Search results for: sand underlain with clay
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1268

Search results for: sand underlain with clay

1088 Mechanical Properties of Waste Clay Brick Based Geopolymer Cured at Various Temperature

Authors: Shihab Ibrahim

Abstract:

Geopolymer binders as an alternative binder system to ordinary Portland cement are the focus of the past 2 decades of researches. In order to eliminate CO2 emission by cement manufacturing and utilizing construction waste as a source material, clean waste clay bricks which are the waste from Levent Brick factory was activated with a mixture of sodium hydroxide and sodium silicate solution. 12 molarity of sodium hydroxide solution was used and the ratio of sodium silicate to sodium hydroxide was 2.5. Alkaline solution to clay brick powder ratio of 0.35, 0.4, 0.45, and 0.5 was studied. Alkaline solution to powder ratio of 0.4 was found to be optimum ratio to have the same workability as ordinary Portland cement paste. Compressive strength of the clay brick based geopolymer paste samples was evaluated under different curing temperatures and curing durations. One day compressive strength of 57.3 MPa after curing at 85C for 24 hours was obtained which was higher than 7 days compressive strength of ordinary Portland cement paste. The highest compressive strength 71.4 MPa was achieved at seventh day age for the geopolymer paste samples cured at 85C for 24 hours. It was found that 8 hour curing at elevated temperature 85C, is sufficient to get 96% of total strength. 37.4 MPa strength at seventh day of clay brick based geopolymer sample cured at room temperature was achieved. Water absorption around 10% was found for clay brick based geopolymer samples cured at different temperatures with compare to 9.14% water absorption of ordinary Portland cement paste. The clay brick based geopolymer binder can have the potentiality to be used as an alternative binder to Portland cement in a case that the heat treatment provided. Further studies are needed in order to produce the binder in a way that can harden and gain strength without any elevated curing.

Keywords: construction and demolition waste, geopolymer, clay brick, compressive strength.

Procedia PDF Downloads 259
1087 Effect of Organophilic Clay on the Stability and Rheological Behavior of Oil-Based Drilling Muds

Authors: Hammadi Larbi

Abstract:

The major problem with oil-based drilling muds (reverse emulsions) is their thermodynamic instability and their high tendency to coalescence over time, irreversibly leading to destabilization. Water/Oil reverse emulsion drilling Muds are highly recommended when significant depths are reached. This study aimed to contribute experimentally to the knowledge of the structure (stability) and rheological behavior of drilling mud systems based on water/crude oil inverse emulsions through the investigation of the effect of organophilic clay. The chemical composition of organophilic clay such as VG69 shows a strong presence of silicon oxide (SiO2), followed by aluminum oxide (Al2O3), so these two elements are considered to be the main constituents of organophilic clays. The study also shows that the SiO2/Al2O3 ratio is equal to 3.52, which can be explained by the high content of free silica contained in the organophile clay used. The particle size analysis of the organophilic clays showed that the size of the of the particles analysed is in the range of 30 to 80 μm, this result ensures the correct particle size quality of organophilic clays and allows these powders to be used in Drilling mud systems.The experimental data of steady-state flow measurements are analyzed in the classic way by the Herschel-Bulkley model. Microscopic observation shows that the addition of quantities of organophilic clay type VG69 less than or equal to 3 g leading to the stability of the water/oil inverse emulsions, on the other hand, for quantities greater than 3 g, the emulsions are destabilized. The results obtained also showed that adding 3 g of organophilic clay to the crude oil drilling mud improves their stability by 70%.

Keywords: drilling muds, inverse emulsions, rheological behavior, yield stress, stability, organophilic clay

Procedia PDF Downloads 13
1086 Behaviour of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures

Authors: Lenka Bodnárová, Rudolf Hela, Michala Hubertová, Iveta Nováková

Abstract:

This paper is concerning the issues of behaviour of lightweight expanded clay aggregates concrete exposed to high temperature. Lightweight aggregates from expanded clay are produced by firing of row material up to temperature 1050°C. Lightweight aggregates have suitable properties in terms of volume stability, when exposed to temperatures up to 1050°C, which could indicate their suitability for construction applications with higher risk of fire. The test samples were exposed to heat by using the standard temperature-time curve ISO 834. Negative changes in resulting mechanical properties, such as compressive strength, tensile strength, and flexural strength were evaluated. Also visual evaluation of the specimen was performed. On specimen exposed to excessive heat, an explosive spalling could be observed, due to evaporation of considerable amount of unbounded water from the inner structure of the concrete.

