Search results for: logistic model tree
17815 Modeling and Analysis Of Occupant Behavior On Heating And Air Conditioning Systems In A Higher Education And Vocational Training Building In A Mediterranean Climate
Authors: Abderrahmane Soufi
Abstract:
The building sector is the largest consumer of energy in France, accounting for 44% of French consumption. To reduce energy consumption and improve energy efficiency, France implemented an energy transition law targeting 40% energy savings by 2030 in the tertiary building sector. Building simulation tools are used to predict the energy performance of buildings but the reliability of these tools is hampered by discrepancies between the real and simulated energy performance of a building. This performance gap lies in the simplified assumptions of certain factors, such as the behavior of occupants on air conditioning and heating, which is considered deterministic when setting a fixed operating schedule and a fixed interior comfort temperature. However, the behavior of occupants on air conditioning and heating is stochastic, diverse, and complex because it can be affected by many factors. Probabilistic models are an alternative to deterministic models. These models are usually derived from statistical data and express occupant behavior by assuming a probabilistic relationship to one or more variables. In the literature, logistic regression has been used to model the behavior of occupants with regard to heating and air conditioning systems by considering univariate logistic models in residential buildings; however, few studies have developed multivariate models for higher education and vocational training buildings in a Mediterranean climate. Therefore, in this study, occupant behavior on heating and air conditioning systems was modeled using logistic regression. Occupant behavior related to the turn-on heating and air conditioning systems was studied through experimental measurements collected over a period of one year (June 2023–June 2024) in three classrooms occupied by several groups of students in engineering schools and professional training. Instrumentation was provided to collect indoor temperature and indoor relative humidity in 10-min intervals. Furthermore, the state of the heating/air conditioning system (off or on) and the set point were determined. The outdoor air temperature, relative humidity, and wind speed were collected as weather data. The number of occupants, age, and sex were also considered. Logistic regression was used for modeling an occupant turning on the heating and air conditioning systems. The results yielded a proposed model that can be used in building simulation tools to predict the energy performance of teaching buildings. Based on the first months (summer and early autumn) of the investigations, the results illustrate that the occupant behavior of the air conditioning systems is affected by the indoor relative humidity and temperature in June, July, and August and by the indoor relative humidity, temperature, and number of occupants in September and October. Occupant behavior was analyzed monthly, and univariate and multivariate models were developed.Keywords: occupant behavior, logistic regression, behavior model, mediterranean climate, air conditioning, heating
Procedia PDF Downloads 5917814 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption
Authors: Ashish Ashish
Abstract:
In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption
Procedia PDF Downloads 15117813 Decision Tree Analysis of Risk Factors for Intravenous Infiltration among Hospitalized Children: A Retrospective Study
Authors: Soon-Mi Park, Ihn Sook Jeong
Abstract:
This retrospective study was aimed to identify risk factors of intravenous (IV) infiltration for hospitalized children. The participants were 1,174 children for test and 424 children for validation, who admitted to a general hospital, received peripheral intravenous injection therapy at least once and had complete records. Data were analyzed with frequency and percentage or mean and standard deviation were calculated, and decision tree analysis was used to screen for the most important risk factors for IV infiltration for hospitalized children. The decision tree analysis showed that the most important traditional risk factors for IV infiltration were the use of ampicillin/sulbactam, IV insertion site (lower extremities), and medical department (internal medicine) both in the test sample and validation sample. The correct classification was 92.2% in the test sample and 90.1% in the validation sample. More careful attention should be made to patients who are administered ampicillin/sulbactam, have IV site in lower extremities and have internal medical problems to prevent or detect infiltration occurrence.Keywords: decision tree analysis, intravenous infiltration, child, validation
