Search results for: residue/impurity
212 Cracking of Tar Analogue in N₂ Carrier Gas Using Non-Thermal Plasma Dielectric Barrier Discharge Reactor
Authors: Faisal Saleem, Kui Zhang, Adam Harvey
Abstract:
The role of N₂ carrier gas towards the conversion of tar analogue was studied in a non-thermal plasma dielectric barrier discharge (DBD) reactor. The important parameters such as power (5-40W), residence time (1.41-4.23 s), concentration (20-82 g/Nm³), and temperature (Ambient-400°C) were explored. The present study demonstrated that plasma power and residence time played a key role in the decomposition of toluene, and almost complete removal of toluene was observed at 40w and 4.23 s. H₂ is obtained as a major gaseous product with a maximum selectivity of 40% along with some lighter hydrocarbons (5.5%). The removal efficiency of toluene slightly decreases with increasing the concentration of toluene from 20 g/Nm³ to 82 g/Nm³. The solid residue formation takes place inside the plasma reactor. The selectivity of LHC (lower hydrocarbons) increased up to 15% by increasing the temperature to 400°C. Introducing H₂ to the gas at elevated temperature opens up new reaction routes to raise the selectivity to lower hydrocarbons. The selectivity to methane reaches to 42% using 35% H₂ at 400°C and total selectivity of LHC increases to 57%.Keywords: biomass gasification tar, non-thermal plasma, dielectric barrier discharge, residence time
Procedia PDF Downloads 186211 Dehydration of Residues from WTP for Application in Building Materials and Reuse of Water from the Waste Treatment: A Feasible Solution to Complete Treatment Systems
Authors: Marco Correa, Flavio Araujo, Paulo Scalize, Antonio Albuquerque
Abstract:
The increasing reduction of the volumes of surface water sources which supply most municipalities, as well as the continued rise of demand for treated water, combined with the disposal of effluents from washing of decanters and filters of the water treatment plants, generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows an alternative for the dehydration of sludge from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, we present a case study for a drainage in tanks geotextile, full-scale, which involve five sludge drainage tanks from WTP of the Rio Verde City. Aiming to the reutilization the water drained from the sludge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to production of building materials.Keywords: re-use, residue, sustainable, water treatment plants, sludge
Procedia PDF Downloads 490210 Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites
Authors: Marianna I. Triantou, Konstantina I. Stathi, Petroula A. Tarantili
Abstract:
In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.Keywords: acrylonitrile-butadiene-styrene terpolymer, blends, graphene, polypropylene
Procedia PDF Downloads 369209 Iron Recovery from Red Mud as Zero-Valent Iron Metal Powder Using Direct Electrochemical Reduction Method
Authors: Franky Michael Hamonangan Siagian, Affan Maulana, Himawan Tri Bayu Murti Petrus, Widi Astuti
Abstract:
In this study, the feasibility of the direct electrowinning method was used to produce zero-valent iron from red mud. The bauxite residue sample came from the Tayan mine, Indonesia, which contains high hematite (Fe₂O₃). Before electrolysis, the samples were characterized by various analytical techniques (ICP-AES, SEM, XRD) to determine their chemical composition and mineralogy. The direct electrowinning method of red mud suspended in NaOH was introduced at low temperatures ranging from 30 - 110 °C. Variations of current density, red mud: NaOH ratio and temperature were carried out to determine the optimum operation of the direct electrowinning process. Cathode deposits and residues in electrochemical cells were analyzed using XRD, XRF, and SEM to determine the chemical composition and current recovery. The low-temperature electrolysis current efficiency on Redmud can reach 20% recovery at a current density of 920,945 A/m². The moderate performance of the process was investigated with red mud, which was attributed to the troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.Keywords: red mud, electrochemical reduction, Iron production, hematite
Procedia PDF Downloads 75208 The Preliminary Exposition of Soil Biological Activity, Microbial Diversity and Morpho-Physiological Indexes of Cucumber under Interactive Effect of Allelopathic Garlic Stalk: A Short-Term Dynamic Response in Replanted Alkaline Soil
Authors: Ahmad Ali, Muhammad Imran Ghani, Haiyan Ding, Zhihui Cheng, Muhammad Iqbal
Abstract:
Background and Aims: In recent years, protected cultivation trend, especially in the northern parts of China, spread dynamically where production area, structure, and crops diversity have expanded gradually under plastic greenhouse vegetable cropping (PGVC) system. Under this growing system, continuous monoculture with excessive synthetic fertilizers inputs are common cultivation practices frequently adopted by commercial producers. Such long-term cumulative wild exercise year after year sponsor the continuous cropping obstacles in PGVC soil, which have greatly threatened the regional soil eco-sustainability and further impose the continuous assault on soil ecological diversity leading to the exhaustion of agriculture productivity. The aim of this study was to develop new allelopathic insights by exploiting available biological resources in the favor of sustainable PGVC to illuminate the continuous obstacle factors in plastic greenhouse. Method: A greenhouse study was executed under plastic tunnel located at the Horticulture Experimental Station of the College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, one of the prominent regions for intensive commercial PGVC in China. Post-harvest garlic residues (stalk, leaves) mechanically smashed, homogenized into powder size and incorporated at the ratio of 1:100; 3:100; 5:100 as a soil amendment in a replanted soil that have been used for continuous cucumber monoculture for 7 years (annually double cropping system in a greenhouse). Results: Incorporated C-rich garlic stalk significantly influenced the soil condition through various ways; organic matter decomposition and mineralization, moderately adjusted the soil pH, enhanced the soil nutrient availability, increased enzymatic activities, and promoted 20% more cucumber yield in short-time. Using Illumina MiSeq sequencing analysis of bacterial 16S rRNA and fungal 18S rDNA genes, the current study revealed that addition of garlic stalk/residue could also improve the microbial abundance and community composition in extensively exploited soil, and contributed in soil functionality, caused prosper changes in soil characteristics, reinforced to good crop yield. Conclusion: Our study provided evidence that addition of garlic stalk as soil fertility amendment is a feasible, cost-effective and efficient resource utilization way for renovation of degraded soil health, ameliorate soil quality components and improve ecological environment in short duration. Our study may provide a better scientific understanding for efficient crop residue management typically from allelopathic source.Keywords: garlic stalk, microbial community dynamics, plant growth, soil amendment, soil-plant system
Procedia PDF Downloads 134207 Effects of Smoking on the Indoor Air Quality and COVID-19
Authors: Sonam Sandal, Susan Verghese P.