Keywords: expanded clay aggregate, explosive spalling, high temperature, lightweight concrete, temperature-time curve ISO 834

Procedia PDF Downloads 447
1085 Properties of Fly Ash Brick Prepared in Local Environment of Bangladesh

Authors: Robiul Islam, Monjurul Hasan, Rezaul Karim, M. F. M. Zain

Abstract:

Coal fly ash, an industrial by product of coal combustion thermal power plants is considered as a hazardous material and its improper disposal has become an environmental issue. On the other hand, manufacturing conventional clay bricks involves on consumption of large amount of clay and leads substantial depletion of topsoil. This paper unveils the possibility of using fly ash as a partial replacement of clay for brick manufacturing considering the local technology practiced in Bangladesh. The effect of fly ash with different replacing ratio (0%, 20%, 30%, 40% and 50% by volume) of clay on properties of bricks were studied. Bricks were made in the field parallel to ordinary bricks marked with specific number for different percentage to identify them at time of testing. No physical distortion is observed in fly ash brick after burning in the kiln. Results from laboratory test show that compressive strength of brick is decreased with the increase of fly ash and maximum compressive strength is found to be 19.6 MPa at 20% of fly ash. In addition, water absorption of fly ash brick is increased with the increase of fly ash. The abrasion value and Specific gravity of coarse aggregate prepared from brick with fly ash also studied and the results of this study suggests that 20% fly ash can be considered as the optimum fly ash content for producing good quality bricks utilizing present practiced technology.

Keywords: Bangladesh brick, fly ash, clay brick, physical properties, compressive strength

Procedia PDF Downloads 254
1084 Investigating Undrained Behavior of Noor Sand Using Triaxial Compression Test

Authors: Hossein Motaghedi, Siavash Salamatpoor, Abbas Mokhtari

Abstract:

Noor costal city which is located in Mazandaran province, Iran, regularly visited by many tourists. Accordingly, many tall building and heavy structures are going to be constructed over this coastal area. This region is overlaid by poorly graded clean sand and because of high water level, is susceptible to liquefaction. In this study, undrained triaxial tests under isotropic consolidation were conducted on the reconstituted samples of Noor sand, which underlies a densely populated, seismic region of southern bank of Caspian Sea. When the strain level is large enough, soil samples under shearing tend to be in a state of continuous deformation under constant shear and normal stresses. There exists a correlation between the void ratio and mean effective principal stress, which is referred to as the ultimate steady state line (USSL). Soil behavior can be achieved by expressing the state of effective confining stress and defining the location of this point relative to the steady state line. Therefore, one can say that sand behavior not only is dependent to relative density but also a description of stress state has to be defined. The current study tries to investigate behavior of this sand under different conditions such as confining effective stress and relative density using undrained monotonic triaxial compression tests. As expected, the analyzed results show that the sand behavior varies from dilative to contractive state while initial isotropic effective stress increases. Therefore, confining effective stress level will directly affect the overall behavior of sand. The observed behavior obtained from the conducted tests is then compared with some previously tested sands including Yamuna, Ganga, and Toyoura.

Keywords: noor sand, liquefaction, undrained test, steady state

Procedia PDF Downloads 429
1083 Geoelectical Resistivity Method in Aquifer Characterization at Opic Estate, Isheri-Osun River Basin, South Western Nigeria

Authors: B. R. Faleye, M. I. Titocan, M. P. Ibitola

Abstract:

Investigation was carried out at Opic Estate in Isheri-Osun River Basin environment using Electrical Resistivity method to study saltwater intrusion into a fresh water aquifer system from the proximal estuarine water body. The investigation is aimed at aquifer characterisation using electrical resistivity method in order to provide the depth to which fresh water fit for both domestic and industrial consumption. The 2D Electrical Resistivity and Vertical Electrical Resistivity techniques alongside Laboratory analysis of water samples obtained from the boreholes were adopted. Three traverses were investigated using Wenner and Pole-Dipole array with multi-electrode system consisting of 84 electrodes and a spread of 581 m, 664 m and 830 m were attained on the traverses. The main lithologies represented in the study area are Sand, Clay and Clayey Sand of which Sand constitutes the aquifer in the study area. Vertical Electrical Sounding data obtained at different lateral distance on the traverses have indicated that the water in the aquifer in the subsurface is brackish. Brackish water is represented by lowelectrical resistivity value signature while fresh water is characterized by relatively high electrical resistivity and in some regionfresh water is existent at depth greater than 200 m. Results of laboratory analysis of samples showed that the pH, Salinity, Total Dissolved Solid and Conductivity indicated existence of water with poor quality, indicating that salinity, TDS and Conductivity is higher in the Northern part of the study area. The 2D electrical resistivity and Vertical Electrical Sounding methods indicate that fresh water region is at ≥200m depth. Aquifers not fit for domestic use in the study area occur downwards to about 200 m in depth. In conclusion, it is recommended that wells should be sunkbeyond 220 m for the possible procurement of portable fresh water.

Keywords: 2D electrical resistivity, aquifer, brackish water, lithologies

Procedia PDF Downloads 431
1082 A Review of Geotextile Tube with the Evaluation of Dewatering of High Water Content Sludge

Authors: Rajul Dwivedi, Mahesh Patel

Abstract:

Due to the scarcity of natural resources, common rivers and coastal structures are too expensive to build and maintain. One such method is to use geotextile tube technology to build marine protected structures, such as dams, canals, jetties, free breakwaters, etc. Geotextile tube technology has evolved from other construction technologies and improved into a more efficient solution. The coastal erosion problems have been exacerbated by the development of infrastructure associated with the expansion of urban and industrial activities. Resources and harbours and the removal of sea sand for use in this erosion event will accelerate the erosion of the sea. but in the coastal areas, due to depletion of sand or beach sand

Keywords: geotextile tubes, slurry, dewatering, response surface

Procedia PDF Downloads 139
1081 Effects of an Added Foaming Agent on Hydro-Mechanical Properties of Soil

Authors: Moez Selmi, Mariem Kacem, Mehrez Jamei, Philippe Dubujet

Abstract:

Earth pressure balance (EPB) tunnel boring machines are designed for digging in different types of soil, especially clay soils. This operation requires the treatment of soil by lubricants to facilitate the procedure of excavation. A possible use of this soil is limited by the effect of treatment on the hydro-mechanical properties of the soil. This work aims to study the effect of a foaming agent on the hydro-mechanical properties of clay soil. The injection of the foam agent in the soil leads to create a soil matrix in which they are incorporated gas bubbles. The state of the foam in the soil is scalable thanks to the degradation of the gas bubbles in the soil.

Keywords: EPB, clay soils, foam agent, hydro-mechanical properties, degradation

Procedia PDF Downloads 370
1080 Quality Improvement of the Sand Moulding Process in Foundries Using Six Sigma Technique

Authors: Cindy Sithole, Didier Nyembwe, Peter Olubambi

Abstract:

The sand casting process involves pattern making, mould making, metal pouring and shake out. Every step in the sand moulding process is very critical for production of good quality castings. However, waste generated during the sand moulding operation and lack of quality are matters that influences performance inefficiencies and lack of competitiveness in South African foundries. Defects produced from the sand moulding process are only visible in the final product (casting) which results in increased number of scrap, reduced sales and increases cost in the foundry. The purpose of this Research is to propose six sigma technique (DMAIC, Define, Measure, Analyze, Improve and Control) intervention in sand moulding foundries and to reduce variation caused by deficiencies in the sand moulding process in South African foundries. Its objective is to create sustainability and enhance productivity in the South African foundry industry. Six sigma is a data driven method to process improvement that aims to eliminate variation in business processes using statistical control methods .Six sigma focuses on business performance improvement through quality initiative using the seven basic tools of quality by Ishikawa. The objectives of six sigma are to eliminate features that affects productivity, profit and meeting customers’ demands. Six sigma has become one of the most important tools/techniques for attaining competitive advantage. Competitive advantage for sand casting foundries in South Africa means improved plant maintenance processes, improved product quality and proper utilization of resources especially scarce resources. Defects such as sand inclusion, Flashes and sand burn on were some of the defects that were identified as resulting from the sand moulding process inefficiencies using six sigma technique. The courses were we found to be wrong design of the mould due to the pattern used and poor ramming of the moulding sand in a foundry. Six sigma tools such as the voice of customer, the Fishbone, the voice of the process and process mapping were used to define the problem in the foundry and to outline the critical to quality elements. The SIPOC (Supplier Input Process Output Customer) Diagram was also employed to ensure that the material and process parameters were achieved to ensure quality improvement in a foundry. The process capability of the sand moulding process was measured to understand the current performance to enable improvement. The Expected results of this research are; reduced sand moulding process variation, increased productivity and competitive advantage.

Keywords: defects, foundries, quality improvement, sand moulding, six sigma (DMAIC)

Procedia PDF Downloads 195
1079 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sands

Authors: Salah Brahim Belakhdar, Tari Mohammed Amin, Rafai Abderrahmen, Amalsi Bilal

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic, and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behaviour of granular classes of sands mixed with salt in loose and dense states (Dr=15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200, and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have a significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: mechanical behavior, silty sand, friction angle, cohesion, fines content

Procedia PDF Downloads 373
1078 Behavior of Clay effect on Electrical Parameter of Reservoir Rock Using Global Hydraulic Elements (GHEs) Approach

Authors: Noreddin Mousa

Abstract:

The main objective of this study is to estimate which type of clay minerals that more effect on saturation exponent using Global Hydraulic Elements (GHEs) approach to estimating the distribution of saturation exponent factor. Two wells and seven core samples have been selected from various (GHEs) for detailed study. There are many factors affecting saturation exponent such as wettability, grain pattern pressure of certain authigenic clays, which may promote oil wet characteristics of history of fluid displacement. The saturation exponent is related to the texture and affected by wettability and clay minerals. Capillary pressure (mercury injection) has been used to confirm GHEs which are selected to define rock types; the porous plate method is used to derive the saturation exponent in the laboratory. The petrography is very important in order to study the mineralogy and texture. In this study the results showing excellent relation between saturation exponent and the type of clay minerals which was observed that the Global Hydraulic Elements GHE-2 and GHE-5 which are containing Chlorite is more affect on saturation exponent comparing with the other GHE’s.

Keywords: GHEs, wettability, global hydraulic elements, petrography

Procedia PDF Downloads 301
1077 Evaluation of Bearing Capacity of Vertically Loaded Strip Piled-Raft Embedded in Soft Clay

Authors: Seyed Abolhasan Naeini, Mohammad Hosseinzade

Abstract:

Settlement and bearing capacity of a piled raft are the two important issues for the foundations of the structures built on coastal areas from the geotechnical engineering point of view. Strip piled raft as a load carrying system could be used to reduce the possible extensive consolidation settlements and improve bearing capacity of structures in soft ground. The aim of this research was to evaluate the efficiency of strip piled raft embedded in soft clay. The efficiency of bearing capacity of strip piled raft foundation is evaluated numerically in two cases: in first case, the cap is placed directly on the ground surface and in the second, the cap is placed above the ground. Regarding to the fact that the geotechnical parameters of the soft clay are considered at low level, low bearing capacity is expected. The length, diameter and axe-to-axe distance of piles are the parameters which varied in this research to find out how they affect the bearing capacity. Results indicate that increasing the length and the diameter of the piles increase the bearing capacity. The complementary results will be presented in the final version of the paper.

Keywords: soft clay, strip piled raft, bearing capacity, settlement

Procedia PDF Downloads 307
1076 Unconfined Strength of Nano Reactive Silica Sand Powder Concrete

Authors: Hossein Kabir, Mojtaba Sadeghi

Abstract:

Nowadays, high-strength concrete is an integral element of a variety of high-rise buildings. On the other hand, finding a suitable aggregate size distribution is a great concern; hence, the concrete mix proportion is presented that has no coarse aggregate, which still withstands enough desirable strength. Nano Reactive Silica sand powder concrete (NRSSPC) is a type of concrete with no coarse material in its own composition. In this concrete, the only aggregate found in the mix design is silica sand powder with a size less than 150 mm that is infinitesimally small regarding the normal concrete. The research aim is to find the compressive strength of this particular concrete under the applied different conditions of curing and consolidation to compare the approaches. In this study, the young concrete specimens were compacted with a pressing or vibrating process. It is worthwhile to mention that in order to show the influence of temperature in the curing process, the concrete specimen was cured either in 20 ⁰C lime water or autoclaved in 90 ⁰C oven.

Keywords: reactive silica sand powder concrete (RSSPC), consolidation, compressive strength, normal curing, thermal accelerated curing

Procedia PDF Downloads 248
1075 The Influence of Water and Salt Crystals Content on Thermal Conductivity Coefficient of Red Clay Brick

Authors: Dalia Bednarska, Marcin Koniorczyk

Abstract:

This paper presents results of experiments aimed at studying hygro-thermal properties of red clay brick. The main objective of research was to investigate the relation between thermal conductivity coefficient of brick and its water or Na2SO4 solution content. The research was conducted using stationary technique for the totally dried specimens, as well as the ones 25%, 50%, 75% and 100% imbued with water or sodium sulfate solution. Additionally, a sorption isotherm test was conducted for seven relative humidity levels. Furthermore the change of red clay brick pore structure before and after imbuing with water and salt solution was investigated by multi-cycle mercury intrusion test. The experimental results confirm negative influence of water or sodium sulphate on thermal properties of material. The value of thermal conductivity coefficient increases along with growth of water or Na₂SO₄ solution content. The study shows that the presence of Na₂SO₄ solution has less negative influence on brick’s thermal conductivity coefficient than water.

Keywords: building materials, red clay brick, sodium sulfate, thermal conductivity coefficient

Procedia PDF Downloads 404
1074 Forecasting Etching Behavior Silica Sand Using the Design of Experiments Method

Authors: Kefaifi Aissa, Sahraoui Tahar, Kheloufi Abdelkrim, Anas Sabiha, Hannane Farouk

Abstract:

The aim of this study is to show how the Design of Experiments Method (DOE) can be put into use as a practical approach for silica sand etching behavior modeling during its primary step of leaching. In the present work, we have studied etching effect on particle size during a primary step of leaching process on Algerian silica sand with florid acid (HF) at 20% and 30 % during 4 and 8 hours. Therefore, a new purity of the sand is noted depending on the time of leaching. This study was expanded by a numerical approach using a method of experiment design, which shows the influence of each parameter and the interaction between them in the process and approved the obtained experimental results. This model is a predictive approach using hide software. Based on the measured parameters experimentally in the interior of the model, the use of DOE method can make it possible to predict the outside parameters of the model in question and can give us the optimize response without making the experimental measurement.

Keywords: acid leaching, design of experiments method(DOE), purity silica, silica etching

Procedia PDF Downloads 286
1073 Crosslinked PVA/Bentonite Clay Nanocomposite Membranes: An Effective Membrane for the Separation of Azeotropic Composition of Isopropanol and Water

Authors: Soney C. George, Thomasukutty Jose, Sabu Thomas

Abstract:

Membrane based separation is the most important energy –efficient separation processes. There are wide ranges of membrane based separation process such as Micro-filtration, ultra filtration, reverse osmosis, electro-dialysis etc. Among these pervaporation is one of the most promising techniques. The promising technique is in the sense that it needs an ease of process design, low energy consumption, environmentally clean, economically cost effective and easily separate azeotropic composition without losing any components, unlike distillation in a short period of time. In the present work, we developed a new bentonite clay reinforced cross-linked PVA nano-composite membranes by solution casting method. The membranes were used for the pervaporation separation of azeotropic composition of isopropanol and water mixtures. The azeotropic composition of water and isopropanol is difficult to separate and we can’t get a better separation by normal separation processes. But the better separation was achieved here using cross-linked PVA/Clay nano-composite membranes. The 2wt% bentonite clay reinforced 5vol% GA cross-linked nano-composite membranes showed better separation efficiency. The selectivity of the cross-linked membranes increases 65% upon filler loading. The water permeance is showed tremendous enhancement upon filler loading. The permeance value changes from 4100 to 8200, due to the incorporation hydrophilic bentonite clay to the cross-linked PVA membranes. The clay reinforced membranes shows better thermal stability upon filler loading was confirmed from TGA and DSC analysis. The dispersion of nanoclay in the polymeric matrix was clearly evident from the TEM analysis. The better dispersed membranes showed better separation performance. Thus the developed cross-linked PVA/Clay membranes can be effectively used for the separation of azeotropic composition of water and isopropanol.

Keywords: poly(vinyl alcohol), membrane, gluraldehyde, permeance

Procedia PDF Downloads 306
1072 Investigate the Mechanical Effect of Different Root Analogue Models to Soil Strength

Authors: Asmaa Al Shafiee, Erdin Ibraim

Abstract:

Stabilizing slopes by using vegetation is considered as a cost-effective and eco-friendly alternative to the conventional methods. The main aim of this study is to investigate the mechanical effect of analogue root systems on the shear strength of different soil types. Three objectives were defined to achieve the main aim of this paper. Firstly, explore the effect of root architectural design to shear strength parameters. Secondly, study the effect of root area ratio (RAR) on the shear strength of two different soil types. Finally, to investigate how different kinds of soil can affect the behavior of the roots during shear failure. 3D printing tool was used to develop different analogue tap root models with different architectural designs. Direct shear tests were performed on Leighton Buzzard (LB) fraction B sand, which represents a coarse sand and Huston sand, which represent medium-coarse sand. All tests were done with the same relative density for both kinds of sand. The results of the direct shear test indicated that using plant roots will increase both friction angle and cohesion of soil. Additionally, different root designs affected differently the shear strength of the soil. Furthermore, the directly proportional relationship was found between root area ratio for the same root design and shear strength parameters of soil. Finally, the root area ratio effect should be combined with branches penetrating the shear plane to get the highest results.

Keywords: leighton buzzard sand, root area ratio, rooted soil, shear strength, slope stabilization

Procedia PDF Downloads 151
1071 Influence of Organic Supplements on Shoot Multiplication Efficiency of Phaius tankervilleae var. alba

Authors: T. Punjansing, M. Nakkuntod, S. Homchan, P. Inthima, A. Kongbangkerd

Abstract:

The influence of organic supplements on growth and multiplication efficiency of Phaius tankervilleae var. alba seedlings was investigated. 12 week-old seedlings were cultured on half-strength semi-solid Murashige and Skoog (MS) medium supplemented with 30 g/L sucrose, 8 g/L agar and various concentrations of coconut water (0, 50, 100, 150 and 200 mL/L) combined with potato extract (0, 25 and 50 g/L) and the pH was adjusted to 5.8 prior to autoclaving. The cultures were then kept under constant photoperiod (16 h light: 8 h dark) at 25 ± 2 °C for 12 weeks. The highest number of shoots (3.0 shoots/explant) was obtained when cultured on the medium added with 50 ml/L coconut water and 50 g/L potato extract whereas the highest number of leaves (5.9 leaves/explant) and roots (6.1 roots/explant) could receive on the medium supplemented with 150 ml/L coconut water and 50 g/L potato extract. with 150 ml/L coconut water and 50 g/L potato extract. Additionally, plantlets of P. tankervilleae var. alba were transferred to grow into seven different substrates i.e. soil, sand, coconut husk chip, soil-sand mix (1: 1), soil-coconut husk chip mix (1: 1), sand-coconut husk chip mix (1: 1) and soil-sand-coconut husk chip mix (1: 1: 1) for four weeks. The results found that acclimatized plants showed 100% of survivals when sand, coconut husk chip and sand-coconut husk chip mix are used as substrates. The number of leaves induced by sand-coconut husk chip mix was significantly higher than that planted in other substrates (P > 0.05). Meanwhile, no significant difference in new shoot formation among these substrates was observed (P < 0.05). This precursory developing protocol was likely to be applied for more large scale of plant production as well as conservation of germplasm of this orchid species.

Keywords: organic supplements, acclimatization, Phaius tankervilleae var. alba, orchid

Procedia PDF Downloads 229
1070 Effect of Wind and Humidity on Microwave Links in Al-Khoms City-Libya

Authors: Mustafa S. Agha, Asma M. Eshahriy

Abstract:

The propagation of electromagnetic waves in millimeter band is severely affected by rain, and dust particles in terms of attenuation and de-polarization. The computations of dust and/or sand storms require knowledge of electrical properties of the scattering particles and climate conditions at the studied region in the west north region of Libya. (Al -Khoms) To compute the effect of dust and sand particles on the propagation of electromagnetic waves, it is required to collect the sand particles carried out by the wind, measure the particles size distribution (PSD), calculate the concentration, and carry chemical analysis of the contents, then the dielectric constant can be calculated. The main object of this paper is to study the effect of sand and dust storms on wireless communication, such as microwave links, in the north region of Libya (Al -Khoms) of Libya (Nagaza stations, Al-khoms center stations, Al-khoms gateway stations) by determining of the attenuation loss per unit length and cross-polarization discrimination (XPD) change due to the effect of sand and dust storms on wireless communication systems (GSM signal). The result showed that there is some consideration that has to be taken into account in the communication power budget .

Keywords: attenuation, scattering, transmission loss, electromagnetic waves

Procedia PDF Downloads 431
1069 Study of the Microstructure and Mechanical Properties of Locally Developed Carbon Fibers-Silica Sand Nanoparticles Aluminium Based Hybrid Composites

Authors: Tahir Ahmad, M. Kamran, R. Ahmad, M. T. Z. Butt

Abstract:

Hybrid aluminum metal matrix composites with 1, 2, 3 and 4 wt. % of silica sand nanoparticles and electro-less nickel coated carbon fibers were successfully developed using sand casting technique. Epoxy coating of carbon fibers was removed and phosphorous-nickel coating was successfully applied via electro-less route. The developed hybrid composites were characterized using micro hardness tester, tensile testing, and optical microscopy. The gradual increase of reinforcing phases yielded improved mechanical properties such as hardness and tensile strength. The increase in hardness was attributed to the presence of silica sand nanoparticles whereas electro-less nickel coated carbon fibers enhanced the tensile properties of developed hybrid composites. The microstructure of the developed hybrid composites revealed the homogeneous distribution of both carbon fibers and silica sand nanoparticles in aluminum based hybrid composites. The formation of dendrite microstructure is the main cause of improving mechanical properties.

Keywords: aluminum based hybrid composites, mechanical properties, microstructure, microstructure and mechanical properties relationship

Procedia PDF Downloads 411
1068 An Analysis on Gravel of Sand-Gravel Bar at Gneiss or Granite Area of the Upper Hongcheon River in South Korea

Authors: Man Kyu Kim, Hansu Shin

Abstract:

This study is an analysis on gravel of sand-gravel bar that stretches variously in the Duchon and Naechon stream basins, which are situated on Hong-Cheon River (a well-developed sand-gravel bar in upstream river) basins in Korea. Naechon stream mostly flows through granite zone but Duchon stream mostly flows through gneiss zone. The characteristics of gravel in the sand-gravel bar of these two branches in the upper Hongcheon River were analyzed in this study in order to understand the geomorphic development of streams depending on the differences of bedrock. Through the analysis on the roundness and flatness of gravel, we figured out an irregular trend following the increase in supply of granite gravel and gneiss gravel as we traveled downstream. The result shows that the two basins have uppermost small basin condition reflecting the mountain valley environment although it may be difficult to do an equivalent comparison to other roundness researches in Korea or in Europe. This study conducted an analysis on gravels found in small scale streams unlike the previous studies trend which mostly studies large rivers. The research provides an opportunity to offer basic data for continuous comparison research on various small basins.

Keywords: flatness, geology, roundness, sand-gravel bar

Procedia PDF Downloads 366
1067 Influence of the Adsorption of Anionic–Nonionic Surfactants/Silica Nanoparticles Mixture on Clay Rock Minerals in Chemical Enhanced Oil Recovery

Authors: C. Mendoza Ramírez, M. Gambús Ordaz, R. Mercado Ojeda.

Abstract:

Chemical solutions flooding with surfactants, based on their property of reducing the interfacial tension between crude oil and water, is a potential application of chemical enhanced oil recovery (CEOR), however, the high-rate retention of surfactants associated with adsorption in the porous medium and the complexity of the mineralogical composition of the reservoir rock generates a limitation in the efficiency of displacement of crude oil. This study evaluates the effect of the concentration of a mixture of anionic-non-ionic surfactants with silica nanoparticles, in a rock sample composed of 25.14% clay minerals of the kaolinite, chlorite, halloysite and montmorillonite type, according to the results of X-Ray Diffraction analysis and Scanning Electron Spectrometry (XRD and SEM, respectively). The amount of the surfactant mixture adsorbed on the clay rock minerals was analyzed from the construction of its calibration curve and the 4-Region Isotherm Model in a UV-Visible spectroscopy. The adsorption rate of the surfactant in the clay rock averages 32% across all concentrations, influenced by the presence of the surface area of the substrate with a value of 1.6 m2/g and by the mineralogical composition of the clay that increases the cation exchange capacity (CEC). In addition, on Region I and II a final concentration measurement is not evident in the UV-VIS, due to its ionic nature, its high affinity with the clay rock and its low concentration. Finally, for potential CEOR applications, the adsorption of these mixed surfactant systems is considered due to their industrial relevance and it is concluded that it is possible to use concentrations in Region III and IV; initially the adsorption has an increasing slope and then reaches zero in the equilibrium where interfacial tension values are reached in the order of x10-1 mN/m.

