Search results for: compound Poisson lognormal distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6233

Search results for: compound Poisson lognormal distribution

4163 Intermediate-Term Impact of Taiwan High-Speed Rail (HSR) and Land Use on Spatial Patterns of HSR Travel

Authors: Tsai Yu-hsin, Chung Yi-Hsin

Abstract:

The employment of an HSR system, resulting in elevation in the inter-city/-region accessibility, is likely to promote spatial interaction between places in the HSR and extended territory. The inter-city/-region travel via HSR could be, among others, affected by the land use, transportation, and location of the HSR station at both trip origin and destination ends. However, relatively few insights have been shed on these impacts and spatial patterns of the HSR travel. The research purposes, as phase one of a series of HSR related research, of this study are threefold: to analyze the general spatial patterns of HSR trips, such as the spatial distribution of trip origins and destinations; to analyze if specific land use, transportation characteristics, and trip characteristics affect HSR trips in terms of the use of HSR, the distribution of trip origins and destinations, and; to analyze the socio-economic characteristics of HSR travelers. With the Taiwan HSR starting operation in 2007, this study emphasizes on the intermediate-term impact of HSR, which is made possible with the population and housing census and industry and commercial census data and a station area intercept survey conducted in the summer 2014. The analysis will be conducted at the city, inter-city, and inter-region spatial levels, as necessary and required. The analysis tools include descriptive statistics and multivariate analysis with the assistance of SPSS, HLM and ArcGIS. The findings, on the one hand, can provide policy implications for associated land use, transportation plan and the site selection of HSR station. On the other hand, on the travel the findings are expected to provide insights that can help explain how land use and real estate values could be affected by HSR in following phases of this series of research.

Keywords: high speed rail, land use, travel, spatial pattern

Procedia PDF Downloads 462
4162 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 180
4161 Harmonizing Cities: Integrating Land Use Diversity and Multimodal Transit for Social Equity

Authors: Zi-Yan Chao

Abstract:

With the rapid development of urbanization and increasing demand for efficient transportation systems, the interaction between land use diversity and transportation resource allocation has become a critical issue in urban planning. Achieving a balance of land use types, such as residential, commercial, and industrial areas, is crucial role in ensuring social equity and sustainable urban development. Simultaneously, optimizing multimodal transportation networks, including bus, subway, and car routes, is essential for minimizing total travel time and costs, while ensuring fairness for all social groups, particularly in meeting the transportation needs of low-income populations. This study develops a bilevel programming model to address these challenges, with land use diversity as the foundation for measuring equity. The upper-level model maximizes land use diversity for balanced land distribution across regions. The lower-level model optimizes multimodal transportation networks to minimize travel time and costs while maintaining user equilibrium. The model also incorporates constraints to ensure fair resource allocation, such as balancing transportation accessibility and cost differences across various social groups. A solution approach is developed to solve the bilevel optimization problem, ensuring efficient exploration of the solution space for land use and transportation resource allocation. This study maximizes social equity by maximizing land use diversity and achieving user equilibrium with optimal transportation resource distribution. The proposed method provides a robust framework for addressing urban planning challenges, contributing to sustainable and equitable urban development.

Keywords: bilevel programming model, genetic algorithms, land use diversity, multimodal transportation optimization, social equity

Procedia PDF Downloads 23
4160 Simulation Modelling of the Transmission of Concentrated Solar Radiation through Optical Fibres to Thermal Application

Authors: M. Rahou, A. J. Andrews, G. Rosengarten

Abstract:

One of the main challenges in high-temperature solar thermal applications transfer concentrated solar radiation to the load with minimum energy loss and maximum overall efficiency. The use of a solar concentrator in conjunction with bundled optical fibres has potential advantages in terms of transmission energy efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. In this paper, a theoretical and computer simulation method is described to estimate the net solar radiation transmission from a solar concentrator into and through optical fibres to a thermal application at the end of the fibres over distances of up to 100 m. A key input to the simulation is the angular distribution of radiation intensity at each point across the aperture plane of the optical fibre. This distribution depends on the optical properties of the solar concentrator, in this case, a parabolic mirror with a small secondary mirror with a common focal point and a point-focus Fresnel lens to give a collimated beam that pass into the optical fibre bundle. Since solar radiation comprises a broad band of wavelengths with very limited spatial coherence over the full range of spectrum only ray tracing models absorption within the fibre and reflections at the interface between core and cladding is employed, assuming no interference between rays. The intensity of the radiation across the exit plane of the fibre is found by integrating across all directions and wavelengths. Results of applying the simulation model to a parabolic concentrator and point-focus Fresnel lens with typical optical fibre bundle will be reported, to show how the energy transmission varies with the length of fibre.

Keywords: concentrated radiation, fibre bundle, parabolic dish, fresnel lens, transmission

Procedia PDF Downloads 564
4159 Water Management Scheme: Panacea to Development Using Nigeria’s University of Ibadan Water Supply Scheme as a Case Study

Authors: Sunday Olufemi Adesogan

Abstract:

The supply of potable water at least is a very important index in national development. Water tariffs depend on the treatment cost which carries the highest percentage of the total operation cost in any water supply scheme. In order to keep water tariffs as low as possible, treatment costs have to be minimized. The University of Ibadan, Nigeria, water supply scheme consists of a treatment plant with three distribution stations (Amina way, Kurumi and Lander) and two raw water supply sources (Awba dam and Eleyele dam). An operational study of the scheme was carried out to ascertain the efficiency of the supply of potable water on the campus to justify the need for water supply schemes in tertiary institutions. The study involved regular collection, processing and analysis of periodic operational data. Data collected include supply reading (water production on daily basis) and consumers metered reading for a period of 22 months (October 2013 - July 2015), and also collected, were the operating hours of both plants and human beings. Applying the required mathematical equations, total loss was determined for the distribution system, which was translated into monetary terms. Adequacies of the operational functions were also determined. The study revealed that water supply scheme is justified in tertiary institutions. It was also found that approximately 10.7 million Nigerian naira (N) is lost to leakages during the 22-month study period; the system’s storage capacity is no longer adequate, especially for peak water production. The capacity of the system as a whole is insufficient for the present university population and that the existing water supply system is not being operated in an optimal manner especially due to personnel, power and system ageing constraints.

