Search results for: gate leakage
376 Microwave Single Photon Source Using Landau-Zener Transitions
Authors: Siddhi Khaire, Samarth Hawaldar, Baladitya Suri
Abstract:
As efforts towards quantum communication advance, the need for single photon sources becomes imminent. Due to the extremely low energy of a single microwave photon, efforts to build single photon sources and detectors in the microwave range are relatively recent. We plan to use a Cooper Pair Box (CPB) that has a ‘sweet-spot’ where the two energy levels have minimal separation. Moreover, these qubits have fairly large anharmonicity making them close to ideal two-level systems. If the external gate voltage of these qubits is varied rapidly while passing through the sweet-spot, due to Landau-Zener effect, the qubit can be excited almost deterministically. The rapid change of the gate control voltage through the sweet spot induces a non-adiabatic population transfer from the ground to the excited state. The qubit eventually decays into the emission line emitting a single photon. The advantage of this setup is that the qubit can be excited without any coherent microwave excitation, thereby effectively increasing the usable source efficiency due to the absence of control pulse microwave photons. Since the probability of a Landau-Zener transition can be made almost close to unity by the appropriate design of parameters, this source behaves as an on-demand source of single microwave photons. The large anharmonicity of the CPB also ensures that only one excited state is involved in the transition and multiple photon output is highly improbable. Such a system has so far not been implemented and would find many applications in the areas of quantum optics, quantum computation as well as quantum communication.Keywords: quantum computing, quantum communication, quantum optics, superconducting qubits, flux qubit, charge qubit, microwave single photon source, quantum information processing
Procedia PDF Downloads 101375 Promotive Role of 5-Aminolevulinic Acid on Chromium-Induced Morphological, Photosynthetic and Oxidative Changes in Cauliflower (Brassica oleracea Botrytis L.)
Authors: Shafaqat Ali, Rehan Ahmad, Muhammad Rizwan
Abstract:
Chromium (Cr) is one of the most toxic pollutants among heavy metals that adversely affect living organisms and physiological processes in plants. The present study investigated the effect of without and with 15 mg L-1 5-Aminolevulinic acid (ALA) on morpho-physiological attributes of cauliflower (Brassica oleracea botrytis L.) under different Cr concentrations (0, 10, 100 and 200 μM) in the growth medium. Results showed that Cr stress decreased the plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Chromium stress enhanced the activities of enzymatic antioxidants, catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (POD), and caused oxidative stress, as observed by increased level of malondialdehyde (MDA), hydrogen peroxide (H2O2), electrolyte leakage (EL), in both leaves and roots of cauliflower. Chromium concentrations and total Cr uptake increased in roots, stem and leaves of plants with increasing Cr levels in the growth medium. Foliar application of ALA increased plant growth, biomass, photosynthetic pigments and gas exchange characteristics under Cr stress as compared to without ALA application. As compared to Cr stress alone, ALA application decreased the levels of MDA, H2O2 and EL while further enhanced the activities of antioxidant enzymes in both leaves and roots. Chromium concentrations and total Cr uptake decreased by the ALA application as compared to without ALA. These results showed that foliar application of ALA might be effective in reducing Cr uptake and toxicity in cauliflower.Keywords: antioxidant enzymes, cauliflower, photosynthesis, chromium, ALA, hydrogen peroxide, electrolyte leakage
Procedia PDF Downloads 303374 Using Pump as Turbine in Drinking Water Networks to Monitor and Control Water Processes Remotely
Authors: Sara Bahariderakhshan, Morteza Ahmadifar
Abstract:
Leakage is one of the most important problems that water distribution networks face which first reason is high-pressure existence. There are many approaches to control this excess pressure, which using pressure reducing valves (PRVs) or reducing pipe diameter are ones. In the other hand, Pumps are using electricity or fossil fuels to supply needed pressure in distribution networks but excess pressure are made in some branches due to topology problems and water networks’ variables therefore using pressure valves will be inevitable. Although using PRVs is inevitable but it leads to waste electricity or fuels used by pