Search results for: blue color detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4874

Search results for: blue color detection

2804 Image Steganography Using Least Significant Bit Technique

Authors: Preeti Kumari, Ridhi Kapoor

Abstract:

 In any communication, security is the most important issue in today’s world. In this paper, steganography is the process of hiding the important data into other data, such as text, audio, video, and image. The interest in this topic is to provide availability, confidentiality, integrity, and authenticity of data. The steganographic technique that embeds hides content with unremarkable cover media so as not to provoke eavesdropper’s suspicion or third party and hackers. In which many applications of compression, encryption, decryption, and embedding methods are used for digital image steganography. Due to compression, the nose produces in the image. To sustain noise in the image, the LSB insertion technique is used. The performance of the proposed embedding system with respect to providing security to secret message and robustness is discussed. We also demonstrate the maximum steganography capacity and visual distortion.

Keywords: steganography, LSB, encoding, information hiding, color image

Procedia PDF Downloads 474
2803 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 69
2802 Comparison of Serological and Molecular Diagnosis of Cerebral Toxoplasmosis in Blood and Cerebrospinal Fluid in HIV Infected Patients

Authors: Berredjem Hajira, Benlaifa Meriem, Becheker Imene, Bardi Rafika, Djebar Med Reda

Abstract:

Recent acquired or reactivation T.gondii infection is a serious complication in HIV patients. Classical serological diagnosis relies on the detection of anti-Toxoplasma immunoglobulin ; however, serology may be unreliable in HIV immunodeficient patients who fail to produce significant titers of specific antibodies. PCR assays allow a rapid diagnosis of Toxoplasma infection. In this study, we compared the value of the PCR for diagnosing active toxoplasmosis in cerebrospinal fluid and blood samples from HIV patients. Anti-Toxoplasma antibodies IgG and IgM titers were determined by ELISA. In parallel, nested PCR targeting B1 gene and conventional PCR-ELISA targeting P30 gene were used to detect T. gondii DNA in 25 blood samples and 12 cerebrospinal fluid samples from patients in whom toxoplasmic encephalitis was confirmed by clinical investigations. A total of 15 negative controls were used. Serology did not contribute to confirm toxoplasmic infection, as IgG and IgM titers decreased early. Only 8 out 25 blood samples and 5 out 12 cerebrospinal fluid samples PCRs yielded a positive result. 5 patients with confirmed toxoplasmosis had positive PCR results in either blood or cerebrospinal fluid samples. However, conventional nested B1 PCR gave best results than the P30 gene one for the detection of T.gondii DNA in both samples. All samples from control patients were negative. This study demonstrates the unusefulness of the serological tests and the high sensitivity and specificity of PCR in the diagnosis of toxoplasmic encephalitis in HIV patients.

Keywords: cerebrospinal fluid, HIV, Toxoplasmosis, PCR

Procedia PDF Downloads 379
2801 The Names of the Traditional Motif of Batik Solo

Authors: Annisa D. Febryandini

Abstract:

Batik is a unique cultural heritage that strongly linked with its community. As a product of current culture in Solo, Batik Solo not only has a specific design and color to represent the cultural identity, cultural values, and spirituality of the community, but also has some specific names given by its community which are not arbitrary. This qualitative research paper uses the primary data by interview method as well as the secondary data to support it. Based on the data, this paper concludes that the names consist of a word or words taken from a current name of things in Javanese language. They indicate the cultural meaning such as a specific event, a hope, and the social status of the people who use the motif. Different from the other research, this paper takes a look at the names of traditional motif of Batik Solo which analyzed linguistically to reveal the cultural meaning.

Keywords: traditional motif, Batik, solo, anthropological linguistics

Procedia PDF Downloads 277
2800 Proposal Method of Prediction of the Early Stages of Dementia Using IoT and Magnet Sensors

Authors: João Filipe Papel, Tatsuji Munaka

Abstract:

With society's aging and the number of elderly with dementia rising, researchers have been actively studying how to support the elderly in the early stages of dementia with the objective of allowing them to have a better life quality and as much as possible independence. To make this possible, most researchers in this field are using the Internet Of Things to monitor the elderly activities and assist them in performing them. The most common sensor used to monitor the elderly activities is the Camera sensor due to its easy installation and configuration. The other commonly used sensor is the sound sensor. However, we need to consider privacy when using these sensors. This research aims to develop a system capable of predicting the early stages of dementia based on monitoring and controlling the elderly activities of daily living. To make this system possible, some issues need to be addressed. First, the issue related to elderly privacy when trying to detect their Activities of Daily Living. Privacy when performing detection and monitoring Activities of Daily Living it's a serious concern. One of the purposes of this research is to achieve this detection and monitoring without putting the privacy of the elderly at risk. To make this possible, the study focuses on using an approach based on using Magnet Sensors to collect binary data. The second is to use the data collected by monitoring Activities of Daily Living to predict the early stages of Dementia. To make this possible, the research team suggests developing a proprietary ontology combined with both data-driven and knowledge-driven.