Keywords: development, panacea, supply, water

Procedia PDF Downloads 209
4158 Modeling and Performance Evaluation of an Urban Corridor under Mixed Traffic Flow Condition

Authors: Kavitha Madhu, Karthik K. Srinivasan, R. Sivanandan

Abstract:

Indian traffic can be considered as mixed and heterogeneous due to the presence of various types of vehicles that operate with weak lane discipline. Consequently, vehicles can position themselves anywhere in the traffic stream depending on availability of gaps. The choice of lateral positioning is an important component in representing and characterizing mixed traffic. The field data provides evidence that the trajectory of vehicles in Indian urban roads have significantly varying longitudinal and lateral components. Further, the notion of headway which is widely used for homogeneous traffic simulation is not well defined in conditions lacking lane discipline. From field data it is clear that following is not strict as in homogeneous and lane disciplined conditions and neighbouring vehicles ahead of a given vehicle and those adjacent to it could also influence the subject vehicles choice of position, speed and acceleration. Given these empirical features, the suitability of using headway distributions to characterize mixed traffic in Indian cities is questionable, and needs to be modified appropriately. To address these issues, this paper attempts to analyze the time gap distribution between consecutive vehicles (in a time-sense) crossing a section of roadway. More specifically, to characterize the complex interactions noted above, the influence of composition, manoeuvre types, and lateral placement characteristics on time gap distribution is quantified in this paper. The developed model is used for evaluating various performance measures such as link speed, midblock delay and intersection delay which further helps to characterise the vehicular fuel consumption and emission on urban roads of India. Identifying and analyzing exact interactions between various classes of vehicles in the traffic stream is essential for increasing the accuracy and realism of microscopic traffic flow modelling. In this regard, this study aims to develop and analyze time gap distribution models and quantify it by lead lag pair, manoeuvre type and lateral position characteristics in heterogeneous non-lane based traffic. Once the modelling scheme is developed, this can be used for estimating the vehicle kilometres travelled for the entire traffic system which helps to determine the vehicular fuel consumption and emission. The approach to this objective involves: data collection, statistical modelling and parameter estimation, simulation using calibrated time-gap distribution and its validation, empirical analysis of simulation result and associated traffic flow parameters, and application to analyze illustrative traffic policies. In particular, video graphic methods are used for data extraction from urban mid-block sections in Chennai, where the data comprises of vehicle type, vehicle position (both longitudinal and lateral), speed and time gap. Statistical tests are carried out to compare the simulated data with the actual data and the model performance is evaluated. The effect of integration of above mentioned factors in vehicle generation is studied by comparing the performance measures like density, speed, flow, capacity, area occupancy etc under various traffic conditions and policies. The implications of the quantified distributions and simulation model for estimating the PCU (Passenger Car Units), capacity and level of service of the system are also discussed.

Keywords: lateral movement, mixed traffic condition, simulation modeling, vehicle following models

Procedia PDF Downloads 342
4157 Effect of Microstructure on Wear Resistance of Polycrystalline Diamond Composite Cutter of Bit

Authors: Fanyuan Shao, Wei Liu, Deli Gao

Abstract:

Polycrystalline diamond composite (PDC) cutter is made of diamond powder as raw material, cobalt metal or non-metallic elements as a binder, mixed with WC cemented carbide matrix assembly, through high temperature and high-pressure sintering. PDC bits with PDC cutters are widely used in oil and gas drilling because of their high hardness, good wear resistance and excellent impact toughness. And PDC cutter is the main cutting tool of bit, which seriously affects the service of the PDC bit. The wear resistance of the PDC cutter is measured by cutting granite with a vertical turret lathe (VTL). This experiment can achieve long-distance cutting to obtain the relationship between the wear resistance of the PDC cutter and cutting distance, which is more closely to the real drilling situation. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively, which can also characterize the damage and wear of the PDC cutter. PDC cutters were cut via electrical discharge machining (EDM) and then flattened and polished. A scanning electron microscope (SEM) was used to observe the distribution of binder cobalt and the size of diamond particles in a diamond PDC cutter. The cutting experimental results show that the wear area of the PDC cutter has a good linear relationship with the cutting distance. Simultaneously, the larger the wear area is and the greater the cutting forces are required to maintain the same cutting state. The size and distribution of diamond particles in the polycrystalline diamond layer have a great influence on the wear resistance of the diamond layer. And PDC cutter with fine diamond grains shows more wear resistance than that with coarse grains. The deep leaching process is helpful to reduce the effect of binder cobalt on the wear resistance of the polycrystalline diamond layer. The experimental study can provide an important basis for the application of PDC cutters in oil and gas drilling.

Keywords: polycrystalline diamond compact, scanning electron microscope, wear resistance, cutting distance

Procedia PDF Downloads 198
4156 The Conceptual Relationships in N+N Compounds in Arabic Compared to English

Authors: Abdel Rahman Altakhaineh

Abstract:

This paper has analysed the conceptual relations between the elements of NN compounds in Arabic and compared them to those found in English based on the framework of Conceptual Semantics and a modified version of Parallel Architecture referred to as Relational Morphology. The analysis revealed that the repertoire of possible semantic relations between the two nouns in Arabic NN compounds reproduces that in English NN compounds and that, therefore, the main difference is in headedness (right-headed in English, left-headed in Arabic). Adopting RM allows productive and idiosyncratic elements to interweave with each other naturally. Semantically transparent compounds can be stored in memory or produced and understood online, while compounds with different degrees of semantic idiosyncrasy are stored in memory. Furthermore, the predictable parts of idiosyncratic compounds are captured by general schemas. In compounds, such schemas pick out the range of possible semantic relations between the two nouns. Finally, conducting a cross-linguistic study of the systematic patterns of possible conceptual relationships between compound elements is an area worthy of further exploration. In addition, comparing and contrasting compounding in Arabic and Hebrew, especially as they are both Semitic languages, is another area that needs to be investigated thoroughly. It will help morphologists understand the extent to which Jackendoff’s repertoire of semantic relations in compounds is universal. That is, if a language as distant from English as Arabic displays a similar range of cases, this is evidence for a (relatively) universal set of relations from which individual languages may pick and choose.

