Search results for: thermal improvement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7656

Search results for: thermal improvement

7476 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements

Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal

Abstract:

In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, Despite the tradeoff between the noise level and the speed of the detection. In this paper, An improvement is introduced in the Kalman filter, Through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, The effect on the response to false alarms is also presented and false alarm rate show improvement.

Keywords: Kalman filter, innovation, false detection, improvement

Procedia PDF Downloads 602
7475 Voxel Models as Input for Heat Transfer Simulations with Siemens NX Based on X-Ray Microtomography Images of Random Fibre Reinforced Composites

Authors: Steven Latré, Frederik Desplentere, Ilya Straumit, Stepan V. Lomov

Abstract:

A method is proposed in order to create a three-dimensional finite element model representing fibre reinforced insulation materials for the simulation software Siemens NX. VoxTex software, a tool for quantification of µCT images of fibrous materials, is used for the transformation of microtomography images of random fibre reinforced composites into finite element models. An automatic tool was developed to execute the import of the models to the thermal solver module of Siemens NX. The paper describes the numerical tools used for the image quantification and the transformation and illustrates them on several thermal simulations of fibre reinforced insulation blankets filled with low thermal conductive fillers. The calculation of thermal conductivity is validated by comparison with the experimental data.

Keywords: analysis, modelling, thermal, voxel

Procedia PDF Downloads 287
7474 Heat Transfer Coefficients of Layers of Greenhouse Thermal Screens

Authors: Vitaly Haslavsky, Helena Vitoshkin

Abstract:

The total energy saving effect of different types of greenhouse thermal/shade screens was determined by measuring and calculating the overall heat transfer coefficients (U-values) for single and several layers of screens. The measurements were carried out using the hot box method, and the calculations were performed according to the ISO Standard 15099. The goal was to examine different types of materials with a wide range of thermal radiation properties used for thermal screens in combination with a dehumidification system in order to improve greenhouse insulation. The experimental results were in good agreement with the calculated heat transfer coefficients. It was shown that a high amount of infra-red (IR) radiation can be blocked by the greenhouse covering material in combination with moveable thermal screens. The aluminum foil screen could be replaced by transparent screens, depending on shading requirements. The results indicated that using a single layer, the U-value was reduced by approximately 70% compared to covering material alone, while the contributions of additional screen layers containing aluminum foil strips could reduce the U-value by approximately 90%. It was shown that three screen layers are sufficient for effective insulation.

Keywords: greenhouse insulation, heat loss, thermal screens, U-value

Procedia PDF Downloads 113
7473 Application of Response Surface Methodology to Optimize the Thermal Conductivity Enhancement of a Hybrid Nanofluid

Authors: Aminreza Noghrehabadi, Mohammad Behbahani, Ali Pourabbasi

Abstract:

In this experimental work, unlike conventional methods that mix two nanoparticles together, silver nanoparticles have been synthesized on the surface of graphene. In this research, the effect of adding modified graphene nanocomposite-silver nanoparticles to the base fluid (distilled water) was studied. Different transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) techniques have been used to examine the surfaces and atomic structure of nanoparticles. An ultrasonic device has been used to disperse the nanocomposite in distilled water. Also, the thermal conductivity coefficient was measured by the transient hot wire method using the KD2-pro device. In addition, the thermal conductivity coefficient was measured in the temperature range of 30°C to 50°C, concentration of 10 ppm to 1000 ppm, and ultrasonic time of 2 minutes to 15 minutes. The results showed that with the increase of all three parameters of temperature, concentration and ultrasonic time, the percentage of increase in thermal conductivity will go up until reaching the optimal point, and after passing the optimal point, the percentage of increase in thermal conductivity will have a downward trend. To calculate the thermal conductivity of this nanofluid, a very accurate experimental equation has been obtained using Design Expert software.

