG, enabling in-vitro stability to be achieved using a lower molecular weight PEG. The approach also allows the entire outer surface to be coated with peptide or other biologically active groups, whilst also offering the promise of enhanced biological availability. The effect of mixed monolayer versus PEG linker attachment on both stability and non-specific protein corona interactions was also studied.

Keywords: nanomedicine, gold nanoparticles, PEG, biocompatibility

Procedia PDF Downloads 337
4396 CO2 Capture in Porous Silica Assisted by Lithium

Authors: Lucero Gonzalez, Salvador Alfaro

Abstract:

Carbon dioxide (CO2) and methane (CH4) are considered as the compounds with higher abundance among the greenhouse gases (CO2, NOx, SOx, CxHx, etc.), due to its higher concentration, this two gases have a greater impact in the environment pollution and provokes global warming. So, recovery, disposal and subsequent reuse, are of great interest, especially from the ecological and health perspective. By one hand, porous inorganic materials are good candidates to capture gases, because these type of materials are higher stability from the point view of thermal, chemical and mechanical under adsorption gas processes. By another hand, during the design and the synthetic preparation of the porous materials is possible add other intrinsic properties (physicochemical and structural) by adding chemical compounds as dopants or using structured directed agents or surfactants to improve the porous structure, the above features allow to have alternative materials for separation, capture and storage of greenhouse gases. In this work, ordered mesoporous materials base silica were prepared using Surfynol as surfactant. The surfactant micelles are commonly used as self-assembly templates for the development of new structure porous silica’s, adding a variety of textures and structures. By another hand, the Surfynol is a commercial surfactant, is non-ionic, for that is necessary determine its critical micelles concentration (cmc) by the pyrene I1/I3 ratio method, before to prepare silica particles. One time known the CMC, a precursor gel was prepared via sol-gel process at room temperature using TEOS as silica precursor, NH4OH as catalyst, Surfynol as template and H2O as solvent. Then, the gel precursor was treatment hydrothermally in a Teflon-lined stainless steel autoclave with a volume of 100 mL and kept at 100 ºC for 24 h under static conditions in a convection oven. After that, the porous silica particles obtained were impregnated with lithium to improve the CO2 adsorption capacity. Then the silica particles were characterized physicochemical, morphology and structurally, by XRD, FTIR, BET and SEM techniques. The thermal stability and the CO2 adsorption capacity was evaluated by thermogravimetric analysis (TGA). According the results, we found that the Surfynol is a good candidate to prepare silica particles with an ordered structure. Also the TGA analysis shown that the particles has a good thermal stability in the range of 250 °C and 800 °C. The best materials had, the capacity to adsorbing 70 and 90 mg per gram of silica particles and its CO2 adsorption capacity depends on the way to thermal pretreatment of the porous silica before of the adsorption experiments and of the concentration of surfactant used during the synthesis of silica particles. Acknowledgments: This work was supported by SIP-IPN through project SIP-20161862.

Keywords: CO2 adsorption, lithium as dopant, porous silica, surfynol as surfactant, thermogravimetric analysis

Procedia PDF Downloads 266
4395 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill

Authors: Jagdish Prasad Sahoo

Abstract:

The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.

Keywords: active, finite elements, limit analysis, presudo-static, reinforcement

Procedia PDF Downloads 364
4394 Markowitz and Implementation of a Multi-Objective Evolutionary Technique Applied to the Colombia Stock Exchange (2009-2015)

Authors: Feijoo E. Colomine Duran, Carlos E. Peñaloza Corredor

Abstract:

There modeling component selection financial investment (Portfolio) a variety of problems that can be addressed with optimization techniques under evolutionary schemes. For his feature, the problem of selection of investment components of a dichotomous relationship between two elements that are opposed: The Portfolio Performance and Risk presented by choosing it. This relationship was modeled by Markowitz through a media problem (Performance) - variance (risk), ie must Maximize Performance and Minimize Risk. This research included the study and implementation of multi-objective evolutionary techniques to solve these problems, taking as experimental framework financial market equities Colombia Stock Exchange between 2009-2015. Comparisons three multiobjective evolutionary algorithms, namely the Nondominated Sorting Genetic Algorithm II (NSGA-II), the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Indicator-Based Selection in Multiobjective Search (IBEA) were performed using two measures well known performance: The Hypervolume indicator and R_2 indicator, also it became a nonparametric statistical analysis and the Wilcoxon rank-sum test. The comparative analysis also includes an evaluation of the financial efficiency of the investment portfolio chosen by the implementation of various algorithms through the Sharpe ratio. It is shown that the portfolio provided by the implementation of the algorithms mentioned above is very well located between the different stock indices provided by the Colombia Stock Exchange.

Keywords: finance, optimization, portfolio, Markowitz, evolutionary algorithms

Procedia PDF Downloads 301
4393 Development and Evaluation of Naringenin Nanosuspension to Improve Antioxidant Potential

Authors: Md. Shadab, Mariyam N. Nashid, Venkata Srikanth Meka, Thiagarajan Madheswaran

Abstract:

Naringenin (NAR), is a naturally occurring plant flavonoid, found predominantly in citrus fruits, that possesses a wide range of pharmacological properties including anti-oxidant, anti-inflammatory behaviour, cholesterol-lowering and anticarcinogenic activities. However, despite the therapeutic potential of naringenin shown in a number of animal models, its clinical development has been hindered due to its low aqueous solubility, slow dissolution rate and inefficient transport across biological membranes resulting in low bioavailability. Naringenin nanosuspension were produced using stabilizers Tween® 80 by high pressure homogenization techniques. The nanosuspensions were characterized with regard to size (photon correlation spectroscopy (PCS), size distribution, charge (zeta potential measurements), morphology, short term physical stability, dissolution profile and antioxidant potential. A nanocrystal PCS size of about 500 nm was obtained after 20 homogenization cycles at 1500 bar. The short-term stability was assessed by storage of the nanosuspensions at 4 ◦C, room temperature and 40 ◦C. Result showed that naringenin nanosuspension was physically unstable due to large fluctuations in the particle size and zeta potential after 30 days. Naringenin nanosuspension demonstrated higher drug dissolution (97.90%) compared to naringenin powder (62.76%) after 120 minutes of testing. Naringenin nanosuspension showed increased antioxidant activity compared to naringenin powder with a percentage DPPH radical scavenging activity of 49.17% and 31.45% respectively at the lowest DPPH concentration.

Keywords: bioavailability, naringenin, nanosuspension, oral delivery

Procedia PDF Downloads 325
4392 Foaming and Structuring Properties of Chickpea Cooking Water (Aquafaba): Effect of Ingredient Added and Their Particle Size

Authors: Carola Cappa

Abstract:

Chickpea cooking water (known as aquafaba, AF) is a “waste” product having interesting technological properties exploitable for sustainable plant-based food applications that can encounter a larger consumers demand. Different process conditions to obtain AF were defined; the addition of hydrocolloid (i.e., guar gum) and lactic acid to improve the techno-functionalities of aquafaba was explored, and the effects of these ingredients on the foaming properties and the quality of plant-based target confectionery products were investigated. Meringues having a solid foam structure and a simple formulation (i.e., foaming agent and sugar) and chocolate mousse were chosen as target foods. The effects of the sugar particle size reduction on the empirical and fundamental rheological properties of the foaming agent and of the mousse were evaluated. The treatment did not significantly change the viscosity of the system, while the overrun and foam stability were affected by sugar particle size, and mousse with coarse sugar was characterized by a higher consistency, confirming the importance of the particle size of the ingredients on the texture of the final product. This study proved that AF, a recycled “waste” product, possesses interesting techno-functionalities properties further enhanced by adding lactic acid and modulable according to ingredient particle size; these AF results are useable for plant-based food applications.

Keywords: foaming properties, foam stability, foam texture, particle size, acidification, aquafaba

Procedia PDF Downloads 70
4391 Design Optimization of a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics

Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami

Abstract:

The use of Micro Gas Turbine (MGT) as the engine in Unmanned Aerobic Vehicles (UAVs) and power source in Robotics is widespread these days. Research has been conducted in the past decade or so to improve the performance of different components of MGT. This type of engine has interrelated components which have non-linear characteristics. Therefore, the overall engine performance depends on the individual engine element’s performance. Computational Fluid Dynamics (CFD) is one of the simulation method tools used to analyze or even optimize MGT system performance. In this study, the compressor of the MGT is designed, and performance optimization is being done using CFD. Performance of the micro compressor is improved in order to increase the overall performance of MGT. A high value of pressure ratio is to be achieved by studying the effect of change of different operating parameters like mass flow rate and revolutions per minute (RPM) and aerodynamical and geometrical parameters on the pressure ratio of the compressor. Two types of compressor designs are considered in this study; 3D centrifugal and ‘planar’ designs. For a 10 mm impeller, the planar model is the simplest compressor model with the ease in manufacturability. On the other hand, 3D centrifugal model, although more efficient, is very difficult to manufacture using current microfabrication resources. Therefore, the planar model is the best-suited model for a micro compressor. So. a planar micro compressor has been designed that has a good pressure ratio, and it is easy to manufacture using current microfabrication technologies. Future work is to fabricate the compressor to get experimental results and validate the theoretical model.

Keywords: computational fluid dynamics, microfabrication, MEMS, unmanned aerobic vehicles

Procedia PDF Downloads 143
4390 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design

Authors: H. K. Esfahani, B. Datta

Abstract:

Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.

Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site

Procedia PDF Downloads 230
4389 A First Step towards Automatic Evolutionary for Gas Lifts Allocation Optimization

Authors: Younis Elhaddad, Alfonso Ortega

Abstract:

Oil production by means of gas lift is a standard technique in oil production industry. To optimize the total amount of oil production in terms of the amount of gas injected is a key question in this domain. Different methods have been tested to propose a general methodology. Many of them apply well-known numerical methods. Some of them have taken into account the power of evolutionary approaches. Our goal is to provide the experts of the domain with a powerful automatic searching engine into which they can introduce their knowledge in a format close to the one used in their domain, and get solutions comprehensible in the same terms, as well. These proposals introduced in the genetic engine the most expressive formal models to represent the solutions to the problem. These algorithms have proven to be as effective as other genetic systems but more flexible and comfortable for the researcher although they usually require huge search spaces to justify their use due to the computational resources involved in the formal models. The first step to evaluate the viability of applying our approaches to this realm is to fully understand the domain and to select an instance of the problem (gas lift optimization) in which applying genetic approaches could seem promising. After analyzing the state of the art of this topic, we have decided to choose a previous work from the literature that faces the problem by means of numerical methods. This contribution includes details enough to be reproduced and complete data to be carefully analyzed. We have designed a classical, simple genetic algorithm just to try to get the same results and to understand the problem in depth. We could easily incorporate the well mathematical model, and the well data used by the authors and easily translate their mathematical model, to be numerically optimized, into a proper fitness function. We have analyzed the 100 curves they use in their experiment, similar results were observed, in addition, our system has automatically inferred an optimum total amount of injected gas for the field compatible with the addition of the optimum gas injected in each well by them. We have identified several constraints that could be interesting to incorporate to the optimization process but that could be difficult to numerically express. It could be interesting to automatically propose other mathematical models to fit both, individual well curves and also the behaviour of the complete field. All these facts and conclusions justify continuing exploring the viability of applying the approaches more sophisticated previously proposed by our research group.

Keywords: evolutionary automatic programming, gas lift, genetic algorithms, oil production

Procedia PDF Downloads 160
4388 Freight Time and Cost Optimization in Complex Logistics Networks, Using a Dimensional Reduction Method and K-Means Algorithm

Authors: Egemen Sert, Leila Hedayatifar, Rachel A. Rigg, Amir Akhavan, Olha Buchel, Dominic Elias Saadi, Aabir Abubaker Kar, Alfredo J. Morales, Yaneer Bar-Yam

Abstract:

The complexity of providing timely and cost-effective distribution of finished goods from industrial facilities to customers makes effective operational coordination difficult, yet effectiveness is crucial for maintaining customer service levels and sustaining a business. Logistics planning becomes increasingly complex with growing numbers of customers, varied geographical locations, the uncertainty of future orders, and sometimes extreme competitive pressure to reduce inventory costs. Linear optimization methods become cumbersome or intractable due to a large number of variables and nonlinear dependencies involved. Here we develop a complex systems approach to optimizing logistics networks based upon dimensional reduction methods and apply our approach to a case study of a manufacturing company. In order to characterize the complexity in customer behavior, we define a “customer space” in which individual customer behavior is described by only the two most relevant dimensions: the distance to production facilities over current transportation routes and the customer's demand frequency. These dimensions provide essential insight into the domain of effective strategies for customers; direct and indirect strategies. In the direct strategy, goods are sent to the customer directly from a production facility using box or bulk trucks. In the indirect strategy, in advance of an order by the customer, goods are shipped to an external warehouse near a customer using trains and then "last-mile" shipped by trucks when orders are placed. Each strategy applies to an area of the customer space with an indeterminate boundary between them. Specific company policies determine the location of the boundary generally. We then identify the optimal delivery strategy for each customer by constructing a detailed model of costs of transportation and temporary storage in a set of specified external warehouses. Customer spaces help give an aggregate view of customer behaviors and characteristics. They allow policymakers to compare customers and develop strategies based on the aggregate behavior of the system as a whole. In addition to optimization over existing facilities, using customer logistics and the k-means algorithm, we propose additional warehouse locations. We apply these methods to a medium-sized American manufacturing company with a particular logistics network, consisting of multiple production facilities, external warehouses, and customers along with three types of shipment methods (box truck, bulk truck and train). For the case study, our method forecasts 10.5% savings on yearly transportation costs and an additional 4.6% savings with three new warehouses.

Keywords: logistics network optimization, direct and indirect strategies, K-means algorithm, dimensional reduction

Procedia PDF Downloads 138
4387 Effect of Farsi gum (Amygdalus Scoparia Spach) in Combination with Sodium Caseinate on Textural, Stability, Sensory Characteristics and Rheological Properties of Whipped Cream

Authors: Samaneh Mashayekhi

Abstract:

Cream (whipped cream) is one of the dairy products that can be used in desserts, pastries, cakes, and ice creams. In this product, some parameters such as taste and flavor, quality stability, whipping ability, and stability of foam after whipping are very important. The objective of this study is applicable of Farsi gum and sodium caseinate in 3 biopolymer ratios (1:1, 1:2, and 2:1) and 0.15, 0.30, and 0.45 %wt. concentrations in whipped cream formulation. Sample without hydrocolloids was considered as a control. Before whipping, viscosity of all creams was increased continuously with increasing shear rate. In addition, the viscosity was increased with the increasing hydrocolloids addition (in constant shear rate). Microscopic observations showed that polydispersity of systems before whipping. Overrun of F, FC11, and FC21 samples were increased (with increasing total hydrocollid concentration 0.15 to 0.30 % wt.); then decreased this parameter with increasing to 0.45 % wt. concentration. However, mean comparison of FC12 samples overrun showed that this value was increased with increasing total hydrocolloids concentration. 0.45FC21 sample had significantly (P<0.05) highest overrun (118.44±9.11). Synersis of whipped cream samples are reduced with hydrocolloid addition. B sample had significantly (P<0.05) highest serum separation (16.66±0.80%), and 0.45FC12 had a low one (5.94±0.19%) in compered with others synersis. Mean comparison of hardness and adhesiveness of whipped cream revealed that Farsi gum addition alone and in combination with sodium caseinate increased the previous textural characteristics. Results exhibited that 0.4FG12 had significantly (P<0.05) highest hardness (267.00±18.38 g).Mean comparison of droplet size of cream sample before whipping displaced that hydrocolloid addition had no significant effect (P>0.05), and mean droplet size of the samples ranged between 1.93-2.16 µm. Generally, the mean droplet size of whipped cream increased after whipping with increasing hydrocolloid concentration (0.15-0.45 % wt.). Color parameter analysis showed that Farsi gum addition alone and in combination with sodium caseinate had no significant effect (P>0.05) on these parameters (Lightness, Redness, and Yellowness). Based on sensory evaluation results, appearance, color, flavor, and taste of whipped creams not influenced by hydrocolloids addition; but 0.45FC12 sample had higher value. Based on the above results, Farsi gum had suggested to potential application in a whipped cream formulation; however, further research need to foundingof their functionality.

Keywords: whipped cream, farsi gum, sodium caseinate, overrun, droplet size, texture analysis, sensory evaluation

Procedia PDF Downloads 97
4386 Power-Sharing Politics: A Panacea to Conflict Resolution and Stability in Africa

Authors: Emmanuel Dangana Monday

Abstract:

Africa as a continent has been ravaged and bedeviled by series of political conflicts associated with politics and power-sharing maneuvering. As a result it has become the most unstable continent in the world in terms of power distribution and stable political culture. This paper examines the efficacy of conscious and deliberate power-sharing strategies to settle or resolve political conflicts in Africa in the arrangements of creation of states, revenue and resources allocation, and office distribution systems. The study is concerned with the spatial impact of conflicts generated in some renowned African countries in which power-sharing would have been a solution. Ethno-regional elite groups are identified as the major actors in the struggles for the distribution of territorial, economic and political powers in Africa. The struggle for power has become so intense that it has degenerated to conflicts and wars of inter and intra-political classes and parties respectively. Secondary data and deductive techniques were used in data collection and analysis. It is discovered that power-sharing has become an indispensable tool to curb the incessant political and power crisis in Africa. It is one of the finest tolerable modality of mediating elite’ competition, since it reflects the interests of both the dominant and the perceived marginalized groups. The study recommends that countries and regions of political, ethnic and religious differences in Africa should employed power-sharing strategy in order to avoid unnecessary political tension and resultant crisis. Interest groups should always come to the negotiation table to reach a realistic, durable and expected compromise to secure a peacefully resolute Africa.

Keywords: Africa, power-sharing, conflicts, politics and political stability

Procedia PDF Downloads 324
4385 Synthesis of High-Pressure Performance Adsorbent from Coconut Shells Polyetheretherketone for Methane Adsorption

Authors: Umar Hayatu Sidik

Abstract:

Application of liquid base petroleum fuel (petrol and diesel) for transportation fuel causes emissions of greenhouse gases (GHGs), while natural gas (NG) reduces the emissions of greenhouse gases (GHGs). At present, compression and liquefaction are the most matured technology used for transportation system. For transportation use, compression requires high pressure (200–300 bar) while liquefaction is impractical. A relatively low pressure of 30-40 bar is achievable by adsorbed natural gas (ANG) to store nearly compressed natural gas (CNG). In this study, adsorbents for high-pressure adsorption of methane (CH4) was prepared from coconut shells and polyetheretherketone (PEEK) using potassium hydroxide (KOH) and microwave-assisted activation. Design expert software version 7.1.6 was used for optimization and prediction of preparation conditions of the adsorbents for CH₄ adsorption. Effects of microwave power, activation time and quantity of PEEK on the adsorbents performance toward CH₄ adsorption was investigated. The adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric (TG) and derivative thermogravimetric (DTG) and scanning electron microscopy (SEM). The ideal CH4 adsorption capacities of adsorbents were determined using volumetric method at pressures of 5, 17, and 35 bar at an ambient temperature and 5 oC respectively. Isotherm and kinetics models were used to validate the experimental results. The optimum preparation conditions were found to be 15 wt% amount of PEEK, 3 minutes activation time and 300 W microwave power. The highest CH4 uptake of 9.7045 mmol CH4 adsorbed/g adsorbent was recorded by M33P15 (300 W of microwave power, 3 min activation time and 15 wt% amount of PEEK) among the sorbents at an ambient temperature and 35 bar. The CH4 equilibrium data is well correlated with Sips, Toth, Freundlich and Langmuir. Isotherms revealed that the Sips isotherm has the best fit, while the kinetics studies revealed that the pseudo-second-order kinetic model best describes the adsorption process. In all scenarios studied, a decrease in temperature led to an increase in adsorption of both gases. The adsorbent (M33P15) maintained its stability even after seven adsorption/desorption cycles. The findings revealed the potential of coconut shell-PEEK as CH₄ adsorbents.

Keywords: adsorption, desorption, activated carbon, coconut shells, polyetheretherketone

Procedia PDF Downloads 66
4384 Modeling Operating Theater Scheduling and Configuration: An Integrated Model in Health-Care Logistics

Authors: Sina Keyhanian, Abbas Ahmadi, Behrooz Karimi

Abstract:

We present a multi-objective binary programming model which considers surgical cases are scheduling among operating rooms and the configuration of surgical instruments in limited capacity hospital trays, simultaneously. Many mathematical models have been developed previously in the literature addressing different challenges in health-care logistics such as assigning operating rooms, leveling beds, etc. But what happens inside the operating rooms along with the inventory management of required instruments for various operations, and also their integration with surgical scheduling have been poorly discussed. Our model considers the minimization of movements between trays during a surgery which recalls the famous cell formation problem in group technology. This assumption can also provide a major potential contribution to robotic surgeries. The tray configuration problem which consumes surgical instruments requirement plan (SIRP) and sequence of surgical procedures based on required instruments (SIRO) is nested inside the bin packing problem. This modeling approach helps us understand that most of the same-output solutions will not be necessarily identical when it comes to the rearrangement of surgeries among rooms. A numerical example has been dealt with via a proposed nested simulated annealing (SA) optimization approach which provides insights about how various configurations inside a solution can alter the optimal condition.

Keywords: health-care logistics, hospital tray configuration, off-line bin packing, simulated annealing optimization, surgical case scheduling

Procedia PDF Downloads 281
4383 Water Vapor Oxidization of NiO for a Hole Transport Layer in All Inorganic QD-LED

Authors: Jaeun Park, Daekyoung Kim, Ho Kyoon Chung, Heeyeop Chae

Abstract:

Quantum dots light-emitting diodes (QD-LEDs) have been considered as the next generation display and lighting devices due to their excellent color purity, photo-stability solution process possibility and good device stability. Currently typical quantum dot light emitting diodes contain organic layers such as PEDOT:PSS and PVK for charge transport layers. To make quantum dot light emitting diodes (QD-LED) more stable, it is required to replace those acidic and relatively unstable organic charge transport layers with inorganic materials. Therefore all inorganic and solution processed quantum dot light emitting diodes can potentially be a solution to stable and cost-effective display devices. We studied solution processed NiO films to replace organic charge transport layers that are required for stable all-inorganic based light emitting diodes. The transition metal oxides can be made by various vacuum and solution processes, but the solution processes are considered more cost-effective than vacuum processes. In this work we investigated solution processed NiOx for a hole transport layer (HTL). NiOx, has valence band energy levels of 5.3eV and they are easy to make sol-gel solutions. Water vapor oxidation process was developed and applied to solution processed all-inorganic QD-LED. Turn-on voltage, luminance and current efficiency of QD in this work were 5V, 1800Cd/m2 and 0.5Cd/A, respectively.

Keywords: QD-LED, metal oxide solution, NiO, all-inorganic QD-LED device

Procedia PDF Downloads 749
4382 Identification, Isolation and Characterization of Unknown Degradation Products of Cefprozil Monohydrate by HPTLC

Authors: Vandana T. Gawande, Kailash G. Bothara, Chandani O. Satija

Abstract:

The present research work was aimed to determine stability of cefprozil monohydrate (CEFZ) as per various stress degradation conditions recommended by International Conference on Harmonization (ICH) guideline Q1A (R2). Forced degradation studies were carried out for hydrolytic, oxidative, photolytic and thermal stress conditions. The drug was found susceptible for degradation under all stress conditions. Separation was carried out by using High Performance Thin Layer Chromatographic System (HPTLC). Aluminum plates pre-coated with silica gel 60F254 were used as the stationary phase. The mobile phase consisted of ethyl acetate: acetone: methanol: water: glacial acetic acid (7.5:2.5:2.5:1.5:0.5v/v). Densitometric analysis was carried out at 280 nm. The system was found to give compact spot for cefprozil monohydrate (0.45 Rf). The linear regression analysis data showed good linear relationship in the concentration range 200-5.000 ng/band for cefprozil monohydrate. Percent recovery for the drug was found to be in the range of 98.78-101.24. Method was found to be reproducible with % relative standard deviation (%RSD) for intra- and inter-day precision to be < 1.5% over the said concentration range. The method was validated for precision, accuracy, specificity and robustness. The method has been successfully applied in the analysis of drug in tablet dosage form. Three unknown degradation products formed under various stress conditions were isolated by preparative HPTLC and characterized by mass spectroscopic studies.

Keywords: cefprozil monohydrate, degradation products, HPTLC, stress study, stability indicating method

Procedia PDF Downloads 298
4381 Fixed Point Iteration of a Damped and Unforced Duffing's Equation

Authors: Paschal A. Ochang, Emmanuel C. Oji

Abstract:

The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced.