Keywords: conceptual semantics, morphology, compounds, arabic, english

Procedia PDF Downloads 100
4155 Phytotreatment of Polychlorinated Biphenyls Contaminated Soil by Chromolaena odorata L. King and Robinson

Authors: R. O. Anyasi, H. I. Atagana

Abstract:

In this study, phytoextraction ability of a weed on Aroclor 1254 was studied under greenhouse conditions. Chromolaena odorata plants were transplanted into soil containing 100, 200, and 500 ppm of Aroclor in 1L pots. The experiments were watered daily at 70 % moisture field capacity. Parameters such as fully expanded leaves per plant, shoot length, leaf chlorophyll content as well as root length at harvest were measured. PCB was not phytotoxic to C. odorata growth but plants in the 500 ppm treatment only showed diminished growth at the sixth week. Percentage increases in height of plant were 45.9, 39.4 and 40.0 for 100, 200 and 500 ppm treatments respectively. Such decreases were observed in the leaf numbers, root length and leaf chlorophyll concentration. The control sample showed 48.3 % increase in plant height which was not significant from the treated samples, an indication that C. odorata could survive such PCB concentration and could be used to remediate contaminated soil. Mean total PCB absorbed by C. odorata plant was between 6.40 and 64.60 ppm per kilogram of soil, leading to percentage PCB absorption of 0.03 and 17.03 % per kilogram of contaminated soil. PCBs were found mostly in the root tissues of the plants, and the Bioaccumulation factor were between 0.006-0.38. Total PCB absorbed by the plant increases as the concentration of the compound is increased. With these high BAF ensured, C. odorata could serve as a promising candidate plant in phytoextraction of PCB from a PCB-contaminated soil.

Keywords: phytoremediation, bioremediation, soil restoration, polychlorinated biphenyls (PCB), biological treatment, aroclor

Procedia PDF Downloads 381
4154 Estimate Robert Gordon University's Scope Three Emissions by Nearest Neighbor Analysis

Authors: Nayak Amar, Turner Naomi, Gobina Edward

Abstract:

The Scottish Higher Education Institutes must report their scope 1 & 2 emissions, whereas reporting scope 3 is optional. Scope 3 is indirect emissions which embodies a significant component of total carbon footprint and therefore it is important to record, measure and report it accurately. Robert Gordon University (RGU) reported only business travel, grid transmission and distribution, water supply and transport, and recycling scope 3 emissions. This study estimates the RGUs total scope 3 emissions by comparing it with a similar HEI in scale. The scope 3 emission reporting of sixteen Scottish HEI was studied. Glasgow Caledonian University was identified as the nearest neighbour by comparing its students' full time equivalent, staff full time equivalent, research-teaching split, budget, and foundation year. Apart from the peer, data was also collected from the Higher Education Statistics Agency database. RGU reported emissions from business travel, grid transmission and distribution, water supply, and transport and recycling. This study estimated RGUs scope 3 emissions from procurement, student-staff commute, and international student trip. The result showed that RGU covered only 11% of the scope 3 emissions. The major contributor to scope 3 emissions were procurement (48%), student commute (21%), international student trip (16%), and staff commute (4%). The estimated scope 3 emission was more than 14 times the reported emissions. This study has shown the relative importance of each scope 3 emissions source, which gives a guideline for the HEIs, on where to focus their attention to capture maximum scope 3 emissions. Moreover, it has demonstrated that it is possible to estimate the scope 3 emissions with limited data.

Keywords: HEI, university, emission calculations, scope 3 emissions, emissions reporting

Procedia PDF Downloads 100
4153 Evaluating the Water Balance of Sokoto Basement Complex to Address Water Security Challenges

Authors: Murtala Gada Abubakar, Aliyu T. Umar

Abstract:

A substantial part of Nigeria is part of semi-arid areas of the world, underlain by basement complex (hard) rocks which are very poor in both transmission and storage of appreciable quantity of water. Recently, a growing attention is being paid on the need to develop water resources in these areas largely due to concerns about increasing droughts and the need to maintain water security challenges. While there is ample body of knowledge that captures the hydrological behaviours of the sedimentary part, reported research which unambiguously illustrates water distribution in the basement complex of the Sokoto basin remains sparse. Considering the growing need to meet the water requirements of those living in this region necessitated the call for accurate water balance estimations that can inform a sustainable planning and development to address water security challenges for the area. To meet this task, a one-dimensional soil water balance model was developed and utilised to assess the state of water distribution within the Sokoto basin basement complex using measured meteorological variables and information about different landscapes within the complex. The model simulated the soil water storage and rates of input and output of water in response to climate and irrigation where applicable using data from 2001 to 2010 inclusive. The results revealed areas within the Sokoto basin basement complex that are rich and deficient in groundwater resource. The high potential areas identified includes the fadama, the fractured rocks and the cultivated lands, while the low potential areas are the sealed surfaces and non-fractured rocks. This study concludes that the modelling approach is a useful tool for assessing the hydrological behaviour and for better understanding the water resource availability within a basement complex.

Keywords: basement complex, hydrological processes, Sokoto Basin, water security

Procedia PDF Downloads 319
4152 Design and Modelling of Ge/GaAs Hetero-structure Bipolar Transistor

Authors: Samson Mil'shtein, Dhawal N. Asthana

Abstract:

The presented heterostructure n-p-n bipolar transistor is comprised of Ge/GaAs heterojunctions consisting of 0.15µm thick emitter and 0.65µm collector junctions. High diffusivity of carriers in GaAs base was major motivation of current design. We avoided grading of the base which is common in heterojunction bipolar transistors, in order to keep the electron diffusivity as high as possible. The electrons injected into the 0.25µm thick p-type GaAs base with not very high doping (1017cm-3). The designed HBT enables cut off frequency on the order of 150GHz. The Ge/GaAs heterojunctions presented in our paper have proved to work better than comparable HBTs having GaAs bases and emitter/collector junctions made, for example, of AlGaAs/GaAs or other III-V compound semiconductors. The difference in lattice constants between Ge and GaAs is less than 2%. Therefore, there is no need of transition layers between Ge emitter and GaAs base. Significant difference in energy gap of these two materials presents new scope for improving performance of the emitter. With the complete structure being modelled and simulated using TCAD SILVACO, the collector/ emitter offset voltage of the device has been limited to a reasonable value of 63 millivolts by the dint of low energy band gap value associated with Ge emitter. The efficiency of the emitter in our HBT is 86%. Use of Germanium in the emitter and collector regions presents new opportunities for integration of this vertical device structure into silicon substrate.

Keywords: Germanium, Gallium Arsenide, heterojunction bipolar transistor, high cut-off frequency

Procedia PDF Downloads 420
4151 Comparison of an Anthropomorphic PRESAGE® Dosimeter and Radiochromic Film with a Commercial Radiation Treatment Planning System for Breast IMRT: A Feasibility Study

Authors: Khalid Iqbal

Abstract:

This work presents a comparison of an anthropomorphic PRESAGE® dosimeter and radiochromic film measurements with a commercial treatment planning system to determine the feasibility of PRESAGE® for 3D dosimetry in breast IMRT. An anthropomorphic PRESAGE® phantom was created in the shape of a breast phantom. A five-field IMRT plan was generated with a commercially available treatment planning system and delivered to the PRESAGE® phantom. The anthropomorphic PRESAGE® was scanned with the Duke midsized optical CT scanner (DMOS-RPC) and the OD distribution was converted to dose. Comparisons were performed between the dose distribution calculated with the Pinnacle3 treatment planning system, PRESAGE®, and EBT2 film measurements. DVHs, gamma maps, and line profiles were used to evaluate the agreement. Gamma map comparisons showed that Pinnacle3 agreed with PRESAGE® as greater than 95% of comparison points for the PTV passed a ± 3%/± 3 mm criterion when the outer 8 mm of phantom data were discluded. Edge artifacts were observed in the optical CT reconstruction, from the surface to approximately 8 mm depth. These artifacts resulted in dose differences between Pinnacle3 and PRESAGE® of up to 5% between the surface and a depth of 8 mm and decreased with increasing depth in the phantom. Line profile comparisons between all three independent measurements yielded a maximum difference of 2% within the central 80% of the field width. For the breast IMRT plan studied, the Pinnacle3 calculations agreed with PRESAGE® measurements to within the ±3%/± 3 mm gamma criterion. This work demonstrates the feasibility of the PRESAGE® to be fashioned into anthropomorphic shape, and establishes the accuracy of Pinnacle3 for breast IMRT. Furthermore, these data have established the groundwork for future investigations into 3D dosimetry with more complex anthropomorphic phantoms.

Keywords: 3D dosimetry, PRESAGE®, IMRT, QA, EBT2 GAFCHROMIC film

Procedia PDF Downloads 416
4150 Holistic Urban Development: Incorporating Both Global and Local Optimization

Authors: Christoph Opperer

Abstract:

The rapid urbanization of modern societies and the need for sustainable urban development demand innovative solutions that meet both individual and collective needs while addressing environmental concerns. To address these challenges, this paper presents a study that explores the potential of spatial and energetic/ecological optimization to enhance the performance of urban settlements, focusing on both architectural and urban scales. The study focuses on the application of biological principles and self-organization processes in urban planning and design, aiming to achieve a balance between ecological performance, architectural quality, and individual living conditions. The research adopts a case study approach, focusing on a 10-hectare brownfield site in the south of Vienna. The site is surrounded by a small-scale built environment as an appropriate starting point for the research and design process. However, the selected urban form is not a prerequisite for the proposed design methodology, as the findings can be applied to various urban forms and densities. The methodology used in this research involves dividing the overall building mass and program into individual small housing units. A computational model has been developed to optimize the distribution of these units, considering factors such as solar exposure/radiation, views, privacy, proximity to sources of disturbance (such as noise), and minimal internal circulation areas. The model also ensures that existing vegetation and buildings on the site are preserved and incorporated into the optimization and design process. The model allows for simultaneous optimization at two scales, architectural and urban design, which have traditionally been addressed sequentially. This holistic design approach leads to individual and collective benefits, resulting in urban environments that foster a balance between ecology and architectural quality. The results of the optimization process demonstrate a seemingly random distribution of housing units that, in fact, is a densified hybrid between traditional garden settlements and allotment settlements. This urban typology is selected due to its compatibility with the surrounding urban context, although the presented methodology can be extended to other forms of urban development and density levels. The benefits of this approach are threefold. First, it allows for the determination of ideal housing distribution that optimizes solar radiation for each building density level, essentially extending the concept of sustainable building to the urban scale. Second, the method enhances living quality by considering the orientation and positioning of individual functions within each housing unit, achieving optimal views and privacy. Third, the algorithm's flexibility and robustness facilitate the efficient implementation of urban development with various stakeholders, architects, and construction companies without compromising its performance. The core of the research is the application of global and local optimization strategies to create efficient design solutions. By considering both, the performance of individual units and the collective performance of the urban aggregation, we ensure an optimal balance between private and communal benefits. By promoting a holistic understanding of urban ecology and integrating advanced optimization strategies, our methodology offers a sustainable and efficient solution to the challenges of modern urbanization.

Keywords: sustainable development, self-organization, ecological performance, solar radiation and exposure, daylight, visibility, accessibility, spatial distribution, local and global optimization

Procedia PDF Downloads 66
4149 Yoghurt Kepel Stelechocarpus burahol as an Effort of Functional Food Diversification from Region of Yogyakarta

Authors: Dian Nur Amalia, Rifqi Dhiemas Aji, Tri Septa Wahyuningsih, Endang Wahyuni

Abstract:

Kepel fruit (Stelechocarpus burahol) is a scarce fruit that belongs as a logogram of Daerah Istimewa Yogyakarta. Kepel fruit can be used as substance of beauty treatment product, such as deodorant and good for skin health, and also contains antioxidant compound. Otherwise, this fruit is scarcely cultivated by people because of its image as a palace fruit and also the flesh percentage just a little, so it has low economic value. The flesh of kepel fruit is about 49% of its whole fruit. This little part as supporting point why kepel fruit has to be extracted and processed with the other product. Yoghurt is milk processing product that also have a role as functional food. Economically, the price of yoghurt is higher than whole milk or other milk processing product. Yoghurt is usually added with flavor of dye from plant or from chemical substance. Kepel fruit has a role as flavor in yoghurt, besides as product that good for digestion, yoghurt with kepel also has function as “beauty” food. Writing method that used is literature study by looking for the potential of kepel fruit as a local fruit of Yogyakarta and yoghurt as milk processing product. The process just like making common yoghurt because kepel fruit just have a role as flavor substance, so it does not affect to the other processing of yoghurt. Food diversification can be done as an effort to increase the value of local resources that proper to compete in Asean Economic Community (AEC), one of the way is producing kepel yoghurt.