Abstract:
The phrase "environmental tobacco smoke" (ETS) refers to exposure to tobacco smoke that isn't from your own smoking but instead is caused by being in close proximity to someone else's cigar, cigarette, or pipe smoke. Environmental cigarette smoke is one of the main contributors to indoor air pollution (IAP), which is exceedingly harmful to human health and results in millions of deaths each year, according to the World Health Organization. Sidestream smoke (SS), which is discharged from a cigarette's burning end in between puffs, is the primary cause of ETS. The bulk of the ETS residue is composed of gases that are produced while smoking through the cigarette paper, mainstream smoke (MS) ingested, and side stream smoke emitted while inhaling a puff from the burning end. Each of these mixtures—SS, ETS, and MS—is an aerosol composed of an IAP-causing vapor phase and a particle phase. Therefore, indoor air-cleaning equipment designed to remove particles will not significantly alter nicotine exposure but will alter the concentrations of other dangerous substances, including particulate matter (PM), PM 2.5, and PM 10. In conclusion, indoor airborne contaminants pose serious risks to human health. ETS degrades the air quality, and when someone breathes this bad air, it weakens their lungs and makes them more susceptible to COVID-19.Keywords: pm 10, covid-19, indoor air pollution, cigarette smoke., pm 2.5
Procedia PDF Downloads 71206 Iron Recovery from Red Mud As Zero-Valent Iron Metal Powder Using Direct Electrochemical Reduction Method
Authors: Franky Michael Hamonangan Siagian, Affan Maulana, Himawan Tri Bayu Murti Petrus, Panut Mulyono, Widi Astuti
Abstract:
In this study, the feasibility of the direct electrowinning method was used to produce zero-valent iron from red mud. The bauxite residue sample came from the Tayan mine, Indonesia, which contains high hematite (Fe₂O₃). Before electrolysis, the samples were characterized by various analytical techniques (ICP-AES, SEM, XRD) to determine their chemical composition and mineralogy. The direct electrowinning method of red mud suspended in NaOH was introduced at low temperatures ranging from 30 - 110 °C. Variations of current density, red mud: NaOH ratio and temperature were carried out to determine the optimum operation of the direct electrowinning process. Cathode deposits and residues in electrochemical cells were analyzed using XRD, XRF, and SEM to determine the chemical composition and current recovery. The low-temperature electrolysis current efficiency on Redmud can reach 20% recovery at a current density of 920,945 A/m². The moderate performance of the process was investigated with red mud, which was attributed to the troublesome adsorption of red mud particles on the cathode, making the reduction far less efficient than that with hematite.Keywords: alumina, red mud, electrochemical reduction, iron production
Procedia PDF Downloads 79205 Protective Role of Peroxiredoxin V against Ischemia/Reperfusion-Induced Acute Kidney Injury in Mice
Authors: Eun Gyeong Lee, Ji Young Park, Hyun Ae Woo
Abstract:
Reactive oxygen species (ROS) production is involved in ischemia/reperfusion (I/R) injury in kidney of mice. Oxidative stress develops from an imbalance between ROS production and reduced antioxidant defenses. Many enzymatic and nonenzymatic antioxidant systems including peroxiredoxins (Prxs) are present in kidney to maintain an appropriate level of ROS and prevent oxidative damage. Prxs are a family of peroxidases that reduce peroxides, with a conserved cysteine residue serving as the site of oxidation by peroxides. In this study, we examined the protective role of Prx V against I/R-induced acute kidney injury (AKI) using Prx V wild type (WT) and knockout (KO) mice. We compared the response of Prx V WT and KO mice in mice model of I/R injury. Renal structure, functions, oxidative stress markers, protein levels of oxidative damage marker were worse in Prx V KO mice. Ablation of Prx V enhanced susceptibility to I/R-induced oxidative stress. Prx V KO mice were seen to have more severe renal damage than Prx V WT mice in mice model of I/R injury. Our results demonstrate that Prx V is protective against I/R-induced AKI.Keywords: peroxiredoxin, ischemia/reperfusion, kidney, oxidative stress
Procedia PDF Downloads 386204 Fluorescence Spectroscopy of Lysozyme-Silver Nanoparticles Complex
Authors: Shahnaz Ashrafpour, Tahereh Tohidi Moghadam, Bijan Ranjbar
Abstract:
Identifying the nature of protein-nanoparticle interactions and favored binding sites is an important issue in functional characterization of biomolecules and their physiological responses. Herein, interaction of silver nanoparticles with lysozyme as a model protein has been monitored via fluorescence spectroscopy. Formation of complex between the biomolecule and silver nanoparticles (AgNPs) induced a steady state reduction in the fluorescence intensity of protein at different concentrations of nanoparticles. Tryptophan fluorescence quenching spectra suggested that silver nanoparticles act as a foreign quencher, approaching the protein via this residue. Analysis of the Stern-Volmer plot showed quenching constant of 3.73 µM−1. Moreover, a single binding site in lysozyme is suggested to play role during interaction with AgNPs, having low affinity of binding compared to gold nanoparticles. Unfolding studies of lysozyme showed that complex of lysozyme-AgNPs has not undergone structural perturbations compared to the bare protein. Results of this effort will pave the way for utilization of sensitive spectroscopic techniques for rational design of nanobiomaterials in biomedical applications.Keywords: nanocarrier, nanoparticles, surface plasmon resonance, quenching fluorescence
Procedia PDF Downloads 330203 Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose
Authors: G. Blázquez, A. Gálvez-Pérez, M. Calero, I. Iáñez-Rodríguez, M. A. Martín-Lara, A. Pérez
Abstract:
The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 ºC) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model.Keywords: ANFIS, olive cake, polyols, saccharides
Procedia PDF Downloads 154202 Environmental Risk Assessment for Beneficiary Use of Coal Combustion Residues Using Leaching Environmental Assessment Framework
Authors: D. V. S. Praneeth, V. R. Sankar Cheela, Brajesh Dubey
Abstract:
Coal Combustion (CC) residues are the major by-products from thermal power plants. The disposal of ash on to land creates havoc to environment and humans. The leaching of the constituent elements pollutes ground water. Beneficiary use of coal combustion residues in structural components is being investigated as a part of this study. This application reduces stress on the convention materials in the construction industry. The present study involves determination of leaching parameters of the CC residues. Batch and column studies are performed based on Leaching Environmental Assessment Framework (LEAF) protocol. The column studies are conducted to simulate the real time percolation conditions in the field. The structural and environmental studies are performed to determine the usability of CC residues as bricks. The physical, chemical, geo environmental and mechanical properties of the alternate materials are investigated. Scanning electron microscopy (SEM), X-Ray Diffraction analysis (XRD), X-ray fluorescence (XRF) and Energy Dispersive X-ray Spectroscopy tests were conducted to determine the characteristics of CC residue ash and bricks.Keywords: coal combustion residues, LEAF, leaching, SEM
Procedia PDF Downloads 314201 Biosorption of Gold from Chloride Media in a Simultaneous Adsorption-Reduction Process
Authors: Shafiq Alam, Yen Ning Lee
Abstract:
Conventional hydrometallurgical processing of metals involves the use of large quantities of toxic chemicals. Realizing a need to develop sustainable technologies, extensive research studies are being carried out to recover and recycle base, precious and rare earth metals from their pregnant leach solutions (PLS) using green chemicals/biomaterials prepared from biomass wastes derived from agriculture, marine and forest resources. Our innovative research showed that bio-adsorbents prepared from such biomass wastes can effectively adsorb precious metals, especially gold after conversion of their functional groups in a very simple process. The highly effective ‘Adsorption-coupled-Reduction’ phenomenon witnessed appears promising for the potential use of this gold biosorption process in the mining industry. Proper management and effective use of biomass wastes as value added green chemicals will not only reduce the volume of wastes being generated every day in our society, but will also have a high-end value to the mining and mineral processing industries as those biomaterials would be cheap, but very selective for gold recovery/recycling from low grade ore, leach residue or e-wastes.Keywords: biosorption, hydrometallurgy, gold, adsorption, reduction, biomass, sustainability
Procedia PDF Downloads 376200 Optimization of Beneficiation Process for Upgrading Low Grade Egyptian Kaolin
Authors: Nagui A. Abdel-Khalek, Khaled A. Selim, Ahmed Hamdy
Abstract:
Kaolin is naturally occurring ore predominantly containing kaolinite mineral in addition to some gangue minerals. Typical impurities present in kaolin ore are quartz, iron oxides, titanoferrous minerals, mica, feldspar, organic matter, etc. The main coloring impurity, particularly in the ultrafine size range, is titanoferrous minerals. Kaolin is used in many industrial applications such as sanitary ware, table ware, ceramic, paint, and paper industries, each of which should be of certain specifications. For most industrial applications, kaolin should be processed to obtain refined clay so as to match with standard specifications. For example, kaolin used in paper and paint industries need to be of high brightness and low yellowness. Egyptian kaolin is not subjected to any beneficiation process and the Egyptian companies apply selective mining followed by, in some localities, crushing and size reduction only. Such low quality kaolin can be used in refractory and pottery production but not in white ware and paper industries. This paper aims to study the amenability of beneficiation of an Egyptian kaolin ore of El-Teih locality, Sinai, to be suitable for different industrial applications. Attrition scrubbing and classification followed by magnetic separation are applied to remove the associated impurities. Attrition scrubbing and classification are used to separate the coarse silica and feldspars. Wet high intensity magnetic separation was applied to remove colored contaminants such as iron oxide and titanium oxide. Different variables affecting of magnetic separation process such as solid percent, magnetic field, matrix loading capacity, and retention time are studied. The results indicated that substantial decrease in iron oxide (from 1.69% to 0.61% ) and TiO2 (from 3.1% to 0.83%) contents as well as improving iso-brightness (from 63.76% to 75.21% and whiteness (from 79.85% to 86.72%) of the product can be achieved.Keywords: Kaolin, titanoferrous minerals, beneficiation, magnetic separation, attrition scrubbing, classification
Procedia PDF Downloads 360199 Approaches for Minimizing Radioactive Tritium and ¹⁴C in Advanced High Temperature Gas-Cooled Reactors
Authors: Longkui Zhu, Zhengcao Li
Abstract:
High temperature gas-cooled reactors (HTGRs) are considered as one of the next-generation advanced nuclear reactors, in which porous nuclear graphite is used as neutron moderators, reflectors, structure materials, and cooled by inert helium. Radioactive tritium and ¹⁴C are generated in terms of reactions of thermal neutrons and ⁶Li, ¹⁴N, ¹⁰B impurely within nuclear graphite and the coolant during HTGRs operation. Currently, hydrogen and nitrogen diffusion behavior together with nuclear graphite microstructure evolution were investigated to minimize the radioactive waste release, using thermogravimetric analysis, X-ray computed tomography, the BET and mercury standard porosimetry methods. It is found that the peak value of graphite weight loss emerged at 573-673 K owing to nitrogen diffusion from graphite pores to outside when the system was subjected to vacuum. Macropore volume became larger while porosity for mesopores was smaller with temperature ranging from ambient temperature to 1073 K, which was primarily induced by coalescence of the subscale pores. It is suggested that the porous nuclear graphite should be first subjected to vacuum at 573-673 K to minimize the nitrogen and the radioactive 14°C before operation in HTGRs. Then, results on hydrogen diffusion show that the diffusible hydrogen and tritium could permeate into the coolant with diffusion coefficients of > 0.5 × 10⁻⁴ cm²·s⁻¹ at 50 bar. As a consequence, the freshly-generated diffusible tritium could release quickly to outside once formed, and an effective approach for minimizing the amount of radioactive tritium is to make the impurity contents extremely low in nuclear graphite and the coolant. Besides, both two- and three-dimensional observations indicate that macro and mesopore volume along with total porosity decreased with temperature at 50 bar on account of synergistic effects of applied compression strain, sharpened pore morphology, and non-uniform temperature distribution.Keywords: advanced high temperature gas-cooled reactor, hydrogen and nitrogen diffusion, microstructure evolution, nuclear graphite, radioactive waste management
Procedia PDF Downloads 311198 Evaluate the Kinetic Parameters and Characterize for Waste Prosopis juliflora Pods
Authors: Jean C. G. Silva, Kaline N. Ferreira, Rennio F. Sena, Flavio L. H. Silva
Abstract:
The Prosopis juliflora (called algaroba in Northeastern Region of Brazil) is a species of medium to large size that can reach 18 meters high, being typical of arid and semi-arid regions by to requirement less water to survive; this is a fundamental attribute from its adaptation. It's considered of multiple uses, because the trunk, the fruit, and the algaroba pods are utilized for several purposes, among them, the production of wood from lumber mill, charcoal, alcohol, animal and human consumption, being hence, a culture of economic and social value. The use of waste Prosopis juliflora can be carried out for like pyrolysis and gasification processes, in order to energy production in those regions where it is grown. Thus this study aims to characterize the residue of the algaroba pods and evaluate the kinetic parameters, activation energy (Ea) and pre-exponential factor (k0), the devolatilization process through the data obtained from TG/DTG curves with different levels of heating rates. At work was used the heating rates of 5 K.min-1, 10 K.min-1, 15 K.min-1, 20 K.min-1 and 30 K.min-1, in inert nitrogen atmosphere (99.997%) under a flow of 40 ml.min-1. The kinetic parameters were obtained using the methods of Friedman and Ozawa-Flynn-Wall.Keywords: activation energy, devolatilization, kinetic parameters, waste
Procedia PDF Downloads 388197 Cadmium Filter Cake of a Hydrometallurgical Zinc Smelter as a New Source for the Biological Synthesis of CdS Quantum Dots
Authors: Mehran Bakhshi, Mohammad Raouf Hosseini, Mohammadhosein Rahimi
Abstract:
The cadmium sulfide nanoparticles were synthesized from the nickel-cadmium cake of a hydrometallurgical zinc producing plant and sodium sulfide as Cd2+ and S-2 sources, respectively. Also, the synthesis process was performed by using the secretions of Bacillus licheniformis as bio-surfactant. Initially, in order to obtain a cadmium rich solution, two following steps were carried out: 1) Alkaline leaching for the removal of zinc oxide from the cake, and 2) acidic leaching to dissolve cadmium from the remained solid residue. Afterward, the obtained CdSO4 solution was used for the nanoparticle biosynthesis. Nanoparticles were characterized by the energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) to confirm the formation of CdS crystals with cubic structure. Also, transmission electron microscopy (TEM) was applied to determine the particle sizes which were in 2-10 nm range. Moreover, the presence of the protein containing bio-surfactants was approved by using infrared analysis (FTIR). In addition, the absorbance below 400 nm confirms quantum particles’ size. Finally, it was shown that valuable CdS quantum dots could be obtained from the industrial waste products via environment-friendly biological approaches.Keywords: biosynthesis, cadmium cake, cadmium sulfide, nanoparticle, zinc smelter
Procedia PDF Downloads 304196 Modelling Ibuprofen with Human Albumin
Authors: U. L. Fulco, E. L. Albuquerque, José X. Lima Neto, L. R. Da Silva
Abstract:
The binding of the nonsteroidal anti-inflammatory drug ibuprofen (IBU) to human serum albumin (HSA) is investigated using density functional theory (DFT) calculations within a fragmentation strategy. Crystallographic data for the IBU–HSA supramolecular complex shows that the ligand is confined to a large cavity at the subdomain IIIA and at the interface between the subdomains IIA and IIB, whose binding sites are FA3/FA4 and FA6, respectively. The interaction energy between the IBU molecule and each amino acid residue of these HSA binding pockets was calculated using the Molecular Fractionation with Conjugate Caps (MFCC) approach employing a dispersion corrected exchange–correlation functional. Our investigation shows that the total interaction energy of IBU bound to HSA at binding sites of the fatty acids FA3/FA4 (FA6) converges only for a pocket radius of at least 8.5 °A, mainly due to the action of residues Arg410, Lys414 and Ser489 (Lys351, Ser480 and Leu481) and residues in nonhydrophobic domains, namely Ile388, Phe395, Phe403, Leu407, Leu430, Val433, and Leu453 (Phe206, Ala210, Ala213, and Leu327), which is unusual. Our simulations are valuable for a better understanding of the binding mechanism of IBU to albumin and can lead to the rational design and the development of novel IBU-derived drugs with improved potency.Keywords: ibuprofen, human serum albumin, density functional theory, binding energies