Keywords: thermal conductivity, nanofluids, enhancement, silver nano particle, optimal point

Procedia PDF Downloads 88
7472 Post Occupancy Evaluation of Thermal Comfort and User Satisfaction in a Green IT Commercial Building

Authors: Shraddha Jadhav

Abstract:

We are entering a new age in the built environment where we expect our buildings to deliver far more than just a place to work or live. It is widely believed that sustainable building design strategies create improved occupants’ comfort & satisfaction with respect to thermal comfort & indoor environmental quality. Yet this belief remains a hypothesis with little empirical support. IT buildings cater to more than 3000 users at a time. Nowadays people spend 90% of the time inside offices. These sustainable IT office buildings should provide the occupants with maximum comfort for better work productivity. Such green rated buildings fulfill all the criteria at the designing stage, but do they really work as expected at the occupancy stage. The aim of this paper is to evaluate whether green IT buildings provide the required comfort level as expected at the design stage. Building Occupants are a rich source of information for evaluating their comfort level in the building and to find out the solutions for their discomfort. This can be achieved by carrying out Post Occupancy Evaluation after the building has been occupied for more than a year or two. The technique consists of qualitative methods like questionnaire surveys & observations and quantitative methods like field measurements, photographs. Post Occupancy Evaluation was carried out in a Green (Platinum rated) IT building in Pune. 30 samples per floor were identified for the questionnaire survey. The core questions access occupant satisfaction with thermal comfort in the work area and measures adopted for making it comfortable were identified. The Mean Radiant Temperature of the same samples was taken to compare the quantitative and qualitative results. The survey was used to evaluate the occupant thermal comfort in a green office building and identify areas needing improvement. The survey has been designed in reference to ASHRAE standard 55-2010 & ISHRAE 10001:2017 IEQ and was further refined to suit the user of the building.

Keywords: green office building, building occupant, thermal comfort, POE, user satisfaction, survey

Procedia PDF Downloads 73
7471 Reducing Crash Risk at Intersections with Safety Improvements

Authors: Upal Barua

Abstract:

Crash risk at intersections is a critical safety issue. This paper examines the effectiveness of removing an existing off-set at an intersection by realignment, in reducing crashes. Empirical Bayes method was applied to conduct a before-and-after study to assess the effect of this safety improvement. The Transportation Safety Improvement Program in Austin Transportation Department completed several safety improvement projects at high crash intersections with a view to reducing crashes. One of the common safety improvement techniques applied was the realignment of intersection approaches removing an existing off-set. This paper illustrates how this safety improvement technique is applied at a high crash intersection from inception to completion. This paper also highlights the significant crash reductions achieved from this safety improvement technique applying Empirical Bayes method in a before-and-after study. The result showed that realignment of intersection approaches removing an existing off-set can reduce crashes by 53%. This paper also features the state of the art techniques applied in planning, engineering, designing and construction of this safety improvement, key factors driving the success, and lessons learned in the process.

Keywords: crash risk, intersection, off-set, safety improvement technique, before-and-after study, empirical Bayes method

Procedia PDF Downloads 245
7470 An Engineering Review of Grouting in Soil Improvement Applications

Authors: Mohamad Kazem Zamani, Meldi Suhatril

Abstract:

Soil improvement is one of the main concerns of each civil engineer who is working at soil mechanics and geotechnics. Grouting has been used as a powerful treatment for soil improving. In this paper, we have tried to review the grouting application base on grouts which is used and also we have tried to give a general view of grout applications and where and when can be used.

Keywords: cementious grouting, chemical grouting, soil improvement, civil engineering

Procedia PDF Downloads 518
7469 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy

Authors: Ingrid Argote, John Archila, Marcelo Becker

Abstract:

In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.

Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.

Procedia PDF Downloads 229
7468 The Analysis of Thermal Conductivity in Porcine Meat Due to Electricity by Finite Element Method

Authors: Orose Rugchati, Sarawut Wattanawongpitak

Abstract:

This research studied the analysis of the thermal conductivity and heat transfer in porcine meat due to the electric current flowing between the electrode plates in parallel. Hot-boned pork sample was prepared in 2*1*1 cubic centimeter. The finite element method with ANSYS workbench program was applied to simulate this heat transfer problem. In the thermal simulation, the input thermoelectric energy was calculated from measured current that flowing through the pork and the input voltage from the dc voltage source. The comparison of heat transfer in pork according to two voltage sources: DC voltage 30 volts and dc pulsed voltage 60 volts (pulse width 50 milliseconds and 50 % duty cycle) were demonstrated. From the result, it shown that the thermal conductivity trends to be steady at temperature 40C and 60C around 1.39 W/mC and 2.65 W/mC for dc voltage source 30 volts and dc pulsed voltage 60 volts, respectively. For temperature increased to 50C at 5 minutes, the appearance color of porcine meat at the exposer point has become to fade. This technique could be used for predicting of thermal conductivity caused by some meat’s characteristics.

Keywords: thermal conductivity, porcine meat, electricity, finite element method

Procedia PDF Downloads 140
7467 Comparison of Finite-Element and IEC Methods for Cable Thermal Analysis under Various Operating Environments

Authors: M. S. Baazzim, M. S. Al-Saud, M. A. El-Kady

Abstract:

In this paper, steady-state ampacity (current carrying capacity) evaluation of underground power cable system by using analytical and numerical methods for different conditions (depth of cable, spacing between phases, soil thermal resistivity, ambient temperature, wind speed), for two system voltage level were used 132 and 380 kV. The analytical method or traditional method that was used is based on the thermal analysis method developed by Neher-McGrath and further enhanced by International Electrotechnical Commission (IEC) and published in standard IEC 60287. The numerical method that was used is finite element method and it was recourse commercial software based on finite element method.

Keywords: cable ampacity, finite element method, underground cable, thermal rating

Procedia PDF Downloads 378
7466 Buckling Behavior of FGM Plates Using a Simplified Shear Deformation Theory

Authors: Mokhtar Bouazza

Abstract:

In this paper, the simplified theory will be used to predict the thermoelastic buckling behavior of rectangular functionally graded plates. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The simplified theory is used to obtain the buckling of the plate under different types of thermal loads. The thermal loads are assumed to be uniform, linear, and non-linear distribution through the thickness. Additional numerical results are presented for FGM plates that show the effects of various parameters on thermal buckling response.

Keywords: buckling, functionally graded, plate, simplified higher-order deformation theory, thermal loading

Procedia PDF Downloads 381
7465 The Effect of Nanofiber Web on Thermal Conductivity, Air and Water Vapor Permeability

Authors: Ilkay Ozsev Yuksek, Nuray Ucar, Zeynep Esma Soygur, Yasemin Kucuk

Abstract:

In this study, composite fabrics with polyacrylonitrile electrospun nanofiber deposited onto quilted polyester fabric have been produced in order to control the isolation properties such as water vapor permeability, air permeability and thermal conductivity. Different nanofiber webs were manufactured by changing polymer concentration from 10% to 16% and by changing the deposition time from 1 to 3 hours. Presence of nanofiber layer on the quilted fabric results to an increase of an isolation, i.e., a decrease of the moisture vapor transport rates at 20%, decrease of thermal conductivity at 15% and a decrease of air permeability values at 50%.

Keywords: nanofiber/fabric composites, electrospinning, isolation, thermal conductivity, moisture vapor transport, air permeability

Procedia PDF Downloads 313
7464 Thermal Conductivity of Al2O3/Water-Based Nanofluids: Revisiting the Influences of pH and Surfactant

Authors: Nizar Bouguerra, Ahmed Khabou, Sébastien Poncet, Saïd Elkoun

Abstract:

The present work focuses on the preparation and the stabilization of Al2O3-water based nanofluids. Though they have been widely considered in the past, to the best of our knowledge, there is no clear consensus about a proper way to prepare and stabilize them by the appropriate surfactant. In this paper, a careful experimental investigation is performed to quantify the combined influence of pH and the surfactant on the stability of Al2O3-water based nanofluids. Two volume concentrations of nanoparticles and three nanoparticle sizes have been considered. The good preparation and stability of these nanofluids are evaluated through thermal conductivity measurements. The results show that the optimum value for the thermal conductivity is obtained mainly by controlling the pH of the mixture and surfactants are not necessary to stabilize the solution.

Keywords: nanofluid, thermal conductivity, pH, transient hot wire, surfactant, Al2O3, stability, dispersion, preparation

Procedia PDF Downloads 356
7463 Combining ASTER Thermal Data and Spatial-Based Insolation Model for Identification of Geothermal Active Areas

Authors: Khalid Hussein, Waleed Abdalati, Pakorn Petchprayoon, Khaula Alkaabi

Abstract:

In this study, we integrated ASTER thermal data with an area-based spatial insolation model to identify and delineate geothermally active areas in Yellowstone National Park (YNP). Two pairs of L1B ASTER day- and nighttime scenes were used to calculate land surface temperature. We employed the Emissivity Normalization Algorithm which separates temperature from emissivity to calculate surface temperature. We calculated the incoming solar radiation for the area covered by each of the four ASTER scenes using an insolation model and used this information to compute temperature due to solar radiation. We then identified the statistical thermal anomalies using land surface temperature and the residuals calculated from modeled temperatures and ASTER-derived surface temperatures. Areas that had temperatures or temperature residuals greater than 2σ and between 1σ and 2σ were considered ASTER-modeled thermal anomalies. The areas identified as thermal anomalies were in strong agreement with the thermal areas obtained from the YNP GIS database. Also the YNP hot springs and geysers were located within areas identified as anomalous thermal areas. The consistency between our results and known geothermally active areas indicate that thermal remote sensing data, integrated with a spatial-based insolation model, provides an effective means for identifying and locating areas of geothermal activities over large areas and rough terrain.

Keywords: thermal remote sensing, insolation model, land surface temperature, geothermal anomalies

Procedia PDF Downloads 371
7462 A Comparison between Modelled and Actual Thermal Performance of Load Bearing Rammed Earth Walls in Egypt

Authors: H. Hafez, A. Mekkawy, R. Rostom

Abstract:

Around 10% of the world’s CO₂ emissions could be attributed to the operational energy of buildings; that is why more research is directed towards the use of rammed earth walls which is claimed to have enhanced thermal properties compared to conventional building materials. The objective of this paper is to outline how the thermal performance of rammed earth walls compares to conventional reinforced concrete skeleton and red brick in-fill walls. For this sake, the indoor temperature and relative humidity of a classroom built with rammed earth walls and a vaulted red brick roof in the area of Behbeit, Giza, Egypt were measured hourly over 6 months using smart sensors. These parameters for the rammed earth walls were later also compared against the values obtained using a 'DesignBuilder v5' model to verify the model assumptions. The thermal insulation of rammed earth walls was found to be 30% better than this of the redbrick infill, and the recorded data were found to be almost 90% similar to the modelled values.

Keywords: rammed earth, thermal insulation, indoor air quality, design builder

Procedia PDF Downloads 146
7461 Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite

Authors: Jayson Cheyne, David Butler, Iain Bomphray

Abstract:

In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk.

Keywords: battery safety, electric vehicles, phase change materials, thermal management, thermal runaway

Procedia PDF Downloads 144
7460 Case Study of Ground Improvement Solution for a Power Plant

Authors: Eleonora Di Mario

Abstract:

This paper describes the application of ground improvement to replace a typical piled foundation scheme in a power plant in Singapore. Several buildings within the plant were founded on vibro-compacted sand, including a turbine unit which had extremely stringent requirements on the allowable settlement. The achieved savings in terms of cost and schedule are presented. The monitoring data collected during the operation of the turbine are compared to the design predictions to validate the design approach, and the quality of the ground improvement works. In addition, the calculated carbon footprint of the ground improvement works are compared to the piled solution, showing that the vibro-compaction has a significantly lower carbon footprint.

Keywords: ground improvement, vibro-compaction, case study, sustainability, carbon footprint

Procedia PDF Downloads 109
7459 Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System

Authors: Ahmed Shinkafi, Craig Lawson

Abstract:

There is a great advancement towards the All-Electric Aircraft (AEA) technology. The AEA concept assumes that all aircraft systems will be integrated into one electrical power source in the future. The principle of the electro-thermal system is to transfer the energy required for anti/de-icing to the protected areas in electrical form. However, powering a large aircraft anti-icing system electrically could be quite excessive in cost and system weight. Hence, maximising the anti/de-icing efficiency of the electro-thermal system in order to minimise its power demand has become crucial to electro-thermal de-icing system sizing. In this work, an enhanced methodology has been developed for conceptual sizing of aircraft electro-thermal de-icing System. The work factored those critical terms overlooked in previous studies which were critical to de-icing energy consumption. A case study of a typical large aircraft wing de-icing was used to test and validate the model. The model was used to optimise the system performance by a trade-off between the de-icing peak power and system energy consumption. The optimum melting surface temperatures and energy flux predicted enabled the reduction in the power required for de-icing. The weight penalty associated with electro-thermal anti-icing/de-icing method could be eliminated using this method without under estimating the de-icing power requirement.

