Search results for: learning science
7182 Minimizing Learning Difficulties in Teaching Mathematics
Authors: Hari Sharan Pandit
Abstract:
Mathematics teaching in Nepal has been centralized and guided by the notion of transfer of knowledge and skills from teachers to students. The overemphasis on an algorithm-centric approach of mathematics teaching and the focus on ‘rote–learning’ as the ultimate way of solving mathematical problems since the early years of schooling have been creating severe problems in school-level mathematics in Nepal. In this context, the author argues that students should learn real-world mathematical problems through various interesting, creative and collaborative, as well as artistic and alternative ways of knowing. The collaboration-incorporated pedagogy is an distinct pedagogical approach that offers a better alternative as an integrated and interdisciplinary approach to learning that encourages students to think more broadly and critically about real-world problems. The paper, as a summarized report of action research designed, developed and implemented by the author, focuses on the needs and usefulness of collaboration-incorporated pedagogy in the Nepali context to make mathematics teaching more meaningful for producing creative and critical citizens. This paper is useful for mathematics teachers, teacher educators and researchers who argue on arts integration in mathematics teaching.Keywords: algorithm-centric, rote-learning, collaboration - incorporated pedagogy, action research
Procedia PDF Downloads 117181 Differentiated Instruction for All Learners: Strategies for Full Inclusion
Authors: Susan Dodd
Abstract:
This presentation details the methodology for teachers to identify and support a population of students who have historically been overlooked in regards to their educational needs. The twice exceptional (2e) student is a learner who is considered gifted and also has a learning disability, as defined by the Individuals with Disabilities Education Act (IDEA). Many of these students remain underserved throughout their educational careers because their exceptionalities may mask each other, resulting in a special population of students who are not achieving to their fullest potential. There are three common scenarios that may make the identification of a 2e student challenging. First, the student may have been identified as gifted, and her disability may go unnoticed. She could also be considered an under-achiever, or she may be able to compensate for her disability under the school works becomes more challenging. In the second scenario, the student may be identified as having a learning disability and is only receiving remedial services where his giftedness will not be highlighted. His overall IQ scores may be misleading because they were impacted by his learning disability. In the third scenario, the student is able to compensate for her ability well enough to maintain average scores, and she goes undetected as both gifted and learning disabled. Research in the area identifies the complexity involved in identifying 2e students, and how multiple forms of assessment are required. It is important for teachers to be aware of the common characteristics exhibited by many 2e students, so these learners can be identified and appropriately served. Once 2e students have been identified, teachers are then challenged to meet the varying needs of these exceptional learners. Strength-based teaching entails simultaneously providing gifted instruction as well as individualized accommodations for those students. Research in this field has yielded strategies that have proven helpful for teaching 2e students, as well as other students who may be struggling academically. Differentiated instruction, while necessary in all classrooms, is especially important for 2e students, as is encouragement for academic success. Teachers who take the time to really know their students will have a better understanding of each student’s strengths and areas for growth, and therefore tailor instruction to extend the intellectual capacities for optimal achievement. Teachers should also understand that some learning activities can prove very frustrating to students, and these activities can be modified based on individual student needs. Because 2e students can often become discouraged by their learning challenges, it is especially important for teachers to assist students in recognizing their own strengths and maintaining motivation for learning. Although research on the needs of 2e students has spanned across two decades, this population remains underserved in many educational institutions. Teacher awareness of the identification of and the support strategies for 2e students is critical for their success.Keywords: gifted, learning disability, special needs, twice exceptional
Procedia PDF Downloads 1797180 An Experimental Study of Self-Regulated Learning with High School Gifted Pupils
Authors: Prakash Singh
Abstract:
Research studies affirm the view that gifted pupils are endowed with unique personality traits, enabling them to study at higher levels of thinking, at a faster pace, and with a greater degree of autonomy than their average counterparts. The focus of this study was whether high school gifted pupils are capable of studying an advanced level curriculum on their own by employing self-regulated learning (SRL) strategies. To be self-regulated, pupils are required to be metacognitively, motivationally, and behaviourally active participants in their own learning processes so that they are able to initiate and direct their personal curriculum efforts to acquire cognitive skills and knowledge, instead of being solely reliant on their teachers. Researchers working with gifted populations concede that limited studies have been conducted thus far to examine gifted pupils’ expertise in using SRL strategies to assume ownership of their learning. In order to conduct this investigation, an enriched module in Accounting for specifically gifted grade eleven pupils was developed, incorporating advanced level content, and use was made of the Post-test-Only Control Group Design to accomplish this research objective. The results emanating from this empirical study strongly suggest that SRL strategies can be employed to overcome a narrow, rigid approach that limits the education of gifted pupils in the regular classroom of the high school. SRL can meaningfully offer an alternative way to implement an advanced level curriculum for the gifted in the mainstream of education. This can be achieved despite the limitations of differentiation in the regular classroom.Keywords: advanced level curriculum, high school gifted pupils, self-regulated learning, teachers’ professional competencies
Procedia PDF Downloads 4027179 Development of an Instructional Model for Health Education Based On Social Cognitive Theory and Strategic Life Planning to Enhance Self-Regulation and Learning Achievement of Lower Secondary School Students
Authors: Adisorn Bansong, Walai Isarankura Na Ayudhaya, Aumporn Makanong
Abstract:
A Development of an Instructional Model for Health Education was the aim to develop and study the effectiveness of an instructional model for health education to enhance self-regulation and learning achievement of lower secondary school students. It was the Quasi-Experimental Designs, used a Single-group Interrupted Time-series Designs, conducted by 2 phases: 1. To develop an instructional model based on Social Cognitive Theory and Strategic Life Planning. 2. To trial and evaluate effectiveness of an instructional model. The results as the following: i. An Instructional Model for Health Education consists of five main components: a) Attention b) Forethought c) Tactic Planning d) Execution and e) Reflection. ii. After an Instructional Model for Health Education has used for a semester trial, found the 4.07 percent of sample’s Self-Regulation higher and learning achievement on post-test were significantly higher than pre-test at .05 levels (p = .033, .000).Keywords: social cognitive theory, strategic life planning, self-regulation, learning achievement
Procedia PDF Downloads 4657178 Enhancing Critical Reflective Practice in Fieldwork Education: An Exploratory Study of the Role of Social Work Agencies in the Welfare Context of Hong Kong
Authors: Yee-May Chan
Abstract:
In recent decades, it is observed that social work agencies have participated actively, and thus, have gradually been more influential in social work education in Hong Kong. The neo-liberal welfare ideologies and changing funding mode have transformed the landscape in social work practice and have also had a major influence on the fieldwork environment in Hong Kong. The aim of this research is to explore the educational role of social work agencies and examine in particular whether they are able to enhance or hinder critical reflective learning in fieldwork. In-depth interviews with 15 frontline social workers and managers in different social work agencies were conducted to collect their views and experience in helping social work students in fieldwork. The overall findings revealed that under the current social welfare context most social workers consider that the most important role of social work agencies in fieldwork is to help students prepare to fit-in the practice requirements and work within agencies’ boundary. The fit-for-purpose and down-to-earth view of fieldwork practice is seen as prevalent among most social workers. This narrow perception of agency’s role seems to be more favourable to competence-based approaches. In contrast, though critical reflection has been seen as important in addressing the changing needs of service users, the role of enhancing critical reflective learning has not been clearly expected or understood by most agency workers. The notion of critical reflection, if considered, has been narrowly perceived in fieldwork learning. The findings suggest that the importance of critical reflection is found to be subordinate to that of practice competence. The lack of critical reflection in the field is somehow embedded in the competence-based social work practice. In general, social work students’ critical reflection has not been adequately supported or enhanced in fieldwork agencies, nor critical reflective practice has been encouraged in fieldwork process. To address this situation, the role of social work agencies in fieldwork should be re-examined. To maximise critical reflective learning in the field, critical reflection as an avowed objective in fieldwork learning should be clearly stated. Concrete suggestions are made to help fieldwork agencies become more prepared to critical reflective learning. It is expected that the research can help social work communities to reflect upon the current realities of fieldwork context and to identify ways to strengthen agencies’ capacities to enhance critical reflective learning and practice of social work students.Keywords: competence-based social work, critical reflective learning, fieldwork agencies, neo-liberal welfare
Procedia PDF Downloads 3217177 Leveraging Reasoning through Discourse: A Case Study in Secondary Mathematics Classrooms
Authors: Cory A. Bennett
Abstract:
Teaching and learning through the use of discourse support students’ conceptual understanding by attending to key concepts and relationships. One discourse structure used in primary classrooms is number talks wherein students mentally calculate, discuss, and reason about the appropriateness and efficiency of their strategies. In the secondary mathematics classroom, the mathematics understudy does not often lend itself to mental calculations yet learning to reason, and articulate reasoning, is central to learning mathematics. This qualitative case study discusses how one secondary school in the Middle East adapted the number talk protocol for secondary mathematics classrooms. Several challenges in implementing ‘reasoning talks’ became apparent including shifting current discourse protocols and practices to a more student-centric model, accurately recording and probing student thinking, and specifically attending to reasoning rather than computations.Keywords: discourse, reasoning, secondary mathematics, teacher development
Procedia PDF Downloads 1877176 Development of Web-Based Iceberg Detection Using Deep Learning
Authors: A. Kavya Sri, K. Sai Vineela, R. Vanitha, S. Rohith
Abstract:
Large pieces of ice that break from the glaciers are known as icebergs. The threat that icebergs pose to navigation, production of offshore oil and gas services, and underwater pipelines makes their detection crucial. In this project, an automated iceberg tracking method using deep learning techniques and satellite images of icebergs is to be developed. With a temporal resolution of 12 days and a spatial resolution of 20 m, Sentinel-1 (SAR) images can be used to track iceberg drift over the Southern Ocean. In contrast to multispectral images, SAR images are used for analysis in meteorological conditions. This project develops a web-based graphical user interface to detect and track icebergs using sentinel-1 images. To track the movement of the icebergs by using temporal images based on their latitude and longitude values and by comparing the center and area of all detected icebergs. Testing the accuracy is done by precision and recall measures.Keywords: synthetic aperture radar (SAR), icebergs, deep learning, spatial resolution, temporal resolution
Procedia PDF Downloads 917175 Connecting Students and Faculty Research Efforts through the Research and Projects Portal
Authors: Havish Nalapareddy, Mark V. Albert, Ranak Bansal, Avi Udash, Lin Lin
Abstract:
Students engage in many course projects during their degree programs. However, impactful projects often need a time frame longer than a single semester. Ideally, projects are documented and structured to be readily accessible to future students who may choose to continue the project, with features that emphasize the local community, university, or course structure. The Research and Project Portal (RAPP) is a place where students can post both their completed and ongoing projects with all the resources and tools used. This portal allows students to see what other students have done in the past, in the same university environment, related to their domain of interest. Computer science instructors or students selecting projects can use this portal to assign or choose an incomplete project. Additionally, this portal allows non-computer science faculty and industry collaborators to document their project ideas for students in courses to prototype directly, rather than directly soliciting the help of instructors in engaging students. RAPP serves as a platform linking students across classes and faculty both in and out of computer science courses on joint projects to encourage long-term project efforts across semesters or years.Keywords: education, technology, research, academic portal
Procedia PDF Downloads 1377174 An Optimal Path for Virtual Reality Education using Association Rules
Authors: Adam Patterson
Abstract:
This study analyzes the self-reported experiences of virtual reality users to develop insight into an optimal learning path for education within virtual reality. This research uses a sample of 1000 observations to statistically define factors influencing (i) immersion level and (ii) motion sickness rating for virtual reality experience respondents of college age. This paper recommends an efficient duration for each virtual reality session, to minimize sickness and maximize engagement, utilizing modern machine learning methods such as association rules. The goal of this research, in augmentation with previous literature, is to inform logistical decisions relating to implementation of pilot instruction for virtual reality at the collegiate level. Future research will include a Randomized Control Trial (RCT) to quantify the effect of virtual reality education on student learning outcomes and engagement measures. Current research aims to maximize the treatment effect within the RCT by optimizing the learning benefits of virtual reality. Results suggest significant gender heterogeneity amongst likelihood of reporting motion sickness. Females are 1.7 times more likely, than males, to report high levels of motion sickness resulting from a virtual reality experience. Regarding duration, respondents were 1.29 times more likely to select the lowest level of motion sickness after an engagement lasting between 24.3 and 42 minutes. Conversely, respondents between 42 to 60 minutes were 1.2 times more likely to select the higher levels of motion sickness.Keywords: applications and integration of e-education, practices and cases in e-education, systems and technologies in e-education, technology adoption and diffusion of e-learning
Procedia PDF Downloads 677173 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy
Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh
Abstract:
Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography
Procedia PDF Downloads 1567172 Developing a Virtual Reality System to Assist in Anatomy Teaching and Evaluating the Effectiveness of That System
Authors: Tarek Abdelkader, Suresh Selvaraj, Prasad Iyer, Yong Mun Hin, Hajmath Begum, P. Gopalakrishnakone
Abstract:
Nowadays, more and more educational institutes, as well as students, rely on 3D anatomy programs as an important tool that helps students correlate the actual locations of anatomical structures in a 3D dimension. Lately, virtual reality (VR) is gaining more favor from the younger generations due to its higher interactive mode. As a result, using virtual reality as a gamified learning platform for anatomy became the current goal. We present a model where a Virtual Human Anatomy Program (VHAP) was developed to assist with the anatomy learning experience of students. The anatomy module has been built, mostly, from real patient CT scans. Segmentation and surface rendering were used to create the 3D model by direct segmentation of CT scans for each organ individually and exporting that model as a 3D file. After acquiring the 3D files for all needed organs, all the files were introduced into a Virtual Reality environment as a complete body anatomy model. In this ongoing experiment, students from different Allied Health orientations are testing the VHAP. Specifically, the cardiovascular system has been selected as the focus system of study since all of our students finished learning about it in the 1st trimester. The initial results suggest that the VHAP system is adding value to the learning process of our students, encouraging them to get more involved and to ask more questions. Involved students comments show that they are excited about the VHAP system with comments about its interactivity as well as the ability to use it solo as a self-learning aid in combination with the lectures. Some students also experienced minor side effects like dizziness.Keywords: 3D construction, health sciences, teaching pedagogy, virtual reality
Procedia PDF Downloads 1567171 From “Learning to Read” to “Reading to Learn”
Authors: Lucélia Alcântara
Abstract:
Reading has been seen as a passive skill by many people for a long time. However, when one comes to study it deeply and in a such a way that the act of reading equals acquiring knowledge through living an experience that belongs to him/her, passive definitely becomes active. Material development with a focus on reading has to consider much more than reading strategies. The following questions are asked: Is the material appropriate to the students’ reality? Does it make students think and state their points of view? With that in mind a lesson has been developed to illustrate theory becoming practice. Knowledge, criticality, intercultural experience and social interaction. That is what reading is for.Keywords: reading, culture, material development, learning
Procedia PDF Downloads 5347170 A Review of End-of-Term Oral Tests for English-Majored Students of HCMC Open University
Authors: Khoa K. Doan
Abstract:
Assessment plays an essential role in teaching and learning English as it aims to measure the learning outcomes. Designing appropriate test types and procedures for four skills, especially productive skills, is a very challenging task for teachers of English. The assessment scheme is supposed to provide precise measures and fair opportunities for students to demonstrate what they can do with their language skills. This involves content domains, measurement techniques, administrative feasibility, target populations, and potential sources of testing bias. Based on these elements, a review of end-of-term speaking tests for English-majored students at Ho Chi Minh City Open University (Viet Nam) was undertaken for the purpose of analyzing the strengths and limitations of the testing tool for the speaking assessment. It helped to identify what could be done to facilitate the process of teaching and learning in that context.Keywords: assessment, oral tests, speaking, testing
Procedia PDF Downloads 3207169 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 1577168 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks
Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia
Abstract:
This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks
Procedia PDF Downloads 3367167 Scenario-Based Learning Using Virtual Optometrist Applications
Authors: J. S. M. Yang, G. E. T. Chua
Abstract:
Diploma in Optometry (OPT) course is a three-year program offered by Ngee Ann Polytechnic (NP) to train students to provide primary eye care. Students are equipped with foundational conceptual knowledge and practical skills in the first three semesters before clinical modules in fourth to six semesters. In the clinical modules, students typically have difficulties in integrating the acquired knowledge and skills from the past semesters to perform general eye examinations on public patients at NP Optometry Centre (NPOC). To help the students overcome the challenge, a web-based game Virtual Optometrist (VO) was developed to help students apply their skills and knowledge through scenario-based learning. It consisted of two interfaces, Optical Practice Counter (OPC) and Optometric Consultation Room (OCR), to provide two simulated settings for authentic learning experiences. In OPC, students would recommend and provide appropriate frame and lens selection based on virtual patient’s case history. In OCR, students would diagnose and manage virtual patients with common ocular conditions. Simulated scenarios