Search results for: soil texture prediction
3548 Crack Width Analysis of Reinforced Concrete Members under Shrinkage Effect by Pseudo-Discrete Crack Model
Authors: F. J. Ma, A. K. H. Kwan
Abstract:
Crack caused by shrinkage movement of concrete is a serious problem especially when restraint is provided. It may cause severe serviceability and durability problems. The existing prediction methods for crack width of concrete due to shrinkage movement are mainly numerical methods under simplified circumstances, which do not agree with each other. To get a more unified prediction method applicable to more sophisticated circumstances, finite element crack width analysis for shrinkage effect should be developed. However, no existing finite element analysis can be carried out to predict the crack width of concrete due to shrinkage movement because of unsolved reasons of conventional finite element analysis. In this paper, crack width analysis implemented by finite element analysis is presented with pseudo-discrete crack model, which combines traditional smeared crack model and newly proposed crack queuing algorithm. The proposed pseudo-discrete crack model is capable of simulating separate and single crack without adopting discrete crack element. And the improved finite element analysis can successfully simulate the stress redistribution when concrete is cracked, which is crucial for predicting crack width, crack spacing and crack number.Keywords: crack queuing algorithm, crack width analysis, finite element analysis, shrinkage effect
Procedia PDF Downloads 4193547 Early Prediction of Diseases in a Cow for Cattle Industry
Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan
Abstract:
In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.Keywords: IoT, machine learning, health care, dairy cows
Procedia PDF Downloads 733546 Collapse Load Analysis of Reinforced Concrete Pile Group in Liquefying Soils under Lateral Loading
Authors: Pavan K. Emani, Shashank Kothari, V. S. Phanikanth
Abstract:
The ultimate load analysis of RC pile groups has assumed a lot of significance under liquefying soil conditions, especially due to post-earthquake studies of 1964 Niigata, 1995 Kobe and 2001 Bhuj earthquakes. The present study reports the results of numerical simulations on pile groups subjected to monotonically increasing lateral loads under design amounts of pile axial loading. The soil liquefaction has been considered through the non-linear p-y relationship of the soil springs, which can vary along the depth/length of the pile. This variation again is related to the liquefaction potential of the site and the magnitude of the seismic shaking. As the piles in the group can reach their extreme deflections and rotations during increased amounts of lateral loading, a precise modeling of the inelastic behavior of the pile cross-section is done, considering the complete stress-strain behavior of concrete, with and without confinement, and reinforcing steel, including the strain-hardening portion. The possibility of the inelastic buckling of the individual piles is considered in the overall collapse modes. The model is analysed using Riks analysis in finite element software to check the post buckling behavior and plastic collapse of piles. The results confirm the kinds of failure modes predicted by centrifuge test results reported by researchers on pile group, although the pile material used is significantly different from that of the simulation model. The extension of the present work promises an important contribution to the design codes for pile groups in liquefying soils.Keywords: collapse load analysis, inelastic buckling, liquefaction, pile group
Procedia PDF Downloads 1623545 Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain
Authors: M. Kakavand, S. A. Naeini
Abstract:
Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed – free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases.Keywords: dynamic properties, shear modulus, damping ratio, clean sand, density, confining pressure, resonant column/torsional simple shear, TSS
Procedia PDF Downloads 1233544 Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation
Authors: Ahmed S. Abdulrasool
Abstract:
Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2.Keywords: bearing capacity, circular foundation, clay soil, lime-sand wall
Procedia PDF Downloads 3973543 A Machine Learning Approach for Intelligent Transportation System Management on Urban Roads
Authors: Ashish Dhamaniya, Vineet Jain, Rajesh Chouhan
Abstract:
Traffic management is one of the gigantic issue in most of the urban roads in al-most all metropolitan cities in India. Speed is one of the critical traffic parameters for effective Intelligent Transportation System (ITS) implementation as it decides the arrival rate of vehicles on an intersection which are majorly the point of con-gestions. The study aimed to leverage Machine Learning (ML) models to produce precise predictions of speed on urban roadway links. The research objective was to assess how categorized traffic volume and road width, serving as variables, in-fluence speed prediction. Four tree-based regression models namely: Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Extreme Gradient Boost (XGB)are employed for this purpose. The models' performances were validated using test data, and the results demonstrate that Random Forest surpasses other machine learning techniques and a conventional utility theory-based model in speed prediction. The study is useful for managing the urban roadway network performance under mixed traffic conditions and effective implementation of ITS.Keywords: stream speed, urban roads, machine learning, traffic flow
Procedia PDF Downloads 713542 Harnessing the Power of Loss: On the Discriminatory Dynamic of Non-Emancipatory Organization Identity
Authors: Rickard Grassman
Abstract:
In this paper, Lacanian theory will be used to illustrate the way discourses interact with the material by way of reifying antagonisms to shape our sense of identities in and around organizations. The ability to ‘sustain the loss’ is, in this view, the common structure here discerned in the very texture of a discourse, which reifies ‘lack’ as an ontological condition into something contingently absent (loss) that the subject hopes to overcome (desire). These fundamental human tendencies of identification are illustrated in the paper by examples drawn from history, cinema, and literature. Turning to a select sample of empirical accounts from a management consultancy firm, it is argued that this ‘sustaining the loss’ operates in discourse to enact identification in an organizational context.Keywords: Lacan, identification, discourse, desire, loss
Procedia PDF Downloads 983541 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1223540 Investigation on Fischer-Tropsch Synthesis over Cobalt-Gadolinium Catalyst
Authors: Jian Huang, Weixin Qian, Haitao Zhang, Weiyong Ying
Abstract:
Cobalt-gadolinium catalyst for Fischer-Tropsch synthesis was prepared by impregnation method with commercial silica gel, and its texture properties were characterized by BET, XRD, and TPR. The catalytic performance of the catalyst was tested in a fixed bed reactor. The results showed that the addition of gadolinium to the cobalt catalyst might decrease the size of cobalt particles, and increased the dispersion of catalytic active cobalt phases. The carbon number distributions for the catalysts was calculated by ASF equation.Keywords: Fischer-Tropsch synthesis, cobalt-based catalysts, gadolinium, carbon number distributions
Procedia PDF Downloads 3813539 Statistical Description of Counterpoise Effective Length Based on Regressive Formulas
Authors: Petar Sarajcev, Josip Vasilj, Damir Jakus
Abstract:
This paper presents a novel statistical description of the counterpoise effective length due to lightning surges, where the (impulse) effective length had been obtained by means of regressive formulas applied to the transient simulation results. The effective length is described in terms of a statistical distribution function, from which median, mean, variance, and other parameters of interest could be readily obtained. The influence of lightning current amplitude, lightning front duration, and soil resistivity on the effective length has been accounted for, assuming statistical nature of these parameters. A method for determining the optimal counterpoise length, in terms of the statistical impulse effective length, is also presented. It is based on estimating the number of dangerous events associated with lightning strikes. Proposed statistical description and the associated method provide valuable information which could aid the design engineer in optimising physical lengths of counterpoises in different grounding arrangements and soil resistivity situations.Keywords: counterpoise, grounding conductor, effective length, lightning, Monte Carlo method, statistical distribution
Procedia PDF Downloads 4283538 Assessment of Ground Water Potential Zone: A Case Study of Paramakudi Taluk, Ramanathapuram, Tamilnadu, India
Authors: Shri Devi
Abstract:
This paper was conducted to see the ground water potential zones in Paramakudi taluk, Ramanathapuram,Tamilnadu India with a total areal extent of 745 sq. km. The various thematic map have been prepared for the study such as soil, geology, geomorphology, drainage, land use of the particular study area using the Toposheet of 1: 50000. The digital elevation model (DEM) has been generated from contour interval of 10m and also the slope was prepared. The ground water potential zone of the region was obtained using the weighted overlay analysis for which all the thematic maps were overlayed in arc gis 10.2. For the particular output the ranking has been given for all the parameters of each thematic layer with different weightage such as 25% was given to soil, 25% to geomorphology and land use land cover also 25%, slope 15%, lineament with 5% and drainage streams with 5 percentage. Using these entire potential zone maps was prepared which was overlayed with the village map to check the region which has good, moderate and low groundwater potential zone.Keywords: GIS, ground water, Paramakudi, weighted overlay analysis
Procedia PDF Downloads 3423537 Intelligent Platform for Photovoltaic Park Operation and Maintenance
Authors: Andreas Livera, Spyros Theocharides, Michalis Florides, Charalambos Anastassiou
Abstract:
A main challenge in the quest for ensuring quality of operation, especially for photovoltaic (PV) systems, is to safeguard the reliability and optimal performance by detecting and diagnosing potential failures and performance losses at early stages or before the occurrence through real-time monitoring, supervision, fault detection, and predictive maintenance. The purpose of this work is to present the functionalities and results related to the development and validation of a software platform for PV assets diagnosis and maintenance. The platform brings together proprietary hardware sensors and software algorithms to enable the early detection and prediction of the most common and critical faults in PV systems. It was validated using field measurements from operating PV systems. The results showed the effectiveness of the platform for detecting faults and losses (e.g., inverter failures, string disconnections, and potential induced degradation) at early stages, forecasting PV power production while also providing recommendations for maintenance actions. Increased PV energy yield production and revenue can be thus achieved while also minimizing operation and maintenance (O&M) costs.Keywords: failure detection and prediction, operation and maintenance, performance monitoring, photovoltaic, platform, recommendations, predictive maintenance
Procedia PDF Downloads 523536 Optimal Design of RC Pier Accompanied with Multi Sliding Friction Damping Mechanism Using Combination of SNOPT and ANN Method
Authors: Angga S. Fajar, Y. Takahashi, J. Kiyono, S. Sawada
Abstract:
The structural system concept of RC pier accompanied with multi sliding friction damping mechanism was developed based on numerical analysis approach. However in the implementation, to make design for such kind of this structural system consumes a lot of effort in case high of complexity. During making design, the special behaviors of this structural system should be considered including flexible small deformation, sufficient elastic deformation capacity, sufficient lateral force resistance, and sufficient energy dissipation. The confinement distribution of friction devices has significant influence to its. Optimization and prediction with multi function regression of this structural system expected capable of providing easier and simpler design method. The confinement distribution of friction devices is optimized with SNOPT in Opensees, while some design variables of the structure are predicted using multi function regression of ANN. Based on the optimization and prediction this structural system is able to be designed easily and simply.Keywords: RC Pier, multi sliding friction device, optimal design, flexible small deformation
Procedia PDF Downloads 3673535 Numerical Modelling of a Vacuum Consolidation Project in Vietnam
Authors: Nguyen Trong Nghia, Nguyen Huu Uy Vu, Dang Huu Phuoc, Sanjay Kumar Shukla, Le Gia Lam, Nguyen Van Cuong
Abstract:
This paper introduces a matching scheme for selection of soil/drain properties in analytical solution and numerical modelling (axisymmetric and plane strain conditions) of a ground improvement project by using Prefabricated Vertical Drains (PVD) in combination with vacuum and surcharge preloading. In-situ monitoring data from a case history of a road construction project in Vietnam was adopted in the back-analysis. Analytical solution and axisymmetric analysis can approximate well the field data meanwhile the horizontal permeability need to be adjusted in plane strain scenario to achieve good agreement. In addition, the influence zone of the ground treatment was examined. The residual settlement was investigated to justify the long-term settlement in compliance with the design code. Moreover, the degree of consolidation of non-PVD sub-layers was also studied by means of two different approaches.Keywords: numerical modelling, prefabricated vertical drains, vacuum consolidation, soft soil
Procedia PDF Downloads 2303534 Environmentally Friendly KOH and NH4OH-KOH Pulping of Rice Straw
Authors: Omid Ghaffarzadeh Mollabashi, Sara Khorshidi, Hossein Kermanian Seyed, Majid Zabihzadeh
Abstract:
The main problem that hinders the intensive use of non-wood raw materials in papermaking industry is the environmental pollution caused by black liquor. As a matter of fact, black liquor of nonwood pulping is discharged to the environment due to the lack of recovery. Traditionally, NaOH pulping produces Na-based black liquor that may increase soil erosion and reduce soil permeability. With substitution of KOH/NH4OH with NaOH as the cooking liquor, K and N can act as a soil fertilizer while offering an environmentally acceptable disposal alternative. For this purpose, rice straw samples were pulped under the following conditions; Constant factors were: straw weight: 100 gram (based on oven dry), liquor to straw ratio 7:1 and maximum temperature, 170 and 180 ºC. Variable factors for KOH cooks were: KOH dosage of 14, 17 and %20 on oven dry of straw and times at maximum temperature of 60 and 90 minutes. For KOH-NH4OH cooks, KOH dosage of 5 and %10 and NH4OH dosage of 25 and %35, both based as oven dry of straw were applied. Besides, time at maximum temperature was 90 minutes. Yield ranges of KOH and KOH-NH4OH pulp samples were obtained from 37.28 to 48.62 and 45.63 to 48.08 percent, respectively. In addition, Kappa number ranged from 21.91 to 29.85 and 55.15 to 56.25, respectively. In comparison with soda, soda-AQ, cold soda, kraft, EDA (dissolving), De-Ethylene Glycol (dissolving), burst and tensile index for KOH pulp was more in similar cooking condition. With an exception of soda pulps, tear index of the mentioned pulp is more than all compared treatments. Therefore, it can be resulted that KOH pulping method is an appropriate choice for making paper of the rice straw. Also, compared to KOH-NH4OH, KOH pulping method is more appropriate choice because of better pulping results.Keywords: environmentally friendly process, rice straw, NH4OH-KOH pulping, pulp properties
Procedia PDF Downloads 2723533 Probabilistic Analysis of Bearing Capacity of Isolated Footing using Monte Carlo Simulation
Authors: Sameer Jung Karki, Gokhan Saygili
Abstract:
The allowable bearing capacity of foundation systems is determined by applying a factor of safety to the ultimate bearing capacity. Conventional ultimate bearing capacity calculations routines are based on deterministic input parameters where the nonuniformity and inhomogeneity of soil and site properties are not accounted for. Hence, the laws of mathematics like probability calculus and statistical analysis cannot be directly applied to foundation engineering. It’s assumed that the Factor of Safety, typically as high as 3.0, incorporates the uncertainty of the input parameters. This factor of safety is estimated based on subjective judgement rather than objective facts. It is an ambiguous term. Hence, a probabilistic analysis of the bearing capacity of an isolated footing on a clayey soil is carried out by using the Monte Carlo Simulation method. This simulated model was compared with the traditional discrete model. It was found out that the bearing capacity of soil was found higher for the simulated model compared with the discrete model. This was verified by doing the sensitivity analysis. As the number of simulations was increased, there was a significant % increase of the bearing capacity compared with discrete bearing capacity. The bearing capacity values obtained by simulation was found to follow a normal distribution. While using the traditional value of Factor of safety 3, the allowable bearing capacity had lower probability (0.03717) of occurring in the field compared to a higher probability (0.15866), while using the simulation derived factor of safety of 1.5. This means the traditional factor of safety is giving us bearing capacity that is less likely occurring/available in the field. This shows the subjective nature of factor of safety, and hence probability method is suggested to address the variability of the input parameters in bearing capacity equations.Keywords: bearing capacity, factor of safety, isolated footing, montecarlo simulation
Procedia PDF Downloads 1873532 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers
Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya
Abstract:
In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.Keywords: IVF, embryo, machine learning, time-lapse imaging data
Procedia PDF Downloads 933531 Assessment of Soil Contamination on the Content of Macro and Microelements and the Quality of Grass Pea Seeds (Lathyrus sativus L.)
Authors: Violina R. Angelova
Abstract:
Comparative research has been conducted to allow us to determine the content of macro and microelements in the vegetative and reproductive organs of grass pea and the quality of grass pea seeds, as well as to identify the possibility of grass pea growth on soils contaminated by heavy metals. The experiment was conducted on an agricultural field subjected to contamination from the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances of 0.5 km and 8 km, respectively, from the source of pollution. On reaching commercial ripeness the grass pea plants were gathered. The composition of the macro and microelements in plant materials (roots, stems, leaves, seeds), and the dry matter content, sugars, proteins, fats and ash contained in the grass pea seeds were determined. Translocation factors (TF) and bioaccumulation factor (BCF) were also determined. The quantitative measurements were carried out through inductively-coupled plasma (ICP). The grass pea plant can successfully be grown on soils contaminated by heavy metals. Soil pollution with heavy metals does not affect the quality of the grass pea seeds. The seeds of the grass pea contain significant amounts of nutrients (K, P, Cu, Fe Mn, Zn) and protein (23.18-29.54%). The distribution of heavy metals in the organs of the grass pea has a selective character, which reduces in the following order: leaves > roots > stems > seeds. BCF and TF values were greater than one suggesting efficient accumulation in the above ground parts of grass pea plant. Grass pea is a plant that is tolerant to heavy metals and can be referred to the accumulator plants. The results provide valuable information about the chemical and nutritional composition of the seeds of the grass pea grown on contaminated soils in Bulgaria. The high content of macro and microelements and the low concentrations of toxic elements in the grass pea grown in contaminated soil make it possible to use the seeds of the grass pea as animal feed.Keywords: Lathyrus sativus L, macroelements, microelements, quality
Procedia PDF Downloads 1463530 The Pile Group Efficiency for Different Embedment Lengths in Dry Sand
Authors: Mohamed M. Shahin
Abstract:
This study investigated the design of the pile foundation to support heavy structures-especially bridges for highways-in the Sahara, which contains many dunes of medium dense sand in different levels, where the foundation is supposed to be piles. The base resistance of smooth model pile groups in sand under static loading is investigated experimentally in a pile soil test apparatus. Improvement were made to the sand around the piles in order to increase the shaft resistance of the single pile and the pile groups, and also base resistance especially for the central pile in pile groups. The study outlines the behaviour of a single-pile, 4-, 5-, and 9- pile groups arranged in a doubly symmetric [square] layout with different embedment lengths and pile spacing in loose dry sand [normal] and dense dry sand [compacted] around the piles. This study evaluate the variation of the magnitude and the proportion of end bearing capacity of individual piles in different pile groups. Also to investigate the magnitude of the efficiency coefficient in the case of different pile groups.Keywords: pile group, base resistance, efficiency coefficient, pile spacing, pile-soil interaction
Procedia PDF Downloads 3633529 Neural Network and Support Vector Machine for Prediction of Foot Disorders Based on Foot Analysis
Authors: Monireh Ahmadi Bani, Adel Khorramrouz, Lalenoor Morvarid, Bagheri Mahtab
Abstract:
Background:- Foot disorders are common in musculoskeletal problems. Plantar pressure distribution measurement is one the most important part of foot disorders diagnosis for quantitative analysis. However, the association of plantar pressure and foot disorders is not clear. With the growth of dataset and machine learning methods, the relationship between foot disorders and plantar pressures can be detected. Significance of the study:- The purpose of this study was to predict the probability of common foot disorders based on peak plantar pressure distribution and center of pressure during walking. Methodologies:- 2323 participants were assessed in a foot therapy clinic between 2015 and 2021. Foot disorders were diagnosed by an experienced physician and then they were asked to walk on a force plate scanner. After the data preprocessing, due to the difference in walking time and foot size, we normalized the samples based on time and foot size. Some of force plate variables were selected as input to a deep neural network (DNN), and the probability of any each foot disorder was measured. In next step, we used support vector machine (SVM) and run dataset for each foot disorder (classification of yes or no). We compared DNN and SVM for foot disorders prediction based on plantar pressure distributions and center of pressure. Findings:- The results demonstrated that the accuracy of deep learning architecture is sufficient for most clinical and research applications in the study population. In addition, the SVM approach has more accuracy for predictions, enabling applications for foot disorders diagnosis. The detection accuracy was 71% by the deep learning algorithm and 78% by the SVM algorithm. Moreover, when we worked with peak plantar pressure distribution, it was more accurate than center of pressure dataset. Conclusion:- Both algorithms- deep learning and SVM will help therapist and patients to improve the data pool and enhance foot disorders prediction with less expense and error after removing some restrictions properly.Keywords: deep neural network, foot disorder, plantar pressure, support vector machine
Procedia PDF Downloads 3593528 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers
Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang
Abstract:
Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors
Procedia PDF Downloads 1223527 Effect of Chemical Fertilizer on Plant Growth-Promoting Rhizobacteria in Wheat
Authors: Tessa E. Reid, Vanessa N. Kavamura, Maider Abadie, Adriana Torres-Ballesteros, Mark Pawlett, Ian M. Clark, Jim Harris, Tim Mauchline
Abstract:
The deleterious effect of chemical fertilizer on rhizobacterial diversity has been well documented using 16S rRNA gene amplicon sequencing and predictive metagenomics. Biofertilization is a cost-effective and sustainable alternative; improving strategies depends on isolating beneficial soil microorganisms. Although culturing is widespread in biofertilization, it is unknown whether the composition of cultured isolates closely mirrors native beneficial rhizobacterial populations. This study aimed to determine the relative abundance of culturable plant growth-promoting rhizobacteria (PGPR) isolates within total soil DNA and how potential PGPR populations respond to chemical fertilization in a commercial wheat variety. It was hypothesized that PGPR will be reduced in fertilized relative to unfertilized wheat. Triticum aestivum cv. Cadenza seeds were sown in a nutrient depleted agricultural soil in pots treated with and without nitrogen-phosphorous-potassium (NPK) fertilizer. Rhizosphere and rhizoplane samples were collected at flowering stage (10 weeks) and analyzed by culture-independent (amplicon sequence variance (ASV) analysis of total rhizobacterial DNA) and -dependent (isolation using growth media) techniques. Rhizosphere- and rhizoplane-derived microbiota culture collections were tested for plant growth-promoting traits using functional bioassays. In general, fertilizer addition decreased the proportion of nutrient-solubilizing bacteria (nitrate, phosphate, potassium, iron and, zinc) isolated from rhizocompartments in wheat, whereas salt tolerant bacteria were not affected. A PGPR database was created from isolate 16S rRNA gene sequences and searched against total soil DNA, revealing that 1.52% of total community ASVs were identified as culturable PGPR isolates. Bioassays identified a higher proportion of PGPR in non-fertilized samples (rhizosphere (49%) and rhizoplane (91%)) compared to fertilized samples (rhizosphere (21%) and rhizoplane (19%)) which constituted approximately 1.95% and 1.25% in non-fertilized and fertilized total community DNA, respectively. The analyses of 16S rRNA genes and deduced functional profiles provide an in-depth understanding of the responses of bacterial communities to fertilizer; this study suggests that rhizobacteria, which potentially benefit plants by mobilizing insoluble nutrients in soil, are reduced by chemical fertilizer addition. This knowledge will benefit the development of more targeted biofertilization strategies.Keywords: bacteria, fertilizer, microbiome, rhizoplane, rhizosphere
Procedia PDF Downloads 3083526 Evaluation of Biological Seed Coating Technology On-Field Performance of Wheat in Regenerative Agriculture and Conventional Systems
Authors: S. Brain, P. J. Storer, H. Strydom, Z. M. Solaiman
Abstract:
Increasing farmer awareness of soil health, the impact of agricultural management practices, and the requirement for high-quality agricultural produce are major factors driving the rapid adoption of biological seed treatments - currently valued globally at USD 1.5 billion. Biological seed coatings with multistrain plant beneficial microbial technology have the capability to affect plant establishment, growth, and development positively. These beneficial plant microbes can potentially increase soil health, plant yield, and nutrition – acting as bio fertilisers, rhizoremediators, phytostimulators, and stress modulators, and can ultimately reduce the overall use of agrichemicals. A field trial was conducted on MACE wheat in the central wheat belt of Western Australia to evaluate a proprietary seed coating technology (Langleys Bio-EnergeticTM Microbe blend (BMB)) on a conventional program (+/- BMB microbes) and a Regenerative Biomineral fertiliser program (+/- BMB microbes). The Conventional (+BMB) and Biomineral (+BMB) treated plants had no fungicide treatments and had no disease issues. Control (No fertiliser, No microbes), Conventional (No Microbes), and Biomineral (No Microbes) were treated with fungicides (seed dressing and foliar). From the research findings, compared to control and no microbe treatments, both the Conventional (+ BMB) and Biomineral (+ BMB) showed significant increases in Soil Carbon (SOC), Seed germination, nutrient use efficiency (NUE) of nitrogen, phosphate and mineral nutrients, grain mineral nutrient uptake, protein %, hectolitre weight, and fewer screenings, yield, and gross margins.Keywords: biological seed coating, biomineral fertiliser, plant nutrition, regenerative and conventional agriculture
Procedia PDF Downloads 793525 Analytical Method for Seismic Analysis of Shaft-Tunnel Junction under Longitudinal Excitations
Authors: Jinghua Zhang
Abstract:
Shaft-tunnel junction is a typical case of the structural nonuniformity in underground structures. The shaft and the tunnel possess greatly different structural features. Even under uniform excitations, they tend to behave discrepantly. Studies on shaft-tunnel junctions are mainly performed numerically. Shaking table tests are also conducted. Although many numerical and experimental data are obtained, an analytical solution still has great merits of gaining more insights into the shaft-tunnel problem. This paper will try to remedy the situation. Since the seismic responses of shaft-tunnel junctions are very related to directions of the excitations, they are studied in two scenarios: the longitudinal-excitation scenario and the transverse-excitation scenario. The former scenario will be addressed in this paper. Given that responses of the tunnel are highly dependent on the shaft, the analytical solutions would be developed firstly for the vertical shaft. Then, the seismic responses of the tunnel would be discussed. Since vertical shafts bear a resemblance to rigid caissons, the solution proposed in this paper is derived by introducing terms of shaft-tunnel and soil-tunnel interactions into equations originally developed for rigid caissons. The validity of the solution is examined by a validation model computed by finite element method. The mutual influence between the shaft and the tunnel is introduced. The soil-structure interactions are discussed parametrically based on the proposed equations. The shaft-tunnel relative displacement and the soil-tunnel relative stiffness are found to be the most important parameters affecting the magnitudes and distributions of the internal forces of the tunnel. A hinge-joint at the shaft-tunnel junction could significantly reduce the degree of stress concentration compared with a rigid joint.Keywords: analytical solution, longitudinal excitation, numerical validation , shaft-tunnel junction
Procedia PDF Downloads 1623524 Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle
Authors: Elham Delzendeh, Song Wu, Mustafa Al-Adhami, Rima Alaaeddine
Abstract:
Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings.Keywords: building lifecycle, efficiency, energy analysis, energy performance, uncertainty
Procedia PDF Downloads 1393523 Crop Recommendation System Using Machine Learning
Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar
Abstract:
With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.Keywords: crop recommendation, precision agriculture, crop, machine learning
Procedia PDF Downloads 193522 Improve Safety Performance of Un-Signalized Intersections in Oman
Authors: Siham G. Farag
Abstract:
The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T- intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.Keywords: accidents prediction models (APMs), generalized linear model (GLM), T-intersections, Oman
Procedia PDF Downloads 2733521 Optimizing E-commerce Retention: A Detailed Study of Machine Learning Techniques for Churn Prediction
Authors: Saurabh Kumar
Abstract:
In the fiercely competitive landscape of e-commerce, understanding and mitigating customer churn has become paramount for sustainable business growth. This paper presents a thorough investigation into the application of machine learning techniques for churn prediction in e-commerce, aiming to provide actionable insights for businesses seeking to enhance customer retention strategies. We conduct a comparative study of various machine learning algorithms, including traditional statistical methods and ensemble techniques, leveraging a rich dataset sourced from Kaggle. Through rigorous evaluation, we assess the predictive performance, interpretability, and scalability of each method, elucidating their respective strengths and limitations in capturing the intricate dynamics of customer churn. We identified the XGBoost classifier to be the best performing. Our findings not only offer practical guidelines for selecting suitable modeling approaches but also contribute to the broader understanding of customer behavior in the e-commerce domain. Ultimately, this research equips businesses with the knowledge and tools necessary to proactively identify and address churn, thereby fostering long-term customer relationships and sustaining competitive advantage.Keywords: customer churn, e-commerce, machine learning techniques, predictive performance, sustainable business growth
Procedia PDF Downloads 323520 Diffuse CO₂ Degassing to Study Blind Geothermal Systems: The Acoculco, Puebla (Mexico) Case Study
Authors: Mirna Guevara, Edgar Santoyo, Daniel Perez-Zarate, Erika Almirudis
Abstract:
The Acoculco caldera located in Puebla (Mexico) has been preliminary identified as a blind hot-dry rock geothermal system. Two drilled wells suggest the existence of high temperatures >300°C and non-conventional tools are been applied to study this system. A comprehensive survey of soil-gas (CO₂) flux measurements (1,500 sites) was carried out during the dry seasons over almost two years (2015 and 2016). Isotopic analyses of δ¹³CCO₂ were performed to discriminate the origin source of the CO2 fluxes. The soil CO2 flux measurements were made in situ by the accumulation chamber method, whereas gas samples for δ13CCO2 were selectively collected from the accumulation chamber with evacuated gas vials via a septum. Two anomalous geothermal zones were identified as a result of these campaigns: Los Azufres (19°55'29.4'' N; 98°08'39.9'' W; 2,839 masl) and Alcaparrosa (19°55'20.6'' N; 98°08'38.3'' W; 2,845 masl). To elucidate the origin of the C in soil CO₂ fluxes, the isotopic signature of δ¹³C was used. Graphical Statistical Analysis (GSA) and a three end-member mixing diagram were used to corroborate the presence of distinctive statistical samples, and trends for the diffuse gas fluxes. Spatial and temporal distributions of the CO₂ fluxes were studied. High CO₂ emission rates up to 38,217 g/m2/d and 33,706 g/m2/d were measured for the Los Azufres and Alcaparrosa respectively; whereas the δ¹³C signatures showed values ranging from -3.4 to -5.5 o/oo for both zones, confirming their magmatic origin. This study has provided a valuable framework to set the direction of further exploration campaigns in the Acoculco caldera. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).Keywords: accumulation chamber method, carbon dioxide, diffusive degassing, geothermal exploration
Procedia PDF Downloads 2653519 Anisotropic Shear Strength of Sand Containing Plastic Fine Materials
Authors: Alaa H. J. Al-Rkaby, A. Chegenizadeh, H. R. Nikraz
Abstract:
Anisotropy is one of the major aspects that affect soil behavior, and extensive efforts have investigated its effect on the mechanical properties of soil. However, very little attention has been given to the combined effect of anisotropy and fine contents. Therefore, in this paper, the anisotropic strength of sand containing different fine content (F) of 5%, 10%, 15%, and 20%, was investigated using hollow cylinder tests under different principal stress directions of α = 0° and α = 90°. For a given principal stress direction (α), it was found that increasing fine content resulted in decreasing deviator stress (q). Moreover, results revealed that all fine contents showed anisotropic strength where there is a clear difference between the strength under 0° and the strength under 90°. This anisotropy was greatest under F = 5% while it decreased with increasing fine contents, particularly at F = 10%. Mixtures with low fine content show low contractive behavior and tended to show more dilation. Moreover, all sand-clay mixtures exhibited less dilation and more compression at α = 90° compared with that at α = 0°.Keywords: anisotropy, principal stress direction, fine content, hollow cylinder sample
Procedia PDF Downloads 316