Keywords: damping, Duffing's equation, fixed point analysis, second order differential, stability analysis

Procedia PDF Downloads 290
4380 Optimization of Economic Order Quantity of Multi-Item Inventory Control Problem through Nonlinear Programming Technique

Authors: Prabha Rohatgi

Abstract:

To obtain an efficient control over a huge amount of inventory of drugs in pharmacy department of any hospital, generally, the medicines are categorized on the basis of their cost ‘ABC’ (Always Better Control), first and then categorize on the basis of their criticality ‘VED’ (Vital, Essential, desirable) for prioritization. About one-third of the annual expenditure of a hospital is spent on medicines. To minimize the inventory investment, the hospital management may like to keep the medicines inventory low, as medicines are perishable items. The main aim of each and every hospital is to provide better services to the patients under certain limited resources. To achieve the satisfactory level of health care services to outdoor patients, a hospital has to keep eye on the wastage of medicines because expiry date of medicines causes a great loss of money though it was limited and allocated for a particular period of time. The objectives of this study are to identify the categories of medicines requiring incentive managerial control. In this paper, to minimize the total inventory cost and the cost associated with the wastage of money due to expiry of medicines, an inventory control model is used as an estimation tool and then nonlinear programming technique is used under limited budget and fixed number of orders to be placed in a limited time period. Numerical computations have been given and shown that by using scientific methods in hospital services, we can give more effective way of inventory management under limited resources and can provide better health care services. The secondary data has been collected from a hospital to give empirical evidence.

Keywords: ABC-VED inventory classification, multi item inventory problem, nonlinear programming technique, optimization of EOQ

Procedia PDF Downloads 254
4379 Optimal Harmonic Filters Design of Taiwan High Speed Rail Traction System

Authors: Ying-Pin Chang

Abstract:

This paper presents a method for combining a particle swarm optimization with nonlinear time-varying evolution and orthogonal arrays (PSO-NTVEOA) in the planning of harmonic filters for the high speed railway traction system with specially connected transformers in unbalanced three-phase power systems. The objective is to minimize the cost of the filter, the filters loss, the total harmonic distortion of currents and voltages at each bus simultaneously. An orthogonal array is first conducted to obtain the initial solution set. The set is then treated as the initial training sample. Next, the PSO-NTVEOA method parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of experiments would have an effect that approximates the full factorial experiments. This PSO-NTVEOA method is then applied to design optimal harmonic filters in Taiwan High Speed Rail (THSR) traction system, where both rectifiers and inverters with IGBT are used. From the results of the illustrative examples, the feasibility of the PSO-NTVEOA to design an optimal passive harmonic filter of THSR system is verified and the design approach can greatly reduce the harmonic distortion. Three design schemes are compared that V-V connection suppressing the 3rd order harmonic, and Scott and Le Blanc connection for the harmonic improvement is better than the V-V connection.

Keywords: harmonic filters, particle swarm optimization, nonlinear time-varying evolution, orthogonal arrays, specially connected transformers

Procedia PDF Downloads 390
4378 Development of a Stable RNAi-Based Biological Control for Sheep Blowfly Using Bentonite Polymer Technology

Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.

Keywords: flystrike, RNA interference, bentonite polymer technology, Lucillia cuprina

Procedia PDF Downloads 90
4377 Chemical, Structural and Mechanical Optimization of Zr-Based Bulk Metallic Glass for Biomedical Applications

Authors: Eliott Guérin, Remi Daudin, Georges Kalepsi, Alexis Lenain, Sebastien Gravier, Benoit Ter-Ovanessian, Damien Fabregue, Jean-Jacques Blandin

Abstract:

Due to interesting compromise between mechanical and corrosion properties, Zr-based BMGs are attractive for biomedical applications. However, the enhancement of their glass forming ability (GFA) is often achieved by addition of toxic elements like Ni or Be, which is of course a problem for such applications. Consequently, the development of Ni-free Be-free Zr-based BMGs is of great interest. We have developed a Zr-based (Ni and Be-free) amorphous metallic alloy with an elastic limit twice the one of Ti-6Al-4V. The Zr56Co28Al16 composition exhibits a yield strength close to 2 GPa and low Young’s modulus (close to 90 GPa) [1-2]. In this work, we investigated Niobium (Nb) addition through substitution of Zr up to 8 at%. Cobalt substitution has already been reported [3], but we chose Zr substitution to preserve the glass forming ability. In this case, we show that the glass forming ability for 5 mm diameters rods is maintained up to 3 at% of Nb substitution using suction casting in cooper moulds. Concerning the thermal stability, we measure a strong compositional dependence on the glass transition (Tg). Using DSC analysis (heating rate 20 K/min), we show that the Tg rises from 752 K for 0 at% of Nb to 759 K for 3 at% of Nb. Yet, the thermal range between Tg and the crystallisation temperature (Tx) remains almost unchanged from 33 K to 35 K. Uniaxial compression tests on 2 mm diameter pillars and 3 points bending (3PB) tests on 1 mm thick plates are performed to study the Nb addition on the mechanical properties and the plastic behaviour. With these tests, an optimal Nb concentration is found, improving both plasticity and fatigue resistance. Through interpretations of DSC measurements, an attempt is made to correlate the modifications of the mechanical properties with the structural changes. The optimized chemical, structural and mechanical properties through Nb addition are encouraging to develop the potential of this BMG alloy for biomedical applications. For this purpose, we performed polarisation, immersion and cytotoxicity tests. The figure illustrates the polarisation response of Zr56Co28Al16, Zr54Co28Al16Nb2 and TA6V as a reference after 2h of open circuit potential. The results show that the substitution of Zr by a small amount of Nb significantly improves the corrosion resistance of the alloy.

Keywords: metallic glasses, amorphous metal, medical, mechanical resistance, biocompatibility

Procedia PDF Downloads 147
4376 Optimization Of Biogas Production Using Co-digestion Feedstocks Via Anaerobic Technologhy

Authors: E Tolufase

Abstract:

The demand, high costs and health implications of using energy derived from hydrocarbon compound have necessitated the continuous search for alternative source of energy. The World energy market is facing some challenges viz: depletion of fossil fuel reserves, population explosion, lack of energy security, economic and urbanization growth and also, in Nigeria some rural areas still depend largely on wood, charcoal, kerosene, petrol among others, as the sources of their energy. To overcome these short falls in energy supply and demand, as well as taking into consideration the risks from global climate change due to effect of greenhouse gas emissions and other pollutants from fossil fuels’ combustion, brought a lot of attention on efficiently harnessing the renewable energy sources. A very promising among the renewable energy resources for a clean energy technology for power production, vehicle and domestic usage is biogas. Therefore, optimization of biogas yield and quality is imperative. Hence, this study investigated yield and quality of biogas using low cost bio-digester and combination of various feed stocks referred to as co-digestion. Batch/Discontinuous Bio-digester type was used because it was cheap, easy, plausible and appropriate for different substrates used to get the desired results. Three substrates were used; cow dung, chicken droppings and lemon grass digested in five separate 21 litre digesters, A, B, C, D, and E and the gas collection system was designed using locally available materials. For single digestion we had; cow dung, chicken droppings, lemon grass, in Bio-digesters A, B, and C respectively, the co-digested three substrates in different mixed ratio 7:1:2 in digester D and E in ratio 5:3:2. The respective feed-stocks materials were collected locally, digested and analyzed in accordance with standard procedures. They were pre-fermented for a period of 10 days before being introduced into the digesters. They were digested for a retention period of 28 days, the physiochemical parameters namely; pressure, temperature, pH, volume of the gas collector system and volume of biogas produced were all closely monitored and recorded daily. The values of pH and temperature ranged 6.0 - 8.0, and 220C- 350C respectively. For the single substrate, bio-digester A(Cow dung only) produced biogas of total volume 0.1607m3(average volume of 0.0054m3 daily),while B (Chicken droppings ) produced 0.1722m3 (average of 0.0057m3 daily) and C (lemon grass) produced 0.1035m3 (average of 0.0035m3 daily). For the co-digested substrates in bio-digester D the total biogas produced was 0.2007m³ (average volume of 0.0067m³ daily) and bio-digester E produced 0.1991m³ (average volume of 0.0066m³ daily) It’s obvious from the results, that combining different substrates gave higher yields than when a singular feed stock was used and also mixing ratio played some roles in the yield improvement. Bio-digesters D and E contained the same substrates but mixed with different ratios, but higher yield was noticed in D with mixing ratio of 7:1:2 than in E with ratio 5:3:2.Therefore, co-digestion of substrates and mixing proportions are important factors for biogas production optimization.

Keywords: anaerobic, batch, biogas, biodigester, digestion, fermentation, optimization

Procedia PDF Downloads 27
4375 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing

Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger

Abstract:

This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.

Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles

Procedia PDF Downloads 39