Keywords: dementia, activity recognition, magnet sensors, ontology, data driven and knowledge driven, IoT, activities of daily living

Procedia PDF Downloads 104
2799 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: rough sets, rough neural networks, cellular automata, image processing

Procedia PDF Downloads 439
2798 Extending Early High Energy Physics Studies with a Tri-Preon Model

Authors: Peter J. Riley

Abstract:

Introductory courses in High Energy Physics (HEP) can be extended with the Tri-Preon (TP) model to both supplements and challenge the Standard Model (SM) theory. TP supplements by simplifying the tracking of Conserved Quantum Numbers at an interaction vertex, e.g., the lepton number can be seen as a di-preon current. TP challenges by proposing extended particle families to three generations of particle triplets for leptons, quarks, and weak bosons. There are extensive examples discussed at an introductory level in six arXiv publications, including supersymmetry, hyper color, and the Higgs. Interesting exercises include pion decay, kaon-antikaon mixing, neutrino oscillations, and K+ decay to muons. It is a revealing exercise for students to weigh the pros and cons of parallel theories at an early stage in their HEP journey.

Keywords: HEP, particle physics, standard model, Tri-Preon model

Procedia PDF Downloads 73
2797 Diagnosis of Induction Machine Faults by DWT

Authors: Hamidreza Akbari

Abstract:

In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.

Keywords: induction machine, fault, DWT, electric

Procedia PDF Downloads 350
2796 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 245
2795 Investigating Dynamic Transition Process of Issues Using Unstructured Text Analysis

Authors: Myungsu Lim, William Xiu Shun Wong, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Namgyu Kim

Abstract:

The amount of real-time data generated through various mass media has been increasing rapidly. In this study, we had performed topic analysis by using the unstructured text data that is distributed through news article. As one of the most prevalent applications of topic analysis, the issue tracking technique investigates the changes of the social issues that identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has limitation that it cannot discover dynamic mutation process of complex social issues. The purpose of this study is to overcome the limitations of the existing issue tracking method. We first derived core issues of each period, and then discover the dynamic mutation process of various issues. In this study, we further analyze the mutation process from the perspective of the issues categories, in order to figure out the pattern of issue flow, including the frequency and reliability of the pattern. In other words, this study allows us to understand the components of the complex issues by tracking the dynamic history of issues. This methodology can facilitate a clearer understanding of complex social phenomena by providing mutation history and related category information of the phenomena.

Keywords: Data Mining, Issue Tracking, Text Mining, topic Analysis, topic Detection, Trend Detection

Procedia PDF Downloads 408
2794 Antibacterial Potential from the Crude Extracts of Hemolymph and Hepatopancreas of Portunus segnis and Grapsus albolineatus

Authors: Mona Hajirasouli

Abstract:

Abstract: introduction: Antimicrobial compounds are important in the first line of the host defense system of many animal species. Material and methods: In the present study antibacterial activity of crude and proteins precipitate of hemolymph and crude hepatopancreas extracts from Portunus segnis and Grapsus albolineatus against a range of 6 different bacterial strains evaluated. Amoxicillin as a positive control were also used. Results: Maximum activity (15.9 mm) was recorded in male haemolymph of p.segnis against Entrobacter and minimum activity (7 mm) was recorded against Serratia marcescens, Enterobacter sp. and Proteus mirabilis from different extracts of Grapsus albolineatus. Data were analyzed using independent-t in SPSS version 16, and results indicate that there were not any significant differences between hemolymph and hepatopancreas extracts of 2 species. Discussion: Antimicrobial activity has been reported earlier in the hemolymph of some brachyuran crabs such as: blue crab Callinectes sapidus, mud crab Scylla serrata, Ocypode macrocera and Carcinus maenas. This study shows that hemolymph and hepatopancreas of Portunus segnis and Grapsus albolineatus may potential antibiotics.

Keywords: brachyuran, Portunus segnis, Grapsus albolineatus, hemolymph, hepatopancreas, antibacterial

Procedia PDF Downloads 168
2793 Evaluation of Biosurfactant Production by a New Strain Isolated from the Lagoon of Mar Chica Degrading Gasoline

Authors: Ikram Kamal, Mohamed Blaghen

Abstract:

Pollution caused by petroleum hydrocarbons in terrestrial and aquatic environment is a common phenomenon that causes significant ecological and social problems. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). In this study we have investigated the potential of bacterial strains collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition a GC/MS was used to separate and identify different biosurfactants purified.