provided real-world clinical situations that required contextual application of integrated knowledge from relevant modules. The stages in OPC and OCR are of increasing complexity to align to expected students’ clinical competency as they progress to more senior semesters. This prevented gameplay fatigue as VO was used over the semesters to achieve different learning outcomes. Numerous feedback opportunities were provided to students based on their decisions to allow individualized learning to take place. The game-based learning element in VO was achieved through the scoreboard and leader board to enhance students' motivation to perform. Scores were based on the speed and accuracy of students’ responses to the questions posed in the simulated scenarios, preparing the students to perform accurately and effectively under time pressure in a realistic optometric environment. Learning analytics was generated in VO’s backend office based on students’ responses, offering real-time data on distinctive and observable learners’ behavior to monitor students’ engagement and learning progress. The backend office allowed versatility to add, edit, and delete scenarios for different intended learning outcomes. Likert Scale was used to measure students’ learning experience with VO for OPT Year 2 and 3 students. The survey results highlighted the learning benefits of implementing VO in the different modules, such as enhancing recall and reinforcement of clinical knowledge for contextual application to develop higher-order thinking skills, increasing efficiency in clinical decision-making, facilitating learning through immediate feedback and second attempts, providing exposure to common and significant ocular conditions, and training effective communication skills. The results showed that VO has been useful in reinforcing optometry students’ learning and supporting the development of higher-order thinking, increasing efficiency in clinical decision-making, and allowing students to learn from their mistakes with immediate feedback and second attempts. VO also exposed the students to diverse ocular conditions through simulated real-world clinical scenarios, which may otherwise not be encountered in NPOC, and promoted effective communication skills.Keywords: authentic learning, game-based learning, scenario-based learning, simulated clinical scenarios
Procedia PDF Downloads 1177166 Neural Style Transfer Using Deep Learning
Authors: Shaik Jilani Basha, Inavolu Avinash, Alla Venu Sai Reddy, Bitragunta Taraka Ramu
Abstract:
We can use the neural style transfer technique to build a picture with the same "content" as the beginning image but the "style" of the picture we've chosen. Neural style transfer is a technique for merging the style of one image into another while retaining its original information. The only change is how the image is formatted to give it an additional artistic sense. The content image depicts the plan or drawing, as well as the colors of the drawing or paintings used to portray the style. It is a computer vision programme that learns and processes images through deep convolutional neural networks. To implement software, we used to train deep learning models with the train data, and whenever a user takes an image and a styled image, the output will be as the style gets transferred to the original image, and it will be shown as the output.Keywords: neural networks, computer vision, deep learning, convolutional neural networks
Procedia PDF Downloads 957165 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods
Authors: Ali Berkan Ural
Abstract:
This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning
Procedia PDF Downloads 957164 Media Literacy: Information and Communication Technology Impact on Teaching and Learning Methods in Albanian Education System
Authors: Loreta Axhami
Abstract:
Media literacy in the digital age emerges not only as a set of skills to generate true knowledge and information but also as a pedagogy methodology, as a kind of educational philosophy. In addition to such innovations as information integration and communication technologies, media infrastructures, and web usage in the educational system, media literacy enables the change in the learning methods, pedagogy, teaching programs, and school curriculum itself. In this framework, this study focuses on ICT's impact on teaching and learning methods and the degree they are reflected in the Albanian education system. The study is based on a combination of quantitative and qualitative methods of scientific research. Referring to the study findings, it results that student’s limited access to the internet in school, focus on the hardcopy textbooks and the role of the teacher as the only or main source of knowledge and information are some of the main factors contributing to the implementation of authoritarian pedagogical methods in the Albanian education system. In these circumstances, the implementation of media literacy is recommended as an apt educational process for the 21st century, which requires a reconceptualization of textbooks as well as the application of modern teaching and learning methods by integrating information and communication technologies.Keywords: authoritarian pedagogic model, education system, ICT, media literacy
Procedia PDF Downloads 1407163 Challenges of the Implementation of Real Time Online Learning in a South African Context
Authors: Thifhuriwi Emmanuel Madzunye, Patricia Harpur, Ephias Ruhode
Abstract:
A review of the pertinent literature identified a gap concerning the hindrances and opportunities accompanying the implementation of real-time online learning systems (RTOLs) in rural areas. Whilst RTOLs present a possible solution to teaching and learning issues in rural areas, little is known about the implementation of digital strategies among schools in isolated communities. This study explores associated guidelines that have the potential to inform decision-making where Internet-based education could improve educational opportunities. A systematic literature review has the potential to consolidate and focus on disparate literature served to collect interlinked data from specific sources in a structured manner. During qualitative data analysis (QDA) of selected publications via the application of a QDA tool - ATLAS.ti, the following overarching themes emerged: digital divide, educational strategy, human factors, and support. Furthermore, findings from data collection and literature review suggest that signiant factors include a lack of digital knowledge, infrastructure shortcomings such as a lack of computers, poor internet connectivity, and handicapped real-time online may limit students’ progress. The study recommends that timeous consideration should be given to the influence of the digital divide. Additionally, the evolution of educational strategy that adopts digital approaches, a focus on training of role-players and stakeholders concerning human factors, and the seeking of governmental funding and support are essential to the implementation and success of RTOLs.Keywords: communication, digital divide, digital skills, distance, educational strategy, government, ICT, infrastructures, learners, limpopo, lukalo, network, online learning systems, political-unrest, real-time, real-time online learning, real-time online learning system, pass-rate, resources, rural area, school, support, teachers, teaching and learning and training
Procedia PDF Downloads 3347162 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication
Authors: Rui Mao, Heming Ji, Xiaoyu Wang
Abstract:
Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM
Procedia PDF Downloads 1557161 Pibid and Experimentation: A High School Case Study
Authors: Chahad P. Alexandre
Abstract:
PIBID-Institutional Program of Scholarships to Encourage Teaching - is a Brazilian government program that counts today with 48.000 students. It's goal is to motivate the students to stay in the teaching undergraduate programs and to help fill the gap of 100.000 teachers that are needed today in the under graduated schools. The major lack of teachers today is in physics, chemistry, mathematics, and biology. At IFSP-Itapetininga we formatted our physics PIBID based on practical activities. Our students are divided in two São Paulo state government high schools in the same city. The project proposes class activities based on experimentation, observation and understanding of physical phenomena. The didactical experiments are always in relation with the content that the teacher is working, he is the supervisor of the program in the school. Always before an experiment is proposed a little questionnaire to learn about the students preconceptions and one is filled latter to evaluate if now concepts have been created. This procedure is made in order to compare their previous knowledge and how it changed after the experiment is developed. The primary goal of our project is to make the Physics class more attractive to the students and to develop in high school students the interest in learning physics and to show the relation of Physics to the day by day and to the technological world. The objective of the experimental activities is to facilitate the understanding of the concepts that are worked on classes because under experimentation the PIBID scholarship student stimulate the curiosity of the high school student and with this he can develop the capacity to understand and identify the physical phenomena with concrete examples. Knowing how to identify this phenomena and where they are present at the high school student life makes the learning process more significant and pleasant. This proposal make achievable to the students to practice science, to appropriate of complex, in the traditional classes, concepts and overcoming the common preconception that physics is something distant and that is present only on books. This preconception is extremely harmful in the process of scientific knowledge construction. This kind of learning – through experimentation – make the students not only accumulate knowledge but also appropriate it, also to appropriate experimental procedures and even the space that is provided by the school. The PIBID scholarship students, as future teachers also have the opportunity to try experimentation classes, to intervene in the classes and to have contact with their future career. This opportunity allows the students to make important reflection about the practices realized and consequently about the learning methods. Due to this project, we found out that the high school students stay more time focused in the experiment compared to the traditional explanation teachers´ class. As a result in a class, as a participative activity, the students got more involved and participative. We also found out that the physics under graduated students drop out percentage is smaller in our Institute than before the PIBID program started.Keywords: innovation, projects, PIBID, physics, pre-service teacher experiences
Procedia PDF Downloads 3417160 The Effect of Relaxing Exercises in Water on Endorphin Hormone for the Beginner in Swimming
Authors: Yasmin Hussein Embaby
Abstract:
Introduction: Athletic Training has its essentials, rules, and methods that help individual in reaching the maximum possible athletic level during the exercised physical activity, therefore; it is important for those working in athletic field to recognize and understand what is going on inside our bodies. This will show the close relationship between physiology and athletic training as the science that explains the various changes that happen to respond to the practice of physical activities. Swimming is one of the water sports that play a major role in influencing the full compatibility of body parts and its systems during the practice of different swimming methods, which uses aqueous to move. It is the initial nucleus in swimming learning and through which the beginner gain a sense of security, safety and the ability to move in aqueous by learning basic skills. Research Methodology: The researcher used the experimental methodology by using pre and post measurement on two equal groups (experimental – control) because it is appropriate for the research. Conclusions: Through the results and information found by the researcher, and in light of the related studies, theoretical readings and the statistical treatments of data; the researcher reached the following conclusions: 1. Muscle relaxation exercises have a positive effect on performance level in crawl swimming and on endorphin hormone as it helps in increasing its normal rater in body, the improvement percentage for experimental group in the relaxation ability, level of endorphin hormone exceeds those of control group. 2. The validity of muscle relaxation exercises proposed for the application, which achieved its objectives, namely increasing the level of endorphin hormone in the body; where research results showed a statistically significant difference in the level of endorphin hormone in favor of the experimental sample.Keywords: beginners, endorphin hormone, relaxing exercises, swimming
Procedia PDF Downloads 2127159 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 677158 Parental Involvement and Motivation as Predictors of Learning Outcomes in Yoruba Language Value Concepts among Senior Secondary School Students in Ibadan, Nigeria
Authors: Adeyemi Adeyinka, Yemisi Ilesanmi
Abstract:
This study investigated parental involvement and motivation as predictors of students’ learning outcomes in value concepts in Yoruba language in Ibadan, Nigeria. Value concepts in Yoruba language aimed at teaching moral lessons and transmitting Yoruba culture. However, feelers from schools and the society reported students’ poor achievement in examinations and negative attitude to the subject. Previous interventions focused on teaching strategies with little consideration for student-related factors. The study was anchored on psychosocial learning theory. The respondents were senior secondary II students with mean age of 15.50 ± 2.25 from 20 public schools in Ibadan, Oyo-State. In all, 1000 students were selected (486 males and 514 females) through proportionate to sample size technique. Instruments used were Students’ Motivation (r=0.79), Parental Involvement (r=0.87), and Attitude to Yoruba Value Concepts (r=0.94) scales and Yoruba Value Concepts Achievement Test (r=0.86). Data were analyzed using descriptive statistics, Pearson product moment correlation and Multiple regressions at 0.05 level of significance. Findings revealed a significant relationship between parental involvement (r=0.54) and students’ achievement in and attitude to (r=0.229) value concepts in Yoruba. The composite contribution of parental involvement and motivation to students’ achievement and attitude was significant, contributing 20.3% and 5.1% respectively. The relative contributions of parental involvement to students’ achievement (β = 0.073; t = 1.551) and attitude (β = 0.228; t = 7.313) to value concepts in Yoruba were significant. Parental involvement was the independent variable that strongly predicts students’ achievement in and attitude to Yoruba value concepts. Parents should inculcate indigenous knowledge in their children and support its learning at school.Keywords: parental involvement, motivation, predictors, learning outcomes, value concepts in Yoruba
Procedia PDF Downloads 2017157 Lightweight Hybrid Convolutional and Recurrent Neural Networks for Wearable Sensor Based Human Activity Recognition
Authors: Sonia Perez-Gamboa, Qingquan Sun, Yan Zhang
Abstract:
Non-intrusive sensor-based human activity recognition (HAR) is utilized in a spectrum of applications, including fitness tracking devices, gaming, health care monitoring, and smartphone applications. Deep learning models such as convolutional neural networks (CNNs) and long short term memory (LSTM) recurrent neural networks (RNNs) provide a way to achieve HAR accurately and effectively. In this paper, we design a multi-layer hybrid architecture with CNN and LSTM and explore a variety of multi-layer combinations. Based on the exploration, we present a lightweight, hybrid, and multi-layer model, which can improve the recognition performance by integrating local features and scale-invariant with dependencies of activities. The experimental results demonstrate the efficacy of the proposed model, which can achieve a 94.7% activity recognition rate on a benchmark human activity dataset. This model outperforms traditional machine learning and other deep learning methods. Additionally, our implementation achieves a balance between recognition rate and training time consumption.Keywords: deep learning, LSTM, CNN, human activity recognition, inertial sensor
Procedia PDF Downloads 1507156 The Role of Motivational Beliefs and Self-Regulated Learning Strategies in The Prediction of Mathematics Teacher Candidates' Technological Pedagogical And Content Knowledge (TPACK) Perceptions