Keywords: kepel, yoghurt, Daerah Istimewa Yogyakarta, functional food

Procedia PDF Downloads 320
4148 Simultaneous Targeting of MYD88 and Nur77 as an Effective Approach for the Treatment of Inflammatory Diseases

Authors: Uzma Saqib, Mirza S. Baig

Abstract:

Myeloid differentiation primary response protein 88 (MYD88) has long been considered a central player in the inflammatory pathway. Recent studies clearly suggest that it is an important therapeutic target in inflammation. On the other hand, a recent study on the interaction between the orphan nuclear receptor (Nur77) and p38α, leading to increased lipopolysaccharide-induced hyperinflammatory response, suggests this binary complex as a therapeutic target. In this study, we have designed inhibitors that can inhibit both MYD88 and Nur77 at the same time. Since both MYD88 and Nur77 are an integral part of the pathways involving lipopolysaccharide-induced activation of NF-κB-mediated inflammation, we tried to target both proteins with the same library in order to retrieve compounds having dual inhibitory properties. To perform this, we developed a homodimeric model of MYD88 and, along with the crystal structure of Nur77, screened a virtual library of compounds from the traditional Chinese medicine database containing ~61,000 compounds. We analyzed the resulting hits for their efficacy for dual binding and probed them for developing a common pharmacophore model that could be used as a prototype to screen compound libraries as well as to guide combinatorial library design to search for ideal dual-target inhibitors. Thus, our study explores the identification of novel leads having dual inhibiting effects due to binding to both MYD88 and Nur77 targets.

Keywords: drug design, Nur77, MYD88, inflammation

Procedia PDF Downloads 305
4147 The Potential of Southern Malang as Geotourism Site: The Distribution of Geodiversity and Geotrek in Southern Malang, Indonesia

Authors: Arda Bagus M, Yehezkiel Festian P, Budianto Santoso

Abstract:

The Tourism Area of Southern Malang is administratively located in the Regency of Malang, East Java Province, Indonesia and geographically is in a position between 112o17' - 112o57' E dan 7o44' - 8o26' S. Southern Malang consists of several sub-districts that directly borders with the Indian Ocean, such as Donomulyo, Bantur, Gedangan, Sumbermanjing, Tirto Yudo, and Ampel Gading. This area has a high geotourism potential because of the existence of geodiversity such as beaches, waterfalls, caves, and karst area. However, to the best of the authors’ knowledge, there is still no systematic data that informs the geotourism potentials to the public. The aim of this research is to complete the lack of data and then arrange it systematically so it can be used for both tourism and research purposes. Research methods such as field observation, literature study, and depth interview to local people have been implemented. Aspects reviewed by visiting the field are accommodation, transportation, and the feasibility of a place to be geotourism object. The primary data was taken in Sumbermanjing, Gedangan, Bantur, and Donomulyo sub-district. A literature study is needed to determine the regional geology of Southern Malang and as a comparison to new data obtained in the field. The results of the literature study show that southern Malang consists of three formations: Wonosari Formation, Mandalaka Formation, and River-swamps Sediment Formation with the age range of Oligocene to Quaternary. Depth interviews have been conducted by involving local people with the aim of knowing cultural-history in the research area. From this research, the geotourism object distribution map has been made. The map also includes Geotrek and basic geological information of each object. The results of this research can support the development of geotourism in Southern Malang.

Keywords: geodiversity, geology, geotourism, geotrek, southern Malang

Procedia PDF Downloads 175
4146 Is More Inclusive More Effective? The 'New Style' Public Distribution System in India

Authors: Avinash Kishore, Suman Chakrabarti

Abstract:

In September 2013, the parliament of India enacted the National Food Security Act (NFSA) which entitles two-thirds of India’s population to five kilograms of rice, wheat or coarse cereals per person per month at one to three rupees per kilogram. Five states in India—Andhra Pradesh, Chhattisgarh, Tamil Nadu, Odisha and West Bengal—had already implemented somewhat similar changes in the TPDS a few years earlier using their own budgetary resources. They made rice—coincidentally, all five states are predominantly rice-eating—available in fair price shops to a majority of their population at very low prices (less than Rs.3/kg). This paper tries to account for the changes in household consumption patterns associated with the change in TPDS policy in these states using data from household consumption surveys by the National Sample Survey Organization (NSSO). NSS data show improvement in the coverage of TPDS and average off-take of grains from fair price shops between 2004-05 and 2009-10 across all states of India. However, the increase in coverage and off-take was significantly higher in four out of these five states than in the rest of India. An average household in these states purchased three kilos more rice per month from fair price shops than its counterpart in non-treated states as a result of more generous TPDS policies backed by administrative reforms. The increase in consumption of PDS rice was the highest in Chhattisgarh, the poster state of PDS reforms. Households in Chhattisgarh used money saved on rice to spend more on pulses, edible oil, vegetables and sugar and other non-food items. We also find evidence that making TPDS more inclusive and more generous is not enough unless it is supported by administrative reforms to improve grain delivery and control diversion to open markets.

Keywords: public distribution system, social safety-net, national food security act, diet quality, Chhattisgarh

Procedia PDF Downloads 374
4145 An Investigation to Study the Moisture Dependency of Ground Enhancement Compound

Authors: Arunima Shukla, Vikas Almadi, Devesh Jaiswal, Sunil Saini, Bhusan S. Patil

Abstract:

Lightning protection consists of three main parts; mainly air termination system, down conductor, and earth termination system. Earth termination system is the most important part as earth is the sink and source of charges. Therefore, even when the charges are captured and delivered to the ground, and an easy path is not provided to the charges, earth termination system would lead to problems. Soil has significantly different resistivities ranging from 10 Ωm for wet organic soil to 10000 Ωm for bedrock. Different methods have been discussed and used conventionally such as deep-ground-well method and altering the length of the rod. Those methods are not considered economical. Therefore, it was a general practice to use charcoal along with salt to reduce the soil resistivity. Bentonite is worldwide acceptable material, that had led our interest towards study of bentonite at first. It was concluded that bentonite is a clay which is non-corrosive, environment friendly. Whereas bentonite is suitable only when there is moisture present in the soil, as in the absence of moisture, cracks will appear on the surface which will provide an open passage to the air, resulting into increase in the resistivity. Furthermore, bentonite without moisture does not have enough bonding property, moisture retention, conductivity, and non-leachability. Therefore, bentonite was used along with the other backfill material to overcome the dependency of bentonite on moisture. Different experiments were performed to get the best ratio of bentonite and carbon backfill. It was concluded that properties will highly depend on the quantity of bentonite and carbon-based backfill material.