Procedia PDF Downloads 17617812 Gender Estimation by Means of Quantitative Measurements of Foramen Magnum: An Analysis of CT Head Images
Authors: Thilini Hathurusinghe, Uthpalie Siriwardhana, W. M. Ediri Arachchi, Ranga Thudugala, Indeewari Herath, Gayani Senanayake
Abstract:
The foramen magnum is more prone to protect than other skeletal remains during high impact and severe disruptive injuries. Therefore, it is worthwhile to explore whether these measurements can be used to determine the human gender which is vital in forensic and anthropological studies. The idea was to find out the ability to use quantitative measurements of foramen magnum as an anatomical indicator for human gender estimation and to evaluate the gender-dependent variations of foramen magnum using quantitative measurements. Randomly selected 113 subjects who underwent CT head scans at Sri Jayawardhanapura General Hospital of Sri Lanka within a period of six months, were included in the study. The sample contained 58 males (48.76 ± 14.7 years old) and 55 females (47.04 ±15.9 years old). Maximum length of the foramen magnum (LFM), maximum width of the foramen magnum (WFM), minimum distance between occipital condyles (MnD) and maximum interior distance between occipital condyles (MxID) were measured. Further, AreaT and AreaR were also calculated. The gender was estimated using binomial logistic regression. The mean values of all explanatory variables (LFM, WFM, MnD, MxID, AreaT, and AreaR) were greater among male than female. All explanatory variables except MnD (p=0.669) were statistically significant (p < 0.05). Significant bivariate correlations were demonstrated by AreaT and AreaR with the explanatory variables. The results evidenced that WFM and MxID were the best measurements in predicting gender according to binomial logistic regression. The estimated model was: log (p/1-p) =10.391-0.136×MxID-0.231×WFM, where p is the probability of being a female. The classification accuracy given by the above model was 65.5%. The quantitative measurements of foramen magnum can be used as a reliable anatomical marker for human gender estimation in the Sri Lankan context.Keywords: foramen magnum, forensic and anthropological studies, gender estimation, logistic regression
Procedia PDF Downloads 15117811 Establishment of a Nomogram Prediction Model for Postpartum Hemorrhage during Vaginal Delivery
Authors: Yinglisong, Jingge Chen, Jingxuan Chen, Yan Wang, Hui Huang, Jing Zhnag, Qianqian Zhang, Zhenzhen Zhang, Ji Zhang
Abstract:
Purpose: The study aims to establish a nomogram prediction model for postpartum hemorrhage (PPH) in vaginal delivery. Patients and Methods: Clinical data were retrospectively collected from vaginal delivery patients admitted to a hospital in Zhengzhou, China, from June 1, 2022 - October 31, 2022. Univariate and multivariate logistic regression were used to filter out independent risk factors. A nomogram model was established for PPH in vaginal delivery based on the risk factors coefficient. Bootstrapping was used for internal validation. To assess discrimination and calibration, receiver operator characteristics (ROC) and calibration curves were generated in the derivation and validation groups. Results: A total of 1340 cases of vaginal delivery were enrolled, with 81 (6.04%) having PPH. Logistic regression indicated that history of uterine surgery, induction of labor, duration of first labor, neonatal weight, WBC value (during the first stage of labor), and cervical lacerations were all independent risk factors of hemorrhage (P <0.05). The area-under-curve (AUC) of ROC curves of the derivation group and the validation group were 0.817 and 0.821, respectively, indicating good discrimination. Two calibration curves showed that nomogram prediction and practical results were highly consistent (P = 0.105, P = 0.113). Conclusion: The developed individualized risk prediction nomogram model can assist midwives in recognizing and diagnosing high-risk groups of PPH and initiating early warning to reduce PPH incidence.Keywords: vaginal delivery, postpartum hemorrhage, risk factor, nomogram
Procedia PDF Downloads 7617810 An Alternative Richards’ Growth Model Based on Hyperbolic Sine Function
Authors: Samuel Oluwafemi Oyamakin, Angela Unna Chukwu
Abstract:
Richrads growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richards growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richards growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richards nonlinear growth models better than the classical Richards growth model.Keywords: height, diameter at breast height, DBH, hyperbolic sine function, Pinus caribaea, Richards' growth model
Procedia PDF Downloads 39217809 Educational Data Mining: The Case of the Department of Mathematics and Computing in the Period 2009-2018
Authors: Mário Ernesto Sitoe, Orlando Zacarias
Abstract:
University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.Keywords: evasion and retention, cross-validation, bagging, stacking
Procedia PDF Downloads 8217808 Dissimilarity-Based Coloring for Symbolic and Multivariate Data Visualization
Authors: K. Umbleja, M. Ichino, H. Yaguchi
Abstract:
In this paper, we propose a coloring method for multivariate data visualization by using parallel coordinates based on dissimilarity and tree structure information gathered during hierarchical clustering. The proposed method is an extension for proximity-based coloring that suffers from a few undesired side effects if hierarchical tree structure is not balanced tree. We describe the algorithm by assigning colors based on dissimilarity information, show the application of proposed method on three commonly used datasets, and compare the results with proximity-based coloring. We found our proposed method to be especially beneficial for symbolic data visualization where many individual objects have already been aggregated into a single symbolic object.Keywords: data visualization, dissimilarity-based coloring, proximity-based coloring, symbolic data
Procedia PDF Downloads 17017807 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 12817806 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus
Procedia PDF Downloads 40817805 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa
Authors: Adesuyi Ayodeji Steve, Zahn Munch
Abstract:
This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.Keywords: change detection, land cover, modis, NDVI
Procedia PDF Downloads 40217804 The Distribution, Productivity and Conservation of Camphor Tree, Dryobalanops Aromatica in West Coast of Sumatra, Indonesia
Authors: Aswandi Anas Husin, Cut Rizlani Kholibrina
Abstract:
Harvesting camphor resin has been carried out since the beginning of civilization on the west coast of Sumatra. Oil or crystals that containing borneol are harvested from the camphor tree (Dryobalanops aromatica). Non-timber forest products are utilized for the manufacture of fragrances, antiseptics, anti-inflammatory, analgesic as well as effective for the treatment of blocked arteries. Based on exploration on the west coast of Sumatra, these endemic tree species were found remaining growing in groups on small spots in the lowlands to the hills. Some populations are found at an altitude of 700 meters above sea level in Kadabuhan, Jongkong and Sultan Daulat in Subulussalam district, Singkohor and Lake Paris in Aceh Singkil district, and Sirandorung and Manduamas in the north of Barus, Central Tapanuli district. These multi-purpose tree species was also identified as being able to adapt to the Singkil Peat Swamp. The decline in tree population has a direct impact on reducing their productivity. Conventionally, the crystals are harvested by cutting and splitting the stem into wooden blocks. In this way about 1.5-2.5 kg of crystals are obtained with various qualities. Camphor retrieval can also be done by making a notch on a standing tree trunk and collecting liquid resin (ombil) that is removed from the injured resin channel. Twigs and leaves also contain borneol. The aromatic content in this section opens opportunities for the supply of borneol through the distillation process. Vegetative propagation technology is needed to overcome the limitations of available seeds. This breeding strategy for vulnerable species starts with gathering genetic material from various provenances which are then used to support the provision of basic populations, breeding populations, multiplication populations and production populations for extensive development of camphor tree plantationsKeywords: camphor, conservation, natural borneol, productivity, vulnerable species
Procedia PDF Downloads 12517803 The Relationship between Coping Styles and Internet Addiction among High School Students
Authors: Adil Kaval, Digdem Muge Siyez
Abstract:
With the negative effects of internet use in a person's life, the use of the Internet has become an issue. This subject was mostly considered as internet addiction, and it was investigated. In literature, it is noteworthy that some theoretical models have been proposed to explain the reasons for internet addiction. In addition to these theoretical models, it may be thought that the coping style for stressing events can be a predictor of internet addiction. It was aimed to test with logistic regression the effect of high school students' coping styles on internet addiction levels. Sample of the study consisted of 770 Turkish adolescents (471 girls, 299 boys) selected from high schools in the 2017-2018 academic year in İzmir province. Internet Addiction Test, Coping Scale for Child and Adolescents and a demographic information form were used in this study. The results of the logistic regression analysis indicated that the model of coping styles predicted internet addiction provides a statistically significant prediction of internet addiction. Gender does not predict whether or not to be addicted to the internet. The active coping style is not effective on internet addiction levels, while the avoiding and negative coping style are effective on internet addiction levels. With this model, % 79.1 of internet addiction in high school is estimated. The Negelkerke pseudo R2 indicated that the model accounted for %35 of the total variance. The results of this study on Turkish adolescents are similar to the results of other studies in the literature. It can be argued that avoiding and negative coping styles are important risk factors in the development of internet addiction.Keywords: adolescents, coping, internet addiction, regression analysis
Procedia PDF Downloads 17317802 Processing and Economic Analysis of Rain Tree (Samanea saman) Pods for Village Level Hydrous Bioethanol Production
Authors: Dharell B. Siano, Wendy C. Mateo, Victorino T. Taylan, Francisco D. Cuaresma
Abstract:
Biofuel is one of the renewable energy sources adapted by the Philippine government in order to lessen the dependency on foreign fuel and to reduce carbon dioxide emissions. Rain tree pods were seen to be a promising source of bioethanol since it contains significant amount of fermentable sugars. The study was conducted to establish the complete procedure in processing rain tree pods for village level hydrous bioethanol production. Production processes were done for village level hydrous bioethanol production from collection, drying, storage, shredding, dilution, extraction, fermentation, and distillation. The feedstock was sundried, and moisture content was determined at a range of 20% to 26% prior to storage. Dilution ratio was 1:1.25 (1 kg of pods = 1.25 L of water) and after extraction process yielded a sugar concentration of 22 0Bx to 24 0Bx. The dilution period was three hours. After three hours of diluting the samples, the juice was extracted using extractor with a capacity of 64.10 L/hour. 150 L of rain tree pods juice was extracted and subjected to fermentation process using a village level anaerobic bioreactor. Fermentation with yeast (Saccharomyces cerevisiae) can fasten up the process, thus producing more ethanol at a shorter period of time; however, without yeast fermentation, it also produces ethanol at lower volume with slower fermentation process. Distillation of 150 L of fermented broth was done for six hours at 85 °C to 95 °C temperature (feedstock) and 74 °C to 95 °C temperature of the column head (vapor state of ethanol). The highest volume of ethanol recovered was established at with yeast fermentation at five-day duration with a value of 14.89 L and lowest actual ethanol content was found at without yeast fermentation at three-day duration having a value of 11.63 L. In general, the results suggested that rain tree pods had a very good potential as feedstock for bioethanol production. Fermentation of rain tree pods juice can be done with yeast and without yeast.Keywords: fermentation, hydrous bioethanol, fermentation, rain tree pods, village level
Procedia PDF Downloads 29417801 Hyperspectral Image Classification Using Tree Search Algorithm
Authors: Shreya Pare, Parvin Akhter
Abstract:
Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm
Procedia PDF Downloads 17717800 Bayesian System and Copula for Event Detection and Summarization of Soccer Videos
Authors: Dhanuja S. Patil, Sanjay B. Waykar
Abstract:
Event detection is a standout amongst the most key parts for distinctive sorts of area applications of video data framework. Recently, it has picked up an extensive interest of experts and in scholastics from different zones. While detecting video event has been the subject of broad study efforts recently, impressively less existing methodology has considered multi-model data and issues related efficiency. Start of soccer matches different doubtful circumstances rise that can't be effectively judged by the referee committee. A framework that checks objectively image arrangements would prevent not right interpretations because of some errors, or high velocity of the events. Bayesian networks give a structure for dealing with this vulnerability using an essential graphical structure likewise the probability