Procedia PDF Downloads 347195 A Simulation Study for Potential Natural Gas Liquids Recovery Processes under Various Upstream Conditions
Authors: Mesfin Getu Woldetensay
Abstract:
Representatives and commercially viable natural gas liquids (NGLs) recovery processes were studied under various feed conditions that are classified as lean and rich. The conventional turbo- expander process scheme (ISS) was taken as a base case. The performance of this scheme was compared against with the gas sub-cooled process (GSP), cold residue-gas (CRR) and recycle split-vapor (RSV), enhanced NGL recovery process (IPSI-1) and enhanced NGL recovery process with internal refrigeration (IPSI-2). The development made for the GSP, CRR and RSV are at the top section of the demethanizer column whereas the IPSI-1 and IPSI-2 improvement focus in the lower section. HYSYS process flowsheet was initially developed for all the processes including the ISS under a common criteria that could help to demonstrate the performance comparison. Accordingly, a number of simulation runs were made for the selected eight types of feed. Results show that the reboiler duty requirement using rich feeds for GSP, CRR and RSV is quite high compared to IPSI-1 and IPSI-2. The latter shows relatively lower duty due to the presence of self-refrigeration system that allows the inlet feed to be used for achieving cooling without the need to use propane refrigerant. The energy consumption for lean feed is much lower than that of the rich feed in all process schemes.Keywords: composition, lean, rich, duty
Procedia PDF Downloads 217194 Influence of Compactive Efforts on the Hydraulic Conductivity of Bagasse Ash Treated Black Cotton Soil
Authors: T. S. Ijimdiya, K. J. Osinubi
Abstract:
This study examines the influence of compactive efforts on hydraulic conductivity behaviour of compacted black cotton soil treated with bagasse ash which is necessary in assessing the performance of the soil - bagasse ash mixture for use as a suitable barrier material in waste containment application. Black cotton soil treated with up to 12% bagasse ash (obtained from burning the fibrous residue from the extraction of sugar juice from sugarcane) by dry weight of soil for use in waste containment application. The natural soil classifies as A-7-6 or CH in accordance with the AASHTO and the Unified Soil Classification System, respectively. The treated soil samples were prepared at molding water contents of -2, 0, +2, and +4 % of optimum moisture contents and compacted using four compactive efforts of Reduced British Standard Light (RBSL), British Standard light (BSL), West African Standard (WAS) and British Standard Heavy (BSH). The results obtained show that hydraulic conductivity decreased with increase in bagasse ash content, moulding water content and compaction energy.Keywords: bagasse ash treatment, black cotton soil, hydraulic conductivity, moulding water contents, compactive efforts
Procedia PDF Downloads 433193 Fish Oil and Its Methyl Ester as an Alternate Fuel in the Direct Injection Diesel Engine
Authors: Pavan Pujar
Abstract:
Mackerel Fish oil was used as the raw material to produce the biodiesel in this study. The raw oil (RO) was collected from discarded fish products. This oil was filtered and heated to 110oC and made it moisture free. The filtered and moisture free RO was transesterified to produce biodiesel. The experimental results showed that oleic acid and lauric acid were the two major components of the fish oil biodiesel (FOB). Palmitic acid and linoleic acid were found approximately same in the quantity. The fuel properties kinematic viscosity, flash point, fire point, specific gravity, calorific value, cetane number, density, acid value, saponification value, iodine value, cloud point, pour point, ash content, Cu strip corrosion, carbon residue, API gravity were determined for FOB. A comparative study of the properties was carried out with RO and Neat diesel (ND). It was found that Cetane number was 59 for FOB which was more than RO, which showed 57. Blends (B20, B40, B60, B80: example: B20: 20% FOB + 80% ND) of FOB and ND were prepared on volume basis and comparative study was carried out with ND and FOB. Performance parameters BSFE, BSEC, A:F Ratio, Break thermal efficiency were analyzed and it was found that complete replacement of neat diesel (ND) is possible without any engine modifications.Keywords: fish oil biodiesel, raw oil, blends, performance parameters
Procedia PDF Downloads 413192 Expression Regulation of Membrane Protein by Codon Variation of Amino Acid at N-Terminal Region
Authors: Ahreum Choi, Otgontuya Tsogbadrakh, Kwang-Hwan Jung
Abstract:
Microbial rhodopsins are well-known seven-transmembrane proteins that have been extensively studied. These retinal-binding proteins have divided into two types. The type I is microbial rhodopsin, and type II (visual pigment) is expressed mostly in mammalian eyes. For type I rhodopsin, there are two main functions that are ion pumping activity and sensory transduction. Anabaena sensory rhodopsin (ASR) is one of the microbial rhodopsin with main function as photo-sensory transduction. Although ASR is expressed fairly well in Escherichia coli, the expression level is relatively less compare to Proteorhodopsin. In this study, full length of ASR was used to test for the expression influence by codon usage in E. coli. Eight amino acids of codon at N-terminal part of ASR were changed randomly with designed primers, which allow 8,192 nucleotide different cases. The codon changes were screened for the preferable codons of each residue, which have given higher expression yield. Among those 57 selected mutations, there are 24 color-enhanced E. coli colonies that contain ASR proteins, and it showed better expression level than the wild type ASR codon usage. This strongly suggests that high codon usage of only partial N-terminal of protein can increase the expression level of whole protein.Keywords: 7-transmembrane, all-trans retinal, rhodopsin, codon-usage, protein expression
Procedia PDF Downloads 180191 Optimization of Titanium Leaching Process Using Experimental Design
Authors: Arash Rafiei, Carroll Moore
Abstract:
Leaching process as the first stage of hydrometallurgy is a multidisciplinary system including material properties, chemistry, reactor design, mechanics and fluid dynamics. Therefore, doing leaching system optimization by pure scientific methods need lots of times and expenses. In this work, a mixture of two titanium ores and one titanium slag are used for extracting titanium for leaching stage of TiO2 pigment production procedure. Optimum titanium extraction can be obtained from following strategies: i) Maximizing titanium extraction without selective digestion; and ii) Optimizing selective titanium extraction by balancing between maximum titanium extraction and minimum impurity digestion. The main difference between two strategies is due to process optimization framework. For the first strategy, the most important stage of production process is concerned as the main stage and rest of stages would be adopted with respect to the main stage. The second strategy optimizes performance of more than one stage at once. The second strategy has more technical complexity compared to the first one but it brings more economical and technical advantages for the leaching system. Obviously, each strategy has its own optimum operational zone that is not as same as the other one and the best operational zone is chosen due to complexity, economical and practical aspects of the leaching system. Experimental design has been carried out by using Taguchi method. The most important advantages of this methodology are involving different technical aspects of leaching process; minimizing the number of needed experiments as well as time and expense; and concerning the role of parameter interactions due to principles of multifactor-at-time optimization. Leaching tests have been done at batch scale on lab with appropriate control on temperature. The leaching tank geometry has been concerned as an important factor to provide comparable agitation conditions. Data analysis has been done by using reactor design and mass balancing principles. Finally, optimum zone for operational parameters are determined for each leaching strategy and discussed due to their economical and practical aspects.Keywords: titanium leaching, optimization, experimental design, performance analysis
Procedia PDF Downloads 372190 Fluidized-Bed Combustion of Biomass with Elevated Alkali Content: A Comparative Study between Two Alternative Bed Materials
Authors: P. Ninduangdee, V. I. Kuprianov
Abstract:
Palm kernel shell is an important bioenergy resource in Thailand. However, due to elevated alkali content in biomass ash, this oil palm residue shows high tendency to bed agglomeration in a fluidized-bed combustion system using conventional bed material (silica sand). In this study, palm kernel shell was burned in the conical fluidized-bed combustor (FBC) using alumina and dolomite as alternative bed materials to prevent bed agglomeration. For each bed material, the combustion tests were performed at 45kg/h fuel feed rate with excess air within 20–80%. Experimental results revealed rather weak effects of the bed material type but substantial influence of excess air on the behaviour of temperature, O2, CO, CxHy, and NO inside the reactor, as well as on the combustion efficiency and major gaseous emissions of the conical FBC. The optimal level of excess air ensuring high combustion efficiency (about 98.5%) and acceptable level of the emissions was found to be about 40% when using alumina and 60% with dolomite. By using these alternative bed materials, bed agglomeration can be prevented when burning the shell in the proposed conical FBC. However, both bed materials exhibited significant changes in their morphological, physical and chemical properties in the course of the time.Keywords: palm kernel shell, fluidized-bed combustion, alternative bed materials, combustion and emission performance, bed agglomeration prevention
Procedia PDF Downloads 247189 Depolymerization of Lignin in Sugarcane Bagasse by Hydrothermal Liquefaction to Optimize Catechol Formation
Authors: Nirmala Deenadayalu, Kwanele B. Mazibuko, Lethiwe D. Mthembu
Abstract:
Sugarcane bagasse is the residue obtained after the extraction of sugar from the sugarcane. The main aim of this work was to produce catechol from sugarcane bagasse. The optimization of catechol production was investigated using a Box-Behnken design of experiments. The sugarcane bagasse was heated in a Parr reactor at a set temperature. The reactions were carried out at different temperatures (100-250) °C, catalyst loading (1% -10% KOH (m/v)) and reaction times (60 – 240 min) at 17 bar pressure. The solid and liquid fractions were then separated by vacuum filtration. The liquid fraction was analyzed for catechol using high-pressure liquid chromatography (HPLC) and characterized for the functional groups using Fourier transform infrared spectroscopy (FTIR). The optimized condition for catechol production was 175 oC, 240 min, and 10 % KOH with a catechol yield of 79.11 ppm. Since the maximum time was 240 min and 10 % KOH, a further series of experiments were conducted at 175 oC, 260 min, and 20 % KOH and yielded 2.46 ppm catechol, which was a large reduction in catechol produced. The HPLC peak for catechol was obtained at 2.5 min for the standards and the samples. The FTIR peak at 1750 cm⁻¹ was due to the C=C vibration band of the aromatic ring in the catechol present for both the standard and the samples. The peak at 3325 cm⁻¹ was due to the hydrogen-bonded phenolic OH vibration bands for the catechol. The ANOVA analysis was also performed on the set of experimental data to obtain the factors that most affected the amount of catechol produced.Keywords: catechol, sugarcane bagasse, lignin, hydrothermal liquefaction
Procedia PDF Downloads 99188 Non-Waste Utilization of Copper Smelting Slags for Production of Demanded Products
Authors: V. D. Povolockiy, V. E. Roshchin, Y. Kapelyushin
Abstract:
Smelting of copper matte is followed by production of a large amount of slag. This slag mostly contains silicates and can be utilized in a construction industry. In addition to silicates it also contains Fe; if the Fe content is high, the density of the silicate phases increases and such a slag cannot be used as an additive for the concrete. Furthermore, slags obtained during copper matte production contain copper, sulphur, zinc and some other elements. Fe is the element with the highest price in these slags. An extraction of Fe is possible even using the conventional methods, e.g., the addition of slag to the charge materials during production of sinter for the blast furnace smelting. However, in this case, the blast furnace hot metal would accumulate sulphur and copper which is very harmful impurity for the steelmaking. An accumulation of copper by the blast furnace hot metal is unacceptable, as copper cannot be removed during further steelmaking operations having a critical effect on the properties of steel. In present work, the technological scheme for non-waste utilization of the copper smelting slags has been suggested and experimentally confirmed. This scheme includes a solid state reduction of Fe and smelting for the separation of cast iron and slag. During solid state reduction, the zinc vapor was trapped. After the reduction and smelting operations, the cast iron containing copper was used for the production of metal balls with increased mechanical properties allowing their utilization for milling of ore minerals. Such a cast iron could also be applied in the production of special types of steel with copper. The silicate slag freed from Fe might be used as a propping agent in the oil industry, or granulated for application as an additive for concrete in a construction industry. Thereby, the suggested products for a Mini Mill plant with non-waste utilization of the copper smelting slags are cast iron grinding balls for the ore minerals, special types of steel with copper, silicate slag utilized as an additive for the concrete and propping agents for the oil industry.Keywords: utilization of copper slag, cast iron, grinding balls, propping agents
Procedia PDF Downloads 158187 Assessment of the Potential of Fuel-derived Rice Husk Ash as Pozzolanic Material
Authors: Jesha Faye T. Librea, Leslie Joy L. Diaz
Abstract:
Fuel-derived rice husk ash (fRHA) is a waste material from industries employing rice husk as a biomass fuel which, on the downside, causes disposal and environmental problems. To mitigate this, the fRHA was evaluated for use in other applications such as a pozzolanic material for the construction industry. In this study, the assessment of the potential of fRHA as pozzolanic supplementary cementitious material was conducted by determining the chemical and physical properties of fRHA according to ASTM C618, evaluating the fineness of the material according to ASTM C430, and determining its pozzolanic activity using Luxan Method. The material was found to have a high amorphous silica content of around 95.82 % with traces of alkaline and carbon impurities. The retained carbon residue is 7.18 %, which is within the limit of the specifications for natural pozzolans indicated in ASTM C618. The fineness of the fRHA is at 88.88 % retained at a 45-micron sieve, which, however, exceeded the limit of 34 %. This large particle size distribution was found to affect the pozzolanic activity of the fRHA. This was shown in the Luxan test, where the fRHA was identified as non-pozzolan due to its low pozzolanic activity index of 0.262. Thus, further processing must be done to the fRHA to pass the required ASTM fineness, have a higher pozzolanic activity index, and fully qualify as a pozzolanic material.Keywords: rice husk ash, pozzolanic, fuel-derived ash, supplementary cementitious material
Procedia PDF Downloads 66186 Determinaton of Processing Parameters of Decaffeinated Black Tea by Using Pilot-Scale Supercritical CO₂ Extraction
Authors: Saziye Ilgaz, Atilla Polat
Abstract:
There is a need for development of new processing techniques to ensure safety and quality of final product while minimizing the adverse impact of extraction solvents on environment and residue levels of these solvents in final product, decaffeinated black tea. In this study pilot scale supercritical carbon dioxide (SCCO₂) extraction was used to produce decaffeinated black tea in place of solvent extraction. Pressure (250, 375, 500 bar), extraction time (60, 180, 300 min), temperature (55, 62.5, 70 °C), CO₂ flow rate (1, 2 ,3 LPM) and co-solvent quantity (0, 2.5, 5 %mol) were selected as extraction parameters. The five factors BoxBehnken experimental design with three center points was performed to generate 46 different processing conditions for caffeine removal from black tea samples. As a result of these 46 experiments caffeine content of black tea samples were reduced from 2.16 % to 0 – 1.81 %. The experiments showed that extraction time, pressure, CO₂ flow rate and co-solvent quantity had great impact on decaffeination yield. Response surface methodology (RSM) was used to optimize the parameters of the supercritical carbon dioxide extraction. Optimum extraction parameters obtained of decaffeinated black tea were as follows: extraction temperature of 62,5 °C, extraction pressure of 375 bar, CO₂ flow rate of 3 LPM, extraction time of 176.5 min and co-solvent quantity of 5 %mol.Keywords: supercritical carbon dioxide, decaffeination, black tea, extraction