Keywords: petroleum hydrocarbons, biosurfactant, biodegradability, critical micelle concentration, lagoon Marchika

Procedia PDF Downloads 359
2792 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer

Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari

Abstract:

Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.

Keywords: cosmetic products, methylparaben, molecularly imprinted polymer, wastewater

Procedia PDF Downloads 319
2791 Two Years Retrospective Study of Body Fluid Cultures Obtained from Patients in the Intensive Care Unit of General Hospital of Ioannina

Authors: N. Varsamis, M. Gerasimou, P. Christodoulou, S. Mantzoukis, G. Kolliopoulou, N. Zotos

Abstract:

Purpose: Body fluids (pleural, peritoneal, synovial, pericardial, cerebrospinal) are an important element in the detection of microorganisms. For this reason, it is important to examine them in the Intensive Care Unit (ICU) patients. Material and Method: Body fluids are transported through sterile containers and enriched as soon as possible with Tryptic Soy Broth (TSB). After one day of incubation, the broth is poured into selective media: Blood, Mac Conkey No. 2, Chocolate, Mueller Hinton, Chapman and Saboureaud agar. The above selective media are incubated directly for 2 days. After this period, if any number of microbial colonies are detected, gram staining is performed. After that, the isolated organisms are identified by biochemical techniques in the automated Microscan system (Siemens) and followed by a sensitivity test on the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by Kirby Bauer-based plate test. Results: In 2017 the Laboratory of Microbiology received 60 samples of body fluids from the ICU. More specifically the Microbiology Department received 6 peritoneal fluid specimens, 18 pleural fluid specimens and 36 cerebrospinal fluid specimens. 36 positive cultures were tested. S. epidermidis was identified in 18 specimens, S. haemolyticus in 6, and E. faecium in 12. Conclusions: The results show low detection of microorganisms in body fluid cultures.

Keywords: body fluids, culture, intensive care unit, microorganisms

Procedia PDF Downloads 202
2790 Fabric Printing Design: An Inspiration from Thai Kites

Authors: Suwit Sadsunk

Abstract:

This research paper was aimed to study different motifs found on Thai kites in order to be create new fabric printing designs. The objectives of the study were (1) to examine different motifs of Thai kites; and (2) to create appropriate printing designs for fabric based on an examination of motifs of Thai kites from primary and secondary sources. The study found that designs, motifs and colors found on Thai kites were various based on individual artisans’ imagination in each period. From the historical review, there have been 4 kinds of Thai kites namely I-Loom Kite, Pak Pao Kite, Chula Kite and Dui Dui Kite. Nowadays, the kite designs have been developed to be more various by shape and color such as snake- shaped kite, owl-shaped kite and peacock-shaped kite.

Keywords: Thai kites, fabric printing design

Procedia PDF Downloads 325
2789 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index

Authors: Todd Zhou, Mikhail Yurochkin

Abstract:

Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.

Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index

Procedia PDF Downloads 124
2788 Bag of Words Representation Based on Weighting Useful Visual Words

Authors: Fatma Abdedayem

Abstract:

The most effective and efficient methods in image categorization are almost based on bag-of-words (BOW) which presents image by a histogram of occurrence of visual words. In this paper, we propose a novel extension to this method. Firstly, we extract features in multi-scales by applying a color local descriptor named opponent-SIFT. Secondly, in order to represent image we use Spatial Pyramid Representation (SPR) and an extension to the BOW method which based on weighting visual words. Typically, the visual words are weighted during histogram assignment by computing the ratio of their occurrences in the image to the occurrences in the background. Finally, according to classical BOW retrieval framework, only a few words of the vocabulary is useful for image representation. Therefore, we select the useful weighted visual words that respect the threshold value. Experimentally, the algorithm is tested by using different image classes of PASCAL VOC 2007 and is compared against the classical bag-of-visual-words algorithm.

Keywords: BOW, useful visual words, weighted visual words, bag of visual words

Procedia PDF Downloads 436
2787 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks

Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas

Abstract:

This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).

Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems

Procedia PDF Downloads 134
2786 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection

Authors: S. Shankar Bharathi

Abstract:

Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.

Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision

Procedia PDF Downloads 428
2785 Vehicle Gearbox Fault Diagnosis Based on Cepstrum Analysis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs. This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of cepstrum analysis in detection and diagnosis of the gear condition.