analytics. We propose an efficient structure for analysing and summarization of soccer videos utilizing object-based features. The proposed work utilizes the t-cherry junction tree, an exceptionally recent advancement in probabilistic graphical models, to create a compact representation and great approximation intractable model for client’s relationships in an interpersonal organization. There are various advantages in this approach firstly; the t-cherry gives best approximation by means of junction trees class. Secondly, to construct a t-cherry junction tree can be to a great extent parallelized; and at last inference can be performed utilizing distributed computation. Examination results demonstrates the effectiveness, adequacy, and the strength of the proposed work which is shown over a far reaching information set, comprising more soccer feature, caught at better places.Keywords: summarization, detection, Bayesian network, t-cherry tree
Procedia PDF Downloads 32317799 Radial Variation of Anatomical Characteristics in Three Native Fast-Growing Species Growing in South Kalimantan, Indonesia
Authors: Wiwin Tyas Istikowati, Futoshi Ishiguri, Haruna Aisho, Budi Sutiya, Imam Wahyudi, Kazuya Iizuka, Shinso Yokota
Abstract:
The objective of this study was to investigate the anatomical characteristics of three native fast-growing species, terap (Artocarpus elasticus Reinw. ex Blume), medang (Neolitsea latifolia (Blume) S. Moore), and balik angin (Alphitonia excelsa (Fenzel) Reissek ex Benth) growing in the secondary forest in South Kalimantan, Indonesia for evaluating the possibility of tree breeding for wood quality. Cell lengths were investigated for 5 trees in each species at several different height positions (1.0, 3.0, 5.0, 7.0, 9.0, and 11.0 m above the ground). The mean values of fiber and vessel element lengths in terap, medang, and balik angin were 1.52 and 0.44, 1.16 and 0.53, and 1.02 and 0.49 mm, respectively. Fiber length in terap and balik angin gradually increased from pith to bark, whereas it increased up to 2 cm and then became nearly constant to the bark in medang. Vessel element length was almost constant from pith to bark in terap and balik angin, while slightly increased from pith to bark in medang. Fiber length in terap has a fluctuation pattern from ground level to top of the tree. It decreased up to 3 m above the ground, increased up to 5 m, and then decreased to the top of the tree. On the other hand, vessel element length slightly increased up to 5 m above the ground, and then decreased to the top of the tree. Both fiber and vessel element lengths in medang were almost constant from ground level to top of the tree, whereas decreased from ground level to top of the tree in balik angin. Significant difference at 1% level among trees was found in both fiber and vessel element length in both radial and longitudinal directions for terap and medang. Based on obtained results, it is concluded that the wood quality in fiber and vessel element lengths of terap and medang can be improved by tree breeding programs.Keywords: anatomical properties, fiber length, vessel elements length, fast-growing species
Procedia PDF Downloads 34817798 Vaccination Coverage and Its Associated Factors in India: An ML Approach to Understand the Hierarchy and Inter-Connections
Authors: Anandita Mitro, Archana Srivastava, Bidisha Banerjee
Abstract:
The present paper attempts to analyze the hierarchy and interconnection of factors responsible for the uptake of BCG vaccination in India. The study uses National Family Health Survey (NFHS-5) data which was conducted during 2019-21. The univariate logistic regression method is used to understand the univariate effects while the interconnection effects have been studied using the Categorical Inference Tree (CIT) which is a non-parametric Machine Learning (ML) model. The hierarchy of the factors is further established using Conditional Inference Forest which is an extension of the CIT approach. The results suggest that BCG vaccination coverage was influenced more by system-level factors and awareness than education or socio-economic status. Factors such as place of delivery, antenatal care, and postnatal care were crucial, with variations based on delivery location. Region-specific differences were also observed which could be explained by the factors. Awareness of the disease was less impactful along with the factor of wealth and urban or rural residence, although awareness did appear to substitute for inadequate ANC. Thus, from the policy point of view, it is revealed that certain subpopulations have less prevalence of vaccination which implies that there is a need for population-specific policy action to achieve a hundred percent coverage.Keywords: vaccination, NFHS, machine learning, public health
Procedia PDF Downloads 5917797 WSN System Warns Atta Cephalotes Climbing in Mango Fruit Trees
Authors: Federico Hahn Schlam, Fermín Martínez Solís
Abstract:
Leaf-cutting ants (Atta cephalotes) forage from mango tree leaves and flowers to feed their colony. Farmers find it difficult to control ants due to the great quantity of trees grown in commercial orchards. In this article, IoT can support farmers for ant detection in real time, as production losses can be considered of 324 US per tree.A wireless sensor network, WSN, was developed to warn the farmer from ant presence in trees during a night. Mango trees were gathered into groups of 9 trees, where the central tree holds the master microcontroller, and the other eight trees presented slave microcontrollers (nodes). At each node, anemitter diode-photodiode unitdetects ants climbing up. A capacitor is chargedand discharged after being sampled every ten minutes. The system usesBLE (Bluetooth Low Energy) to communicate between the master microcontroller by BLE.When ants were detected the number of the tree was transmitted via LoRa from the masterto the producer smartphone to warn him. In this paper, BLE, LoRa, and energy consumption were studied under variable vegetation in the orchard. During 2018, 19 trees were attacked by ants, and ants fed 26.3% of flowers and 73.7% of leaves.Keywords: BLE, atta cephalotes, LoRa, WSN-smartphone, energy consumption
Procedia PDF Downloads 15817796 A Three-Dimensional (3D) Numerical Study of Roofs Shape Impact on Air Quality in Urban Street Canyons with Tree Planting
Authors: Bouabdellah Abed, Mohamed Bouzit, Lakhdar Bouarbi
Abstract:
The objective of this study is to investigate numerically the effect of roof shaped on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, Pvol = 96%. A three-dimensional computational fluid dynamics (CFD) model for evaluating air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier–Stokes (RANS) equations and the k-Epsilon EARSM turbulence model as close of the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against the wind tunnel experiment. Having established this, the wind flow and pollutant dispersion in urban street canyons of six roof shapes are simulated. The numerical simulation agrees reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated, this complexity is increased with presence of tree and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped. The results also indicated that the corners eddies provide additional ventilation and lead to lower traffic pollutant concentrations at the street canyon ends.Keywords: street canyon, pollutant dispersion, trees, building configuration, numerical simulation, k-Epsilon EARSM
Procedia PDF Downloads 36517795 BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching
Authors: Gianna Zou
Abstract:
Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed.Keywords: BART, Bayesian, matching, regression
Procedia PDF Downloads 14717794 Impact Logistic Management to Reduce Costs
Authors: Waleerak Sittisom
Abstract:
The objectives of this research were to analyze transportation route management, to identify potential cost reductions in logistic operation. In-depth interview techniques and small group discussions were utilized with 25 participants from various backgrounds in the areas of logistics. The findings of this research revealed that there were four areas that companies are able to effectively manage a logistic cost reduction: managing the space within the transportation vehicles, managing transportation personnel, managing transportation cost, and managing control of transportation. On the other hand, there were four areas that companies were unable to effectively manage a logistic cost reduction: the working process of transportation, the route planning of transportation, the service point management, and technology management. There are five areas that cost reduction is feasible: personnel management, process of working, map planning, service point planning, and technology implementation. To be able to reduce costs, the transportation companies should suggest that customers use a file system to save truck space. Also, the transportation companies need to adopt new technology to manage their information system so that packages can be reached easy, safe, and fast. Staff needs to be trained regularly to increase knowledge and skills. Teamwork is required to effectively reduce the costs.Keywords: cost reduction, management, logistics, transportation
Procedia PDF Downloads 49817793 Determinants of Poverty: A Logit Regression Analysis of Zakat Applicants
Authors: Zunaidah Ab Hasan, Azhana Othman, Abd Halim Mohd Noor, Nor Shahrina Mohd Rafien