Keywords: backfill material, bentonite, grounding material, low resistivity

Procedia PDF Downloads 147
4144 Behavior of Foreign Tourists Visited Wat Phrachetuponwimolmangkalaram

Authors: Pranee Pathomchaiwat

Abstract:

This research aims to study tourism data and behavior of foreign tourists visited Wat Phrachetuponwimolmangkalaram (Wat Po) Sample groups are tourists who visited inside the temple, during February, March, April and May 2013. Tools used in the research are questionnaires constructed by the researcher, and samples are dawn by Convenience sampling. There are 207 foreign tourists who are willing to be respondents. Statistics used are percentage, average mean and standard deviation. The results of the research reveal that: A. General Data of Respondents: The foreign tourists who visited the temple are mostly female (57.5 %), most respondents are aged between 20-29 years (37.2%). Most respondents live in Europe (62.3%), most of them got the Bachelor’s degree (40.1%), British are mostly found (16.4%), respondents who are students are also found (23.2%), and Christian are mostly found (60.9%). B. Tourists’ Behavior While Visiting the Temple Compound: The result shows that the respondents came with family (46.4%), have never visited the temples (40.6%), and visited once (42 %). It is found that the foreign tourists’ inappropriate behavior are wearing revealing attires (58.9%), touching or getting closed to the monks (55.1%), and speaking loudly (46.9%) respectively. The respondents’ outstanding objectives are to visit inside the temple (57.5%), to pay respect to the Reclining Buddha Image in the Viharn (44.4%) and to worship the Buddha image in the Phra Ubosod (37.7%) respectively. C. The Respondents’ Self-evaluation of Performance: It is found that over all tourists evaluated themselves in the highest level averaged 4.40. When focusing on each item, it is shown that they evaluated themselves in the highest level on obeying the temple staff averaged 4.57, and cleanness concern of the temple averaged 4.52, well-behaved performance during the temple visit averaged 4.47 respectively.

Keywords: deportment, traveler, foreign tourists, temple

Procedia PDF Downloads 307
4143 Ni-Based Hardfacing Alloy Reinforced with Fused Eutectic Tungsten Carbide Deposited on Infiltrated WC-W-Ni Substrate by Oxyacetylene Welding

Authors: D. Miroud, H. Mokaddem, M. Tata, N. Foucha

Abstract:

The body of PDC (polycrystalline diamond compact) drill bit can be manufactured from two different materials, steel and tungsten carbide matrix. Commonly the steel body is produced by machining, thermal spraying a bonding layer and hardfacing of Ni-based matrix reinforced with fused eutectic tungsten carbide (WC/W2C). The matrix body bit is manufactured by infiltrating tungsten carbide particles, with a Copper binary or ternary alloy. By erosion-corrosion mechanisms, the PDC drill bits matrix undergoes severe damage, occurring particularly around the PDC inserts and near injection nozzles. In this study, we investigated the possibility to repair the damaged matrix regions by hardfacing technic. Ni-based hardfacing alloy reinforced with fused eutectic tungsten carbide is deposited on infiltrated WC-W-Ni substrate by oxyacetylene welding (OAW). The microstructure at the hardfacing / matrix interface is characterized by SEM- EDS, XRD and micro hardness Hv0.1. The hardfacing conditions greatly affect the dilution phenomenon and the distribution of carbides at the interface, without formation of transition zone. During OAW welding deposition, interdiffusion of atoms occurs: Cu and Sn diffuse from infiltrated matrix substrate into hardfacing and simultaneously Cr and Si alloy elements from hardfacing diffuse towards the substrate. The dilution zone consists of a nickel-rich phase with a heterogeneous distribution of eutectic spherical (Ni-based hardfacing alloy) and irregular (matrix) WC/W2C carbides and a secondary phase rich in Cr-W-Si. Hardfacing conditions cause the dissolution of banding around both spherical and irregular carbides. The micro-hardness of interface is significantly improved by the presence of secondary phase in the inter-dendritic structure.

Keywords: dilution, dissolution, hardfacing, infiltrated matrix, PDC drill bits

Procedia PDF Downloads 341
4142 Decay Analysis of 118Xe* Nucleus Formed in 28Si Induced Reaction

Authors: Manoj K. Sharma, Neha Grover

Abstract:

Dynamical cluster decay model (DCM) is applied to study the decay mechanism of 118Xe* nucleus in reference to recent data on 28Si + 90Zr → 118Xe* reaction, as an extension of our previous work on the dynamics of 112Xe* nucleus. It is relevant to mention here that DCM is based on collective clusterization approach, where emission probability of different decay paths such as evaporation residue (ER), intermediate mass fragments (IMF) and fission etc. is worked out on parallel scale. Calculations have been done over a wide range of center of mass energies with Ec.m. = 65 - 92 MeV. The evaporation residue (ER) cross-sections of 118Xe* compound nucleus are fitted in reference to available data, using spherical and quadrupole (β2) deformed choice of decaying fragments within the optimum orientations approach. It may be noted that our calculated cross-sections find decent agreement with experimental data and hence provide an opportunity to analyze the exclusive role of deformations in view of fragmentation behavior of 118Xe* nucleus. The possible contribution of IMF fragments is worked out and an extensive effort is being made to analyze the role of excitation energy, angular momentum, diffuseness parameter and level density parameter to have better understanding of the decay patterns governed in the dynamics of 28Si + 90Zr → 118Xe* reaction.

Keywords: cross-sections, deformations, fragmentation, angular momentum

Procedia PDF Downloads 321
4141 Bayesian Approach for Moving Extremes Ranked Set Sampling

Authors: Said Ali Al-Hadhrami, Amer Ibrahim Al-Omari

Abstract:

In this paper, Bayesian estimation for the mean of exponential distribution is considered using Moving Extremes Ranked Set Sampling (MERSS). Three priors are used; Jeffery, conjugate and constant using MERSS and Simple Random Sampling (SRS). Some properties of the proposed estimators are investigated. It is found that the suggested estimators using MERSS are more efficient than its counterparts based on SRS.