Authors: Ahmet Erdoğan, Şahin Kesici, Mustafa Baloğlu
Abstract:
Information technologies have lead to changes in the areas of communication, learning, and teaching. Besides offering many opportunities to the learners, these technologies have changed the teaching methods and beliefs of teachers. What the Technological Pedagogical Content Knowledge (TPACK) means to the teachers is considerably important to integrate technology successfully into teaching processes. It is necessary to understand how to plan and apply teacher training programs in order to balance students’ pedagogical and technological knowledge. Because of many inefficient teacher training programs, teachers have difficulties in relating technology, pedagogy and content knowledge each other. While providing an efficient training supported with technology, understanding the three main components (technology, pedagogy and content knowledge) and their relationship are very crucial. The purpose of this study is to determine whether motivational beliefs and self-regulated learning strategies are significant predictors of mathematics teacher candidates' TPACK perceptions. A hundred seventy five Turkish mathematics teachers candidates responded to the Motivated Strategies for Learning Questionnaire (MSLQ) and the Technological Pedagogical And Content Knowledge (TPACK) Scale. Of the group, 129 (73.7%) were women and 46 (26.3%) were men. Participants' ages ranged from 20 to 31 years with a mean of 23.04 years (SD = 2.001). In this study, a multiple linear regression analysis was used. In multiple linear regression analysis, the relationship between the predictor variables, mathematics teacher candidates' motivational beliefs, and self-regulated learning strategies, and the dependent variable, TPACK perceptions, were tested. It was determined that self-efficacy for learning and performance and intrinsic goal orientation are significant predictors of mathematics teacher candidates' TPACK perceptions. Additionally, mathematics teacher candidates' critical thinking, metacognitive self-regulation, organisation, time and study environment management, and help-seeking were found to be significant predictors for their TPACK perceptions.Keywords: candidate mathematics teachers, motivational beliefs, self-regulated learning strategies, technological and pedagogical knowledge, content knowledge
Procedia PDF Downloads 4827155 Project-Based Learning in Engineering Education
Authors: M. Greeshma, V. Ashvini, P. Jayarekha
Abstract:
Project based learning (PBL) is a student-driven educational framework and offers the student an opportunity for in-depth investigations of courses. This paper presents the need of PBL in engineering education for the student to graduate with a capacity to design and implement complex problems. The implementation strategy of PBL and its related challenges are presented. The case study that energizes the engineering curriculum with a relevance to the real-world of technology along with its benefits to the students is also included.Keywords: PBL, engineering education, curriculum, implement complex
Procedia PDF Downloads 4737154 Assessment on Communication Students’ Internship Performances from the Employers’ Perspective
Authors: Yesuselvi Manickam, Tan Soon Chin
Abstract:
Internship is a supervised and structured learning experience related to one’s field of study or career goal. Internship allows students to obtain work experience and the opportunity to apply skills learned during university. Internship is a valuable learning experience for students; however, literature on employer assessment is scarce on Malaysian student’s internship experience. This study focuses on employer’s perspective on student’s performances during their three months of internship. The results are based on the descriptive analysis of 45 sets of question gathered from the on-site supervisors of the interns. The survey of 45 on-site supervisor’s feedback was collected through postal mail. It was found that, interns have not met their on-site supervisor’s expectations in many areas. The significance of this study is employer’s assessment on the internship shall be used as feedback to improve on ways how to prepare students for their internship and employments in future.Keywords: employers perspective, internship, structured learning, student’s performances
Procedia PDF Downloads 2957153 Using Podcasts as an Educational Medium to Deliver Education to Pre-Registered Mental Health Nursing Students
Authors: Jane Killough
Abstract:
A podcast series was developed to support learning amongst first-year undergraduate mental health nursing students. Many first-year students do not have any clinical experience and find it difficult to engage with theory, which can present as cumbersome. Further, it can be challenging to relate abstract concepts to everyday mental health practice. Mental health professionals and service users from practice were interviewed on a range of core topics that are key to year one learning. The podcasts were made available, and students could access these recordings at their convenience to fit in with busy daily routines. The aim was to enable meaningful learning by providing access to those who have lived experience and who can, in effect, bring to life the theory being taught in university and essentially bridge the theory and practice gap while fostering working relationships between practice and academics. The student experience will be evaluated using a logic model.Keywords: education, mental health nursing students, podcast, practice, undergraduate
Procedia PDF Downloads 150