Abstract:
Zakat is a portion of wealth contributed from financially able Muslims to be distributed to predetermine recipients; main among them are the poor and the needy. Distribution of the zakat fund is given with the objective to lift the recipients from poverty. Due to the multidimensional and multifaceted nature of poverty, it is imperative that the causes of poverty are properly identified for assistance given by zakat authorities reached the intended target. Despite, various studies undertaken to identify the poor correctly, there are reports of the poor not receiving the adequate assistance required from zakat. Thus, this study examines the determinants of poverty among applicants for zakat assistance distributed by the State Islamic Religious Council in Malacca (SIRCM). Malacca is a state in Malaysia. The respondents were based on the list of names of new zakat applicants for the month of April and May 2014 provided by SIRCM. A binary logistic regression was estimated based on this data with either zakat applications is rejected or accepted as the dependent variable and set of demographic variables and health as the explanatory variables. Overall, the logistic model successfully predicted factors of acceptance of zakat applications. Three independent variables namely gender, age; size of households and health significantly explain the likelihood of a successful zakat application. Among others, the finding suggests the importance of focusing on providing education opportunity in helping the poor.Keywords: logistic regression, zakat distribution, status of zakat applications, poverty, education
Procedia PDF Downloads 33617792 Naïve Bayes: A Classical Approach for the Epileptic Seizures Recognition
Authors: Bhaveek Maini, Sanjay Dhanka, Surita Maini
Abstract:
Electroencephalography (EEG) is used to classify several epileptic seizures worldwide. It is a very crucial task for the neurologist to identify the epileptic seizure with manual EEG analysis, as it takes lots of effort and time. Human error is always at high risk in EEG, as acquiring signals needs manual intervention. Disease diagnosis using machine learning (ML) has continuously been explored since its inception. Moreover, where a large number of datasets have to be analyzed, ML is acting as a boon for doctors. In this research paper, authors proposed two different ML models, i.e., logistic regression (LR) and Naïve Bayes (NB), to predict epileptic seizures based on general parameters. These two techniques are applied to the epileptic seizures recognition dataset, available on the UCI ML repository. The algorithms are implemented on an 80:20 train test ratio (80% for training and 20% for testing), and the performance of the model was validated by 10-fold cross-validation. The proposed study has claimed accuracy of 81.87% and 95.49% for LR and NB, respectively.Keywords: epileptic seizure recognition, logistic regression, Naïve Bayes, machine learning
Procedia PDF Downloads 6117791 A Machine Learning Approach to Detecting Evasive PDF Malware
Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran
Abstract:
The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.Keywords: PDF, PDF malware, decision tree classifier, random forest classifier
Procedia PDF Downloads 9117790 Challenges in Achieving Profitability for MRO Companies in the Aviation Industry: An Analytical Approach
Authors: Nur Sahver Uslu, Ali̇ Hakan Büyüklü
Abstract:
Maintenance, Repair, and Overhaul (MRO) costs are significant in the aviation industry. On the other hand, companies that provide MRO services to the aviation industry but are not dominant in the sector, need to determine the right strategies for sustainable profitability in a competitive environment. This study examined the operational real data of a small medium enterprise (SME) MRO company where analytical methods are not widely applied. The company's customers were divided into two categories: airline companies and non-airline companies, and the variables that best explained profitability were analyzed with Logistic Regression for each category and the results were compared. First, data reduction was applied to the transformed variables that went through the data cleaning and preparation stages, and the variables to be included in the model were decided. The misclassification rates for the logistic regression results concerning both customer categories are similar, indicating consistent model performance across different segments. Less profit margin is obtained from airline customers, which can be explained by the variables part description, time to quotation (TTQ), turnaround time (TAT), manager, part cost, and labour cost. The higher profit margin obtained from non-airline customers is explained only by the variables part description, part cost, and labour cost. Based on the two models, it can be stated that it is significantly more challenging for the MRO company, which is the subject of our study, to achieve profitability from Airline customers. While operational processes and organizational structure also affect the profit from airline customers, only the type of parts and costs determine the profit for non-airlines.Keywords: aircraft, aircraft components, aviation, data analytics, data science, gini index, maintenance, repair, and overhaul, MRO, logistic regression, profit, variable clustering, variable reduction