Keywords: Bayesian, efficiency, moving extreme ranked set sampling, ranked set sampling

Procedia PDF Downloads 514
4140 Combustion Characteristics of Wet Woody Biomass in a Grate Furnace: Including Measurements within the Bed

Authors: Narges Razmjoo, Hamid Sefidari, Michael Strand

Abstract:

Biomass combustion is a growing technique for heat and power production due to the increasing stringent regulations with CO2 emissions. Grate-fired systems have been regarded as a common and popular combustion technology for burning woody biomass. However, some grate furnaces are not well optimized and may emit significant amount of unwanted compounds such as dust, NOx, CO, and unburned gaseous components. The combustion characteristics inside the fuel bed are of practical interest, as they are directly related to the release of volatiles and affect the stability and the efficiency of the fuel bed combustion. Although numerous studies have been presented on the grate firing of biomass, to the author’s knowledge, none of them have conducted a detailed experimental study within the fuel bed. It is difficult to conduct measurements of temperature and gas species inside the burning bed of the fuel in full-scale boilers. Results from such inside bed measurements can also be applied by the numerical experts for modeling the fuel bed combustion. The current work presents an experimental investigation into the combustion behavior of wet woody biomass (53 %) in a 4 MW reciprocating grate boiler, by focusing on the gas species distribution along the height of the fuel bed. The local concentrations of gases (CO, CO2, CH4, NO, and O2) inside the fuel bed were measured through a glass port situated on the side wall of the furnace. The measurements were carried out at five different heights of the fuel bed, by means of a bent stainless steel probe containing a type-k thermocouple. The sample gas extracted from the fuel bed, through the probe, was filtered and dried and then was analyzed using two infrared spectrometers. Temperatures of about 200-1100 °C were measured close to the grate, indicating that char combustion is occurring at the bottom of the fuel bed and propagates upward. The CO and CO2 concentration varied in the range of 15-35 vol % and 3-16 vol %, respectively, and NO concentration varied between 10-140 ppm. The profile of the gas concentrations distribution along the bed height provided a good overview of the combustion sub-processes in the fuel bed.

Keywords: experimental, fuel bed, grate firing, wood combustion

Procedia PDF Downloads 326
4139 Seismic Data Analysis of Intensity, Orientation and Distribution of Fractures in Basement Rocks for Reservoir Characterization

Authors: Mohit Kumar

Abstract:

Natural fractures are classified in two broad categories of joints and faults on the basis of shear movement in the deposited strata. Natural fracture always has high structural relationship with extensional or non-extensional tectonics and sometimes the result is seen in the form of micro cracks. Geological evidences suggest that both large and small-scale fractures help in to analyze the seismic anisotropy which essentially contribute into characterization of petro physical properties behavior associated with directional migration of fluid. We generally question why basement study is much needed as historically it is being treated as non-productive and geoscientist had no interest in exploration of these basement rocks. Basement rock goes under high pressure and temperature, and seems to be highly fractured because of the tectonic stresses that are applied to the formation along with the other geological factors such as depositional trend, internal stress of the rock body, rock rheology, pore fluid and capillary pressure. Sometimes carbonate rocks also plays the role of basement and igneous body e.g basalt deposited over the carbonate rocks and fluid migrate from carbonate to igneous rock due to buoyancy force and adequate permeability generated by fracturing. So in order to analyze the complete petroleum system, FMC (Fluid Migration Characterization) is necessary through fractured media including fracture intensity, orientation and distribution both in basement rock and county rock. Thus good understanding of fractures can lead to project the correct wellbore trajectory or path which passes through potential permeable zone generated through intensified P-T and tectonic stress condition. This paper deals with the analysis of these fracture property such as intensity, orientation and distribution in basement rock as large scale fracture can be interpreted on seismic section, however, small scale fractures show ambiguity in interpretation because fracture in basement rock lies below the seismic wavelength and hence shows erroneous result in identification. Seismic attribute technique also helps us to delineate the seismic fracture and subtle changes in fracture zone and these can be inferred from azimuthal anisotropy in velocity and amplitude and spectral decomposition. Seismic azimuthal anisotropy derives fracture intensity and orientation from compressional wave and converted wave data and based on variation of amplitude or velocity with azimuth. Still detailed analysis of fractured basement required full isotropic and anisotropic analysis of fracture matrix and surrounding rock matrix in order to characterize the spatial variability of basement fracture which support the migration of fluid from basement to overlying rock.

Keywords: basement rock, natural fracture, reservoir characterization, seismic attribute

Procedia PDF Downloads 197
4138 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 148
4137 Influence of Glass Plates Different Boundary Conditions on Human Impact Resistance

Authors: Alberto Sanchidrián, José A. Parra, Jesús Alonso, Julián Pecharromán, Antonia Pacios, Consuelo Huerta

Abstract:

Glass is a commonly used material in building; there is not a unique design solution as plates with a different number of layers and interlayers may be used. In most façades, a security glazing have to be used according to its performance in the impact pendulum. The European Standard EN 12600 establishes an impact test procedure for classification under the point of view of the human security, of flat plates with different thickness, using a pendulum of two tires and 50 kg mass that impacts against the plate from different heights. However, this test does not replicate the actual dimensions and border conditions used in building configurations and so the real stress distribution is not determined with this test. The influence of different boundary conditions, as the ones employed in construction sites, is not well taking into account when testing the behaviour of safety glazing and there is not a detailed procedure and criteria to determinate the glass resistance against human impact. To reproduce the actual boundary conditions on site, when needed, the pendulum test is arranged to be used "in situ", with no account for load control, stiffness, and without a standard procedure. Fracture stress of small and large glass plates fit a Weibull distribution with quite a big dispersion so conservative values are adopted for admissible fracture stress under static loads. In fact, test performed for human impact gives a fracture strength two or three times higher, and many times without a total fracture of the glass plate. Newest standards, as for example DIN 18008-4, states for an admissible fracture stress 2.5 times higher than the ones used for static and wing loads. Now two working areas are open: a) to define a standard for the ‘in situ’ test; b) to prepare a laboratory procedure that allows testing with more real stress distribution. To work on both research lines a laboratory that allows to test medium size specimens with different border conditions, has been developed. A special steel frame allows reproducing the stiffness of the glass support substructure, including a rigid condition used as reference. The dynamic behaviour of the glass plate and its support substructure have been characterized with finite elements models updated with modal tests results. In addition, a new portable impact machine is being used to get enough force and direction control during the impact test. Impact based on 100 J is used. To avoid problems with broken glass plates, the test have been done using an aluminium plate of 1000 mm x 700 mm size and 10 mm thickness supported on four sides; three different substructure stiffness conditions are used. A detailed control of the dynamic stiffness and the behaviour of the plate is done with modal tests. Repeatability of the test and reproducibility of results prove that procedure to control both, stiffness of the plate and the impact level, is necessary.

Keywords: glass plates, human impact test, modal test, plate boundary conditions

Procedia PDF Downloads 307
4136 Features of Testing of the Neuronetwork Converter Biometrics-Code with Correlation Communications between Bits of the Output Code

Authors: B. S. Akhmetov, A. I. Ivanov, T. S. Kartbayev, A. Y. Malygin, K. Mukapil, S. D. Tolybayev

Abstract:

The article examines the testing of the neural network converter of biometrics code. Determined the main reasons that prevented the use adopted in the works of foreign researchers classical a Binomial Law when describing distribution of measures of Hamming "Alien" codes-responses.

Keywords: biometrics, testing, neural network, converter of biometrics-code, Hamming's measure

Procedia PDF Downloads 1138
4135 Spectroscopy and Electron Microscopy for the Characterization of CdSxSe1-x Quantum Dots in a Glass Matrix

Authors: C. Fornacelli, P. Colomban, E. Mugnaioli, I. Memmi Turbanti

Abstract:

When semiconductor particles are reduced in scale to nanometer dimension, their optical and electro-optical properties strongly differ from those of bulk crystals of the same composition. Since sampling is often not allowed concerning cultural heritage artefacts, the potentialities of two non-invasive techniques, such as Raman and Fiber Optic Reflectance Spectroscopy (FORS), have been investigated and the results of the analysis on some original glasses of different colours (from yellow to orange and deep red) and periods (from the second decade of the 20th century to present days) are reported in the present study. In order to evaluate the potentialities of the application of non-invasive techniques to the investigation of the structure and distribution of nanoparticles dispersed in a glass matrix, Scanning Electron Microscopy (SEM) and energy-disperse spectroscopy (EDS) mapping, together with Transmission Electron Microscopy (TEM) and Electron Diffraction Tomography (EDT) have also been used. Raman spectroscopy allows a fast and non-destructive measure of the quantum dots composition and size, thanks to the evaluation of the frequencies and the broadening/asymmetry of the LO phonons bands, respectively, though the important role of the compressive strain arising from the glass matrix and the possible diffusion of zinc from the matrix to the nanocrystals should be taken into account when considering the optical-phonons frequency values. The incorporation of Zn has been assumed by an upward shifting of the LO band related to the most abundant anion (S or Se), while the role of the surface phonons as well as the confinement-induced scattering by phonons with a non-zero wavevectors on the Raman peaks broadening has been verified. The optical band gap varies from 2.42 eV (pure CdS) to 1.70 eV (CdSe). For the compositional range between 0.5≤x≤0.2, the presence of two absorption edges has been related to the contribution of both pure CdS and the CdSxSe1-x solid solution; this particular feature is probably due to the presence of unaltered cubic zinc blende structures of CdS that is not taking part to the formation of the solid solution occurring only between hexagonal CdS and CdSe. Moreover, the band edge tailing originating from the disorder due to the formation of weak bonds and characterized by the Urbach edge energy has been studied and, together with the FWHM of the Raman signal, has been assumed as a good parameter to evaluate the degree of topological disorder. SEM-EDS mapping showed a peculiar distribution of the major constituents of the glass matrix (fluxes and stabilizers), especially concerning those samples where a layered structure has been assumed thanks to the spectroscopic study. Finally, TEM-EDS and EDT were used to get high-resolution information about nanocrystals (NCs) and heterogeneous glass layers. The presence of ZnO NCs (< 4 nm) dispersed in the matrix has been verified for most of the samples, while, for those samples where a disorder due to a more complex distribution of the size and/or composition of the NCs has been assumed, the TEM clearly verified most of the assumption made by the spectroscopic techniques.

Keywords: CdSxSe1-x, EDT, glass, spectroscopy, TEM-EDS

Procedia PDF Downloads 299
4134 Synthesis, Crystallography and Anti-TB Activity of Substituted Benzothiazole Analogues

Authors: Katharigatta N. Venugopala, Melendhran Pillay, Bander E. Al-Dhubiab

Abstract:

Tuberculosis (TB) infection is caused mainly by Mycobacterium tuberculosis (MTB) and it is one of the most threatening and wide spread infectious diseases in the world. Benzothiazole derivatives are found to have diverse chemical reactivity and broad spectrum of pharmacological activity. Some of the important pharmacological activities shown by the benzothiazole analogues are antitumor, anti-inflammatory, antimicrobial, anti-tubercular, anti-leishmanial, anticonvulsant and anti-HIV properties. Keeping all these facts in mind in the present investigation it was envisaged to synthesize a series of novel {2-(benzo[d]-thiazol-2-yl-methoxy)-substitutedaryl}-(substitutedaryl)-methanones (4a-f) and characterize by IR, NMR (1H and 13C), HRMS and single crystal x-ray studies. The title compounds are investigated for in vitro anti-tubercular activity against two TB strains such as H37Rv (ATCC 25177) and MDR-MTB (multi drug resistant MTB resistant to Isoniazid, Rifampicin and Ethambutol) by agar diffusion method. Among the synthesized compounds in the series, test compound {2-(benzo[d]thiazol-2-yl-methoxy)-5-fluorophenyl}-(4-chlorophenyl)-methanone (2c) was found to exhibit significant activity with MICs of 1 µg/mL and 2 µg/mL against H37Rv and MDR-MTB, respectively when compared to standard drugs. Single crystal x-ray studies was used to study intra and intermolecular interactions, including polymorphism behavior of the test compounds, but none of the compounds exhibited polymorphism behavior.

Keywords: benzothiazole analogues, characterization, crystallography, anti-TB activity

Procedia PDF Downloads 281