Keywords: aircraft, de-icing system, electro-thermal, in-flight icing

Procedia PDF Downloads 517
7458 Hygrothermal Properties of Raw Earth Material

Authors: Ichrak Hamrouni, Tariq Ouahbi, Natalija Lhuissier, Saïd Taibi, Mehrez Jemai, Olivier Crumeyrolle, Hatem Zenzri

Abstract:

Raw earth is the oldest building technique used for over 11 centuries, thanks to its various benefits. The most known raw earth construction technics are compressed earth blocks, rammed earth, raw earth concrete, and daub. The raw earth can be stabilized with hydraulic binders, mixed by fibers, or hyper-compacted in order to improve its mechanical behaviour. Moreover, raw earth is characterized by a low thermal conductivity what make it a good thermal insulator, and it has a very important capacity to condense and evaporate relative humidity. In this context, many researches have been developed. They have shown that the mechanical characteristics of earth materials increase with the hyper-compaction and adding fibers or hydraulic binders. Besides, other researches have been determined the thermal and hygroscopic properties of raw earth. They have shown that this material able to contribute to moisture and heat control in constructions. Its hygrothermal properties are better than fired earth bricks and concrete. The aim of this study is to evaluate the thermal and hygrometric behavior of raw earth material using experimental tests allows to determine the main Hygrothermal properties such as the water Vapour permeability and thermal conductivity and compare the results with those of other building materials such as fired clay bricks and cement concrete is presented.

Keywords: raw earth material, hygro-thermal, thermal conductivity, water vapour permeability, building materials, building materials

Procedia PDF Downloads 175
7457 Effects of Supplementary Cementitious Materials on Early Age Thermal Properties of Cement Paste

Authors: Maryam Ghareh Chaei, Masuzyo Chilwesa, Ali Akbarnezhad, Arnaud Castel, Redmond Lloyd, Stephen Foster

Abstract:

Cement hydration is an exothermic chemical reaction generally leading to a rise in concrete’s temperature. This internal heating of concrete may, in turn, lead to a temperature difference between the hotter interior and the cooler exterior of concrete and thus differential thermal stresses in early ages which could be particularly significant in mass concrete. Such differential thermal stresses result in early age thermal cracking of concrete when exceeding the concrete’s tensile strength. The extent of temperature rise and thus early age differential thermal stresses is generally a function of hydration heat intensity, thermal properties of concrete and size of the concrete element. Both hydration heat intensity and thermal properties of concrete may vary considerably with variations in the type cementitious materials and other constituents. With this in mind, partial replacement of cement with supplementary cementitious materials including fly ash and ground granulated blast furnace slag has been investigated widely as an effective strategy to moderate the heat generation rate and thus reduce the risk of early age thermal cracking of concrete. However, there is currently a lack of adequate literature on effect of partial replacement of cement with fly ash and/or ground granulated blast furnace slag on the thermal properties of concrete. This paper presents the results of an experimental conducted to evaluate the effect of addition of varying percentages of fly ash (up to 60%) and ground granulated blast furnace slag (up to 50%) on the heat capacity and thermal conductivity of early age cement paste. The water to cementitious materials ratio is kept 0.45 for all the paste samples. The results of the experimental studies were used in a numerical analysis performed using Comsol Multiphysics to highlight the effects of variations in the thermal properties of concrete, due to variations in the type of aggregate and content of supplemenraty cementitious materials, on the risk of early age cracking of a concrete raft.

Keywords: thermal diffusivity, early age thermal cracking, concrete, supplementary cementitious materials

Procedia PDF Downloads 252
7456 Influence of Percentage and Melting Temperature of Phase Change Material on the Thermal Behavior of a Hollow-Brick

Authors: Zakaria Aketouane, Mustapha Malha, Abdellah Bah, Omar Ansari, Mohamed Asbik

Abstract:

The present paper deals with the thermal performance of a hollow-brick filled with Phase Change Material (PCM). The main objective is to study the effect of percentage and melting temperature of the PCM on the thermal inertia and internal surface temperature of the hollow-brick. A numerical model based on the heat transfer equation and the apparent heat capacity method has been validated using experimental study from the literature. The results show that increasing the percentage of the PCM has a significant effect on time lag and decrement factor that define the thermal inertia; the internal temperature is reduced by 1.36°C to 5.39°C for a percentage from 11% to 71% in comparison to a brick without PCM. In addition, an appropriate melting temperature of 37°C has been deduced for the horizontal wall orientation in Rabat in comparison to 27°C and 47°C.