Procedia PDF Downloads 3317789 Corporate Governance and Disclosure Quality: Taxonomy of Tunisian Listed Firms Using the Decision Tree Method Based Approach
Authors: Wided Khiari, Adel Karaa
Abstract:
This study aims to establish a typology of Tunisian listed firms according to their corporate governance characteristics and disclosure quality. The paper uses disclosed scores to examine corporate governance practices of Tunisian listed firms. A content analysis of 46 Tunisian listed firms from 2001 to 2010 has been carried out and a disclosure index developed to determine the level of disclosure of the companies. The disclosure quality is appreciated through the quantity and also through the nature (type) of information disclosed. Applying the decision tree method, the obtained tree diagrams provide ways to know the characteristics of a particular firm regardless of its level of disclosure. Obtained results show that the characteristics of corporate governance to achieve good quality of disclosure are not unique for all firms. These structures are not necessarily all of the recommendations of best practices, but converge towards the best combination. Indeed, in practice, there are companies which have a good quality of disclosure, but are not well-governed. However, we hope that by improving their governance system their level of disclosure may be better. These findings show, in a general way, a convergence towards the standards of corporate governance with a few exceptions related to the specificity of Tunisian listed firms and show the need for the adoption of a code for each context. These findings shed the light on corporate governance features that enhance incentives for good disclosure. It allows identifying, for each firm and in any date, corporate governance determinants of disclosure quality. More specifically, and all being equal, obtained tree makes a rule of decision for the company to know the level of disclosure based on certain characteristics of the governance strategy adopted by the latter.Keywords: corporate governance, disclosure, decision tree, economics
Procedia PDF Downloads 33517788 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.Keywords: cutting condition, vibration, natural frequency, decision tree, CART algorithm
Procedia PDF Downloads 33617787 On Increase and Development Prospects of Competitiveness of Georgia’s Transport-Logistical System on the Contemporary Stage
Authors: Ketevan Goletiani
Abstract:
MMultimodal transport is Europe-Asia’s rational decision of the XXI century. Success prerequisite of this form of cargo carriage is not technologic decision, but the comprehensive attitude towards it. Integration of the transport industry must refer to both technical and organizational-economic fields. Support of the multimodal’s must be the priority of the transport policy in different organizations of Europe and Asia. The method of approach to the transport as a unified system has been changed to a certain extent in the market conditions. Nowadays the competition between the different kinds of transport is not to be considered as a competition of one kind of transport towards another one, but is to be considered as a stimulator of the transport development. Basically, transport logistic, as the recent methodology and organization of the rationally flow of cargos at the specialized logistic centres during their procession provides effective rise of such flow of cargos, decreases non-operating expenses and gives the opportunity to the transport companies to come along with the time, to meet market clients’ requirements. It is apparent that the advanced transport-forwarding and logistic firms are being analized.Keywords: transport systems, multimodal transport, competition, transport logistics
Procedia PDF Downloads 43717786 Predictive Analytics of Student Performance Determinants
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.Keywords: student performance, supervised machine learning, classification, cross-validation, prediction
Procedia PDF Downloads 126