Keywords: anionic–nonionic surfactants, clay rock, adsorption, 4-region isotherm model, cation exchange capacity, critical micelle concentration, enhanced oil recovery

Procedia PDF Downloads 68
1066 Performance Evaluation of Sand Casting Manufacturing Plant with WITNESS

Authors: Aniruddha Joshi

Abstract:

This paper discusses a simulation study of automated sand casting production system. Therefore, the first aims of this study is development of automated sand casting process model and analyze this model with a simulation software Witness. Production methodology aims to improve overall productivity through elimination of wastes and that leads to improve quality. Integration of automation with Simulation is beneficial to identify the obstacles in implementation and to take appropriate options to implement successfully. For this integration, there are different Simulation Software’s. To study this integration, with the help of “WITNESS” Simulation Software the model is created. This model is based on literature review. The input parameters are Setup Time, Number of machines, cycle time and output parameter is number of castings, avg, and time and percentage usage of machines. Obtained results are used for Statistical Analysis. This analysis concludes the optimal solution to get maximum output.

Keywords: automated sand casting production system, simulation, WITNESS software, performance evaluation

Procedia PDF Downloads 789
1065 The Use of Rice Husk Ash as a Stabilizing Agent in Lateritic Clay Soil

Authors: J. O. Akinyele, R. W. Salim, K. O. Oikelome, O. T. Olateju

Abstract:

Rice Husk (RH) is the major byproduct in the processing of paddy rice. The management of this waste has become a big challenge to some of the rice producers, some of these wastes are left in open dumps while some are burn in the open space, and these two actions have been contributing to environmental pollution. This study evaluates an alternative waste management of this agricultural product for use as a civil engineering material. The RH was burn in a controlled environment to form Rice Husk Ash (RHA). The RHA was mix with lateritic clay at 0, 2, 4, 6, 8, and 10% proportion by weight. Chemical test was conducted on the open burn and controlled burn RHA with the lateritic clay. Physical test such as particle size distribution, Atterberg limits test, and density test were carried out on the mix material. The chemical composition obtained for the RHA showed that the total percentage compositions of Fe2O3, SiO2 and Al2O3 were found to be above 70% (class “F” pozzolan) which qualifies it as a very good pozzolan. The coefficient of uniformity (Cu) was 8 and coefficient of curvature (Cc) was 2 for the soil sample. The Plasticity Index (PI) for the 0, 2, 4, 6, 8. 10% was 21.0, 18.8, 16.7, 14.4, 12.4 and 10.7 respectively. The work concluded that RHA can be effectively used in hydraulic barriers and as a stabilizing agent in soil stabilization.

Keywords: rice husk ash, pozzolans, paddy rice, lateritic clay

Procedia PDF Downloads 324
1064 Determination of Natural Gamma Radioactivity in Sand along the Black Sea Coastal Region of Giresun, North Turkey

Authors: A. Karadeniz, Belgin Kucukomeroglu

Abstract:

In this study natural gamma radioactivity levels are determined on sands along the coastal regions of Giresun/Turkey. The coast of Giresun about 290 km long in investigated to collect 101 sand samples. Natural and artificial radioactivity concentrations of sand samples were measured by using HPGe gamma spectrometry. The average activity concentrations of 238U, 232Th, 40K and 137Cs on sand samples of Giresun were found to be 10.83±2.92 Bq/kg, 21.28±3.22 Bq/kg, 6.42±1.06 Bq/kg, 230.94±10.67 Bq/kg respectively. The average activity concentrations for these radionuclides were compared with the reported data of other parts of Turkey and other countries. The average absorbed dose rate for Giresun was calculated to be 38.68 nGy/h respectively. This value is significantly lower than the World averaged value of 60 nGy/h. The external annual effective dose rate concentration in Giresun was found to be 0.047 mSv/y respectively. This result is much lower than the recommeded limit of 5 mSv/y. The external hazard dose rate for Giresun weas calculated to be 0.21 respectively. This result is much lower than the recommended limit of 1.0.

Keywords: concentration, radioactivity, Giresun, natural gamma radioactivity

Procedia PDF Downloads 391
1063 Numerical Assessment on the Unsaturated Behavior of Silty Sand

Authors: Seyed Abolhassan Naeini, Ali Namaei

Abstract:

This investigation presents the behavior of the unsaturated silty sand by calculating the shear resistance of the specimens by numerical method. In order to investigate this behavior, a series of triaxial tests have been simulated in constant water condition. The finite difference software FLAC3D has been carried out for analyzing the shear resistance and the results are compared with findings from a previous laboratory tests. Constant water tests correspond to a field condition where the rate of the loading is much quicker than the rate at which the pore water is able to drain out of the soil. Tests were simulated on two groups of the silty sands. The obtained results show that the FLAC software may be able to simulate the behavior of specimens with the low suction value magnitude. As the initial suction increased, the differences between numerical and experimental results increased, especially in loose sand. Since some assumptions were used for input parameters, a conclusive result needs more investigations.

Keywords: finite difference, shear resistance, unsaturated silty sand, constant water test

Procedia PDF Downloads 120
1062 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling

Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar

Abstract:

The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.