Keywords: cepstrum analysis, fault diagnosis, gearbox, vibration signals

Procedia PDF Downloads 379
2784 Fabrication and Analysis of Simplified Dragonfly Wing Structures Created Using Balsa Wood and Red Prepreg Fibre Glass for Use in Biomimetic Micro Air Vehicles

Authors: Praveena Nair Sivasankaran, Thomas Arthur Ward, Rubentheren Viyapuri

Abstract:

Paper describes a methodology to fabricate a simplified dragonfly wing structure using balsa wood and red prepreg fibre glass. These simplified wing structures were created for use in Biomimetic Micro Air Vehicles (BMAV). Dragonfly wings are highly corrugated and possess complex vein structures. In order to mimic the wings function and retain its properties, a simplified version of the wing was designed. The simplified dragonfly wing structure was created using a method called spatial network analysis which utilizes Canny edge detection method. The vein structure of the wings were carved out in balsa wood and red prepreg fibre glass. Balsa wood and red prepreg fibre glass was chosen due to its ultra- lightweight property and hence, highly suitable to be used in our application. The fabricated structure was then immersed in a nanocomposite solution containing chitosan as a film matrix, reinforced with chitin nanowhiskers and tannic acid as a crosslinking agent. These materials closely mimic the membrane of a dragonfly wing. Finally, the wings were subjected to a bending test and comparisons were made with previous research for verification. The results had a margin of difference of about 3% and thus the structure was validated.

Keywords: dragonfly wings, simplified, Canny edge detection, balsa wood, red prepreg, chitin, chitosan, tannic acid

Procedia PDF Downloads 331
2783 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
2782 GA3C for Anomalous Radiation Source Detection

Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang

Abstract:

In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.

Keywords: deep reinforcement learning, GA3C, source searching, source detection

Procedia PDF Downloads 114
2781 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: computer-aided system, detection, image segmentation, morphology

Procedia PDF Downloads 150
2780 Model-Based Diagnostics of Multiple Tooth Cracks in Spur Gears

Authors: Ahmed Saeed Mohamed, Sadok Sassi, Mohammad Roshun Paurobally

Abstract:

Gears are important machine components that are widely used to transmit power and change speed in many rotating machines. Any breakdown of these vital components may cause severe disturbance to production and incur heavy financial losses. One of the most common causes of gear failure is the tooth fatigue crack. Early detection of teeth cracks is still a challenging task for engineers and maintenance personnel. So far, to analyze the vibration behavior of gears, different approaches have been tried based on theoretical developments, numerical simulations, or experimental investigations. The objective of this study was to develop a numerical model that could be used to simulate the effect of teeth cracks on the resulting vibrations and hence to permit early fault detection for gear transmission systems. Unlike the majority of published papers, where only one single crack has been considered, this work is more realistic, since it incorporates the possibility of multiple simultaneous cracks with different lengths. As cracks significantly alter the gear mesh stiffness, we performed a finite element analysis using SolidWorks software to determine the stiffness variation with respect to the angular position for different combinations of crack lengths. A simplified six degrees of freedom non-linear lumped parameter model of a one-stage gear system is proposed to study the vibration of a pair of spur gears, with and without tooth cracks. The model takes several physical properties into account, including variable gear mesh stiffness and the effect of friction, but ignores the lubrication effect. The vibration simulation results of the gearbox were obtained via Matlab and Simulink. The results were found to be consistent with the results from previously published works. The effect of one crack with different levels was studied and very similar changes in the total mesh stiffness and the vibration response, both were observed and compared to what has been found in previous studies. The effect of the crack length on various statistical time domain parameters was considered and the results show that these parameters were not equally sensitive to the crack percentage. Multiple cracks are introduced at different locations and the vibration response and the statistical parameters were obtained.

Keywords: dynamic simulation, gear mesh stiffness, simultaneous tooth cracks, spur gear, vibration-based fault detection

Procedia PDF Downloads 211
2779 Image Captioning with Vision-Language Models

Authors: Promise Ekpo Osaine, Daniel Melesse

Abstract:

Image captioning is an active area of research in the multi-modal artificial intelligence (AI) community as it connects vision and language understanding, especially in settings where it is required that a model understands the content shown in an image and generates semantically and grammatically correct descriptions. In this project, we followed a standard approach to a deep learning-based image captioning model, injecting architecture for the encoder-decoder setup, where the encoder extracts image features, and the decoder generates a sequence of words that represents the image content. As such, we investigated image encoders, which are ResNet101, InceptionResNetV2, EfficientNetB7, EfficientNetV2M, and CLIP. As a caption generation structure, we explored long short-term memory (LSTM). The CLIP-LSTM model demonstrated superior performance compared to the encoder-decoder models, achieving a BLEU-1 score of 0.904 and a BLEU-4 score of 0.640. Additionally, among the CNN-LSTM models, EfficientNetV2M-LSTM exhibited the highest performance with a BLEU-1 score of 0.896 and a BLEU-4 score of 0.586 while using a single-layer LSTM.