Keywords: appropriate melting temperature, decrement factor, phase change material, thermal inertia, time lag

Procedia PDF Downloads 233
7455 Thermal and Mechanical Properties of Powder Injection Molded Alumina Nano-Powder

Authors: Mostafa Rezaee Saraji, Ali Keshavarz Panahi

Abstract:

In this work, the processing steps for producing alumina parts using powder injection molding (PIM) technique and nano-powder were investigated and the thermal conductivity and flexural strength of samples were determined as a function of sintering temperature and holding time. In the first step, the feedstock with 58 vol. % of alumina nano-powder with average particle size of 100nm was prepared using Extrumixing method to obtain appropriate homogeneity. This feedstock was injection molded into the two cavity mold with rectangular shape. After injection molding step, thermal and solvent debinding methods were used for debinding of molded samples and then these debinded samples were sintered in different sintering temperatures and holding times. From the results, it was found that the flexural strength and thermal conductivity of samples increased by increasing sintering temperature and holding time; in sintering temperature of 1600ºC and holding time of 5h, the flexural strength and thermal conductivity of sintered samples reached to maximum values of 488MPa and 40.8 W/mK, respectively.

Keywords: alumina nano-powder, thermal conductivity, flexural strength, powder injection molding

Procedia PDF Downloads 329
7454 Thermal Behavior of a Ventilated Façade Using Perforated Ceramic Bricks

Authors: Helena López-Moreno, Antoni Rodríguez-Sánchez, Carmen Viñas-Arrebola, Cesar Porras-Amores

Abstract:

The ventilated façade has great advantages when compared to traditional façades as it reduces the air conditioning thermal loads due to the stack effect induced by solar radiation in the air chamber. Optimizing energy consumption by using a ventilated façade can be used not only in newly built buildings but also it can be implemented in existing buildings, opening the field of implementation to energy building retrofitting works. In this sense, the following three prototypes of façade where designed, built and further analyzed in this research: non-ventilated façade (NVF); slightly ventilated façade (SLVF) and strongly ventilated façade (STVF). The construction characteristics of the three facades are based on the Spanish regulation of building construction “Technical Building Code”. The façades have been monitored by type-k thermocouples in a representative day of the summer season in Madrid (Spain). Moreover, an analysis of variance (ANOVA) with repeated measures, studying the thermal lag in the ventilated and no-ventilated façades has been designed. Results show that STVF façade presents higher levels of thermal inertia as the thermal lag reduces up to 100% (daily mean) compared to the non-ventilated façade. In addition, the statistical analysis proves that an increase of the ventilation holes size in STVF façades does not improve the thermal lag significantly (p > 0.05) when compared to the SLVF façade.

Keywords: ventilated façade, energy efficiency, thermal behavior, statistical analysis

Procedia PDF Downloads 491
7453 An Analysis on Thermal Energy Storage in Paraffin-Wax Using Tube Array on a Shell and Tube Heat Exchanger

Authors: Syukri Himran, Rustan Taraka, Anto Duma

Abstract:

The aim of the study is to improve the understanding of latent and sensible thermal energy storage within a paraffin wax media by an array of cylindrical tubes arranged both in in-line and staggered layouts. An analytical and experimental study was carried out in a horizontal shell-and-tube type system during the melting process. Pertamina paraffin-wax was used as a phase change material (PCM), where as the tubes are embedded in the PCM. From analytical study we can obtain the useful information in designing a thermal energy storage such as : the motion of interface, amount of material melted at any time in the process, and the heat storage characteristic during melting. The use of staggered tubes is proposed as superior to in-line layout for thermal storage. The experimental study was used to verify the validity of the analytical predictions. From the comparisons, the analytical and experimental data are in a good agreement.

Keywords: latent, sensible, paraffin-wax, thermal energy storage, conduction, natural convection

Procedia PDF Downloads 568
7452 Fabrication of Wearable Antennas through Thermal Deposition

Authors: Jeff Letcher, Dennis Tierney, Haider Raad

Abstract:

Antennas are devices for transmitting and/or receiving signals which make them a necessary component of any wireless system. In this paper, a thermal deposition technique is utilized as a method to fabricate antenna structures on substrates. Thin-film deposition is achieved by evaporating a source material (metals in our case) in a vacuum which allows vapor particles to travel directly to the target substrate which is encased with a mask that outlines the desired structure. The material then condenses back to solid state. This method is used in comparison to screen printing, chemical etching, and ink jet printing to indicate advantages and disadvantages to the method. The antenna created undergoes various testing of frequency ranges, conductivity, and a series of flexing to indicate the effectiveness of the thermal deposition technique. A single band antenna that is operated at 2.45 GHz intended for wearable and flexible applications was successfully fabricated through this method and tested. It is concluded that thermal deposition presents a feasible technique of producing such antennas.

Keywords: thermal deposition, wearable antennas, bluetooth technology, flexible electronics

Procedia PDF Downloads 282
7451 The Core Obstacles of Continuous Improvement Implementation: Some Key Findings from Health and Education Sectors

Authors: Abdullah Alhaqbani

Abstract:

Purpose: Implementing continuous improvement is a challenge that public sector organisations face in becoming successful. Many obstacles hinder public organisations from successfully implementing continuous improvement. This paper aims to highlight the key core obstacles that face public organisations to implement continuous improvement programmes. Approach: Based on the literature, this paper reviews 66 papers that were published between 2000 and 2013 and that focused on the concept of continuous improvement and improvement methodologies in the context of public sector organisations. The methodologies for continuous improvement covered in these papers include Total Quality Management, Six Sigma, process re-engineering, lean thinking and Kaizen. Findings: Of the 24 obstacles found in the literature, 11 barriers were seen as core barriers that frequently occurred in public sector organisations. The findings indicate that lack of top management commitment; organisational culture and political issues and resistance to change are significant obstacles for improvement programmes. Moreover, this review found that improvement methodologies share some core barriers to successful implementation within public organisations. These barriers as well are common in the different geographic area. For instance lack of top management commitment and training that found in the education sector in Albanian are common barriers of improvement studies in Kuwait, Saudi Arabia, Spain, UK and US. Practical implications: Understanding these core issues and barriers will help managers of public organisations to improve their strategies with respect to continuous improvement. Thus, this review highlights the core issues that prevent a successful continuous improvement journey within the public sector. Value: Identifying and understanding the common obstacles to successfully implementing continuous improvement in the public sector will help public organisations to learn how to improve in launching and successfully sustaining such programmes. However, this is not the end; rather, it is just the beginning of a longer improvement journey. Thus, it is intended that this review will identify key learning opportunities for public sector organisations in developing nations which will then be tested via further research.

Keywords: continuous improvement, total quality management, obstacles, public sector

Procedia PDF Downloads 348
7450 Pyroelectric Effect on Thermoelectricity of AlInN/GaN Heterostructures

Authors: B. K. Sahoo

Abstract:

Superior thermoelectric (TE) efficiency of AlₓIn₁₋ₓN /GaN heterostructure (HS) requires a minimum value of thermal conductivity (k). A smaller k would lead to even further increase of TE figure of merit (ZT). The built-in polarization (BIP) electric field of AlₓIn₁₋ₓN /GaN HS enhances S, and σ of the HS, however, the effect of BIP field on k of the HS has not been explored. Study of thermal conductivities (k: without BIP and kp: including BIP) vs temperature predicts pyroelectric behavior of HS. Both k and kp show crossover at a temperature Tp. The result shows that below Tp, kp < k due to negative thermal expansion coefficient (TEC). However, above Tp, kp > k. Above Tp, piezoelectric polarization dominates over spontaneous polarization due to positive TEC. This generates more lattice mismatch resulting in the significant contribution of BIP field to thermal conductivity. Thus, Tp can be considered as primary pyroelectric transition temperature of the material as above Tp thermal expansion takes place which is the reason for the secondary pyroelectric effect. It is found that below Tp, kp is decreased; thus enhancing TE efficiency. For x=0.1, 0.2 and 0.3; Tp are close to 200, 210 and 260 K, respectively. Thus, k of the HS can be modified as per requirement by tailoring the Al composition; making it suitable simultaneously for the design of high-temperature pyroelectric sensors and TE module for maximum power production.

Keywords: AlₓIn₁₋ₓN/GaN heterostructure, built in polarization, pyroelectric behavior, thermoelectric efficiency

Procedia PDF Downloads 121
7449 Predictions for the Anisotropy in Thermal Conductivity in Polymers Subjected to Model Flows by Combination of the eXtended Pom-Pom Model and the Stress-Thermal Rule

Authors: David Nieto Simavilla, Wilco M. H. Verbeeten

Abstract:

The viscoelastic behavior of polymeric flows under isothermal conditions has been extensively researched. However, most of the processing of polymeric materials occurs under non-isothermal conditions and understanding the linkage between the thermo-physical properties and the process state variables remains a challenge. Furthermore, the cost and energy required to manufacture, recycle and dispose polymers is strongly affected by the thermo-physical properties and their dependence on state variables such as temperature and stress. Experiments show that thermal conductivity in flowing polymers is anisotropic (i.e. direction dependent). This phenomenon has been previously omitted in the study and simulation of industrially relevant flows. Our work combines experimental evidence of a universal relationship between thermal conductivity and stress tensors (i.e. the stress-thermal rule) with differential constitutive equations for the viscoelastic behavior of polymers to provide predictions for the anisotropy in thermal conductivity in uniaxial, planar, equibiaxial and shear flow in commercial polymers. A particular focus is placed on the eXtended Pom-Pom model which is able to capture the non-linear behavior in both shear and elongation flows. The predictions provided by this approach are amenable to implementation in finite elements packages, since viscoelastic and thermal behavior can be described by a single equation. Our results include predictions for flow-induced anisotropy in thermal conductivity for low and high density polyethylene as well as confirmation of our method through comparison with a number of thermoplastic systems for which measurements of anisotropy in thermal conductivity are available. Remarkably, this approach allows for universal predictions of anisotropy in thermal conductivity that can be used in simulations of complex flows in which only the most fundamental rheological behavior of the material has been previously characterized (i.e. there is no need for additional adjusting parameters other than those in the constitutive model). Accounting for polymers anisotropy in thermal conductivity in industrially relevant flows benefits the optimization of manufacturing processes as well as the mechanical and thermal performance of finalized plastic products during use.

Keywords: anisotropy, differential constitutive models, flow simulations in polymers, thermal conductivity

Procedia PDF Downloads 182
7448 Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites

Authors: Min Ye Koo, Gyo Woo Lee

Abstract:

In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content show better dispersion and higher strength than those of the other specimens. The Young’s moduli of the specimens increased as the contents of the nanotube filler in the matrix were increased. The specimen having a 0.6 wt% nanotube filler content showed higher thermal conductivity than that of the other specimens. While, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value of thermal expansion than that of the other specimens. On the basis of the measured and evaluated properties of the composites, we believe that the simple and time-saving fabrication process used in this study was sufficient to obtain improved properties of the specimens.

Keywords: carbon nanotube filler, epoxy composite, ultra-sonication, shear mixer, mechanical property, thermal property

Procedia PDF Downloads 370
7447 Continuous Improvement as an Organizational Capability in the Industry 4.0 Era

Authors: Lodgaard Eirin, Myklebust Odd, Eleftheriadis Ragnhild

Abstract:

Continuous improvement is becoming increasingly a prerequisite for manufacturing companies to remain competitive in a global market. In addition, future survival and success will depend on the ability to manage the forthcoming digitalization transformation in the industry 4.0 era. Industry 4.0 promises substantially increased operational effectiveness, were all equipment are equipped with integrated processing and communication capabilities. Subsequently, the interplay of human and technology will evolve and influence the range of worker tasks and demands. Taking into account these changes, the concept of continuous improvement must evolve accordingly. Based on a case study from manufacturing industry, the purpose of this paper is to point out what the concept of continuous improvement will meet and has to take into considering when entering the 4th industrial revolution. In the past, continuous improvement has the focus on a culture of sustained improvement targeting the elimination of waste in all systems and processes of an organization by involving everyone. Today, it has to be evolved into the forthcoming digital transformation and the increased interplay of human and digital communication system to reach its full potential. One main findings of this study, is how digital communication systems will act as an enabler to strengthen the continuous improvement process, by moving from collaboration within individual teams to interconnection of teams along the product value chain. For academics and practitioners, it will help them to identify and prioritize their steps towards an industry 4.0 implementation integrated with focus on continuous improvement.

Keywords: continuous improvement, digital communication system, human-machine-interaction, industry 4.0, team perfomance

Procedia PDF Downloads 204