Procedia PDF Downloads 364185 Energy Analysis of Sugarcane Production: A Case Study in Metehara Sugar Factory in Ethiopia
Authors: Wasihun Girma Hailemariam
Abstract:
Energy is one of the key elements required for every agricultural activity, especially for large scale agricultural production such as sugarcane cultivation which mostly is used to produce sugar and bioethanol from sugarcane. In such kinds of resource (energy) intensive activities, energy analysis of the production system and looking for other alternatives which can reduce energy inputs of the sugarcane production process are steps forward for resource management. The purpose of this study was to determine input energy (direct and indirect) per hectare of sugarcane production sector of Metehara sugar factory in Ethiopia. Total energy consumption of the production system was 61,642 MJ/ha-yr. This total input energy is a cumulative value of different inputs (direct and indirect inputs) in the production system. The contribution of these different inputs is discussed and a scenario of substituting the most influential input by other alternative input which can replace the original input in its nutrient content was discussed. In this study the most influential input for increased energy consumption was application of organic fertilizer which accounted for 50 % of the total energy consumption. Filter cake which is a residue from the sugar production in the factory was used to substitute the organic fertilizer and the reduction in the energy consumption of the sugarcane production was discussedKeywords: energy analysis, organic fertilizer, resource management, sugarcane
Procedia PDF Downloads 158184 The Chromitites of the Collo Ultramafic Rocks (NE Algeria): Two Generations Evidenced From Petrological, Mineralogical and Isotopic Studies
Authors: Rabah Laouar, Yahia Boudra, Adel Satouh, Adrian Boyce
Abstract:
The ultramafic rocks of the Collo region crop out as « stratified » masses that cross-cut older metamorphic formation of the basement. These rocks are mainly peridotites and serpentinites. The peridotites are composed of olivine, orthopyroxene, clinopyroxene and spinel (chromite). The chemical composition of these lherzolites show a magnesian character with high MgO contents (34.4 to 37.5%), high Cr (0.14 to 0.27%), Ni (0.14 to 0.26%) and Co (34 to 133 ppm) and low CaO and Al₂O₃ (0.02 to 2.2 and 0.5 to 2.8 % respectively). They represent a residue (restite) of a mantle magmas partial melting. The chromite which represents about 2 to 3% of the rock is a ubiquitous mineral and shows two different generations: primary idiomorphic millimetric crystals and secondary very fine, xenomorphic and interstitial aggregates. The primary chromites are alumino-ferro-magnesian crystals. They show high Al₂O₃ (25.77% to 27.36%) and MgO (10.70% to 13.36%). Cr# (100*Cr/ (Al+Cr)) varies between 45 and 48, and Mg# (100*Mg/Mg+Fe₂+) varies between 49 and 59. On the other hand, the secondary interstitial grains are iron-rich chromites; they show low Al₂O₃ (4.67% to 9.54%) and MgO (4.60% to 4.65%). Cr# is relatively high (77 to 88) whereas Mg# show relatively low values, varying between 22 and 25. Oxygen isotopic composition of both types of chromites is consistent with their derivation from a mantle source (ð¹⁸O vary between +3.9 and +5.2‰), though a contribution of ¹⁶O-rich component to the secondary chromites is not ruled out.Keywords: peridotites, serpentinites, chromite, partial melting, collo, Algeria
Procedia PDF Downloads 89183 Preferred Left-Handed Conformation of Glycyls at Pathogenic Sites
Authors: Purva Mishra, Rajesh Potlia, Kuljeet Singh Sandhu
Abstract:
The role of glycyl residues in the protein structure has lingered within the research community for the last several decades. Glycyl residue is the only amino acid that is achiral due to the lack of a side chain and can, therefore, exhibit Ramachandran conformations that are disallowed for L-amino acids. The structural and functional significance of glycyl residues with L-disallowed conformation, however, remains obscure. Through statistical analysis of various datasets, we found that the glycyls with L-disallowed conformations are over-represented at disease-associated sites and tend to be evolutionarily conserved. The mutations of L-disallowed glycyls tend to destabilize the native conformation, reduce protein solubility, and promote inter-molecular aggregations. We uncovered a structural motif referred to as “β-crescent” formed around the L-disallowed glycyl, which prevents β-sheet aggregation by disrupting the alternating pattern of β-pleats. The L-disallowed conformation of glycyls also holds predictive power to infer the pathogenic missense variants. Altogether, our observations highlight that the L-disallowed conformation of glycyls is selected to facilitate native folding and prevent inter-molecular aggregations. The findings may also have implications for designing more stable proteins and prioritizing the genetic lesions implicated in diseases.Keywords: Ramachandran plot, β-sheet, protein stability, protein aggregation
Procedia PDF Downloads 72