Keywords: heavy metal, activated clay, kinetic study, competitive adsorption, modeling

Procedia PDF Downloads 222
1061 A Sustainable and Low-Cost Filter to Treat Pesticides in Water

Authors: T. Abbas, J. McEvoy, E. Khan

Abstract:

Pesticide contamination in water supply is a common environmental problem in rural agricultural communities. Advanced water treatment processes such as membrane filtration and adsorption on activated carbon only remove pesticides from water without degrading them into less toxic/easily degradable compounds leaving behind contaminated brine and activated carbon that need to be managed. Rural communities which normally cannot afford expensive water treatment technologies need an economical and sustainable filter which not only treats pesticides from water but also degrades them into benign products. In this study, iron turning waste experimented as potential point-of-use filtration media for the removal/degradation of a mixture of six chlorinated pesticides (lindane, heptachlor, endosulfan, dieldrin, endrin, and DDT) in water. As a common and traditional medium for water filtration, sand was also tested along with iron turning waste. Iron turning waste was characterized using scanning electron microscopy and energy dispersive X-Ray analyzer. Four glass columns with different filter media layer configurations were set up: (1) only sand, (2) only iron turning, (3) sand and iron turning (two separate layers), and (4) sand, iron turning and sand (three separate layers). The initial pesticide concentration and flow rate were 2 μg/L and 10 mL/min. Results indicate that sand filtration was effective only for the removal of DDT (100%) and endosulfan (94-96%). Iron turning filtration column effectively removed endosulfan, endrin, and dieldrin (85-95%) whereas the lindane and DDT removal were 79-85% and 39-56%, respectively. The removal efficiencies for heptachlor, endosulfan, endrin, dieldrin, and DDT were 90-100% when sand and iron turning waste (two separate layers) were used. However, better removal efficiencies (93-100%) for five out of six pesticides were achieved, when sand, iron turning and sand (three separate layers) were used as filtration media. Moreover, the effects of water pH, amounts of media, and minerals present in water such as magnesium, sodium, calcium, and nitrate on the removal of pesticides were examined. Results demonstrate that iron turning waste efficiently removed all the pesticides under studied parameters. Also, it completely de-chlorinated all the pesticides studied and based on the detection of by-products, the degradation mechanisms for all six pesticides were proposed.

Keywords: pesticide contamination, rural communities, iron turning waste, filtration

Procedia PDF Downloads 255
1060 Umm Arrazam, Libyan Driling Fluid Resistivity Evaluation

Authors: Omar Hussein El Ayadi, Ali Mustafa Alkekly, Nader Ahmad Musa

Abstract:

Search and evaluate locale source of raw material which can be used as drilling fluid is one of most important economical target. Hopefully, to use Libyan clay that cost less than importing it from outside. Resistivity measurement and control is of primary concern in connection with electrical logging. The influences of resistivity utilizing Umm Arrazam clay were laboratory investigated at ambient condition (room temperature, atmospheric pressure) to fulfill the aim of the study. Several tests were carried-out on three sets of mud mixture with different densities (8.7, 9.0, and 9.3 ppg) as base mud. The resistivity of mud, mud filtrate, and mud cake were measured using resistivity- meter. Mud water losses were also measured. Several results obtained to describe the relationship between the resistivity ratios of mud filtrate to the mud, and the mud cake to mud. The summary of conclusion is that there are no great differences were obtained during comparison of resistivity and water loss of Umm Arrazam and Wyoming Clay.

Keywords: petroleum, drilling, mug, geological engineering

Procedia PDF Downloads 474
1059 Correlation of SPT N-Value and Equipment Drilling Parameters in Deep Soil Mixing

Authors: John Eric C. Bargas, Maria Cecilia M. Marcos

Abstract:

One of the most common ground improvement techniques is Deep Soil Mixing (DSM). As the technique progresses, there is still lack in the development when it comes to depth control. This was the issue experienced during the installation of DSM in one of the National projects in the Philippines. This study assesses the feasibility of using equipment drilling parameters such as hydraulic pressure, drilling speed and rotational speed in determining the Standard Penetration Test N-value of a specific soil. Hydraulic pressure and drilling speed with a constant rotational speed of 30 rpm have a positive correlation with SPT N-value for cohesive soil and sand. A linear trend was observed for cohesive soil. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.5377 while the correlation of SPT N-value and drilling speed has a R²=0.6355. While the best fitted model for sand is polynomial trend. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.7088 while the correlation of SPT N-value and drilling speed has a R²=0.4354. The low correlation may be attributed to the behavior of sand when the auger penetrates. Sand tends to follow the rotation of the auger rather than resisting which was observed for very loose to medium dense sand. Specific Energy and the product of hydraulic pressure and drilling speed yielded same R² with a positive correlation. Linear trend was observed for cohesive soil while polynomial trend for sand. Cohesive soil yielded a R²=0.7320 which has a strong relationship. Sand also yielded a strong relationship having a coefficient of determination, R²=0.7203. It is feasible to use hydraulic pressure and drilling speed to estimate the SPT N-value of the soil. Also, the product of hydraulic pressure and drilling speed can be a substitute to specific energy when estimating the SPT N-value of a soil. However, additional considerations are necessary to account for other influencing factors like ground water and physical and mechanical properties of soil.

Keywords: ground improvement, equipment drilling parameters, standard penetration test, deep soil mixing

Procedia PDF Downloads 47