Keywords: multi-modal AI systems, image captioning, encoder, decoder, BLUE score

Procedia PDF Downloads 77
2778 Removal of Basic Dyes from Aqueous Solutions with a Treated Spent Bleaching Earth

Authors: M. Mana, M. S. Ouali, L. C. de Menorval

Abstract:

A spent bleaching earth from an edible oil refinery has been treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100°C). The obtained material (TSBE) was washed, dried and characterized by X-ray diffraction, FTIR, SEM, BET, and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the comparative sorption of safranine and methylene blue on this material, the spent bleaching earth (SBE) and the virgin bleaching earth (VBE). The kinetic results fit the pseudo second order kinetic model and the Weber & Morris, intra-particle diffusion model. The pH had no effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of determination coefficient. A linear relationship was found between the calculated maximum removal capacity and the solid/solution ratio. A comparison between the results obtained with this material and those of the literature highlighted the low cost and the good removal capacity of the treated spent bleaching earth.

Keywords: basic dyes, isotherms, sorption, spent bleaching earth

Procedia PDF Downloads 249
2777 EU Citizenship, Brexit, and Democracy

Authors: Noemi Bessa Vilela

Abstract:

The citizenship of the European Union nowadays established under article 20/1 of the Treaty on the Functioning of the European Union has been a hallmark of the EU’s political integration since the adoption of the Maastricht Treaty. Initially received with some doubt regarding what it would mean to be a European citizen, and what would happen to individual national citizenships, the Union’s citizenship appears to have been relegated at present times to a secondary position in relation to other, more pressing, economic and market policies. Notwithstanding the veritable myriad of specific rights and freedoms attributed to citizens of the Union, it is not hard to understand that, given the importance of citizenship as a true cohesion policy at its core, somewhere along the way the Union has failed in its mission of giving its citizens a feeling of European identity, along with the values it so bravely wants to defend and promote. In fact, notwithstanding the ever-so-permanent presence of the blue and yellow flag next to national flags, and the elections to European Parliament, most citizens have no idea of the relevance of EU law as an integral part of their legal heritage. In fact, it is safe to state, while the majority of traveling nationals are aware of i.e. their right to freely move in between Member-States, most overlook the fact that this is a result of their status as EU citizens. We have now arrived at a crossroad between accepting the law as it is, or to create new possibilities. The question raised is whether the citizens of UK may, or may not, and shall or shall not, keep the EU citizenship.

Keywords: Brexit, democracy, EU citizenship, EU law, TFUE

Procedia PDF Downloads 130
2776 Temporally Coherent 3D Animation Reconstruction from RGB-D Video Data

Authors: Salam Khalifa, Naveed Ahmed

Abstract:

We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive frames independent of their resolution. Our new motion vectors based dynamic alignment method then fully reconstruct a spatio-temporally coherent 3D animation. We perform extensive quantitative validation using novel error functions to analyze the results. We show that despite the limiting factors of temporal and spatial noise associated to RGB-D data, it is possible to extract temporal coherence to faithfully reconstruct a temporally coherent 3D animation from RGB-D video data.

Keywords: 3D video, 3D animation, RGB-D video, temporally coherent 3D animation

Procedia PDF Downloads 373
2775 Optimization of Fenton Process for the Treatment of Young Municipal Leachate

Authors: Bouchra Wassate, Younes Karhat, Khadija El Falaki

Abstract:

Leachate is a source of surface water and groundwater contamination if it has not been pretreated. Indeed, due to its complex structure and its pollution load make its treatment extremely difficult to achieve the standard limits required. The objective of this work is to show the interest of advanced oxidation processes on leachate treatment of urban waste containing high concentrations of organic pollutants. The efficiency of Fenton (Fe2+ +H2O2 + H+) reagent for young leachate recovered from collection trucks household waste in the city of Casablanca, Morocco, was evaluated with the objectives of chemical oxygen demand (COD) and discoloration reductions. The optimization of certain physicochemical parameters (initial pH value, reaction time, and [Fe2+], [H2O2]/ [Fe2+] ratio) has yielded good results in terms of reduction of COD and discoloration of the leachate.

Keywords: COD removal, color removal, Fenton process, oxidation process, leachate

Procedia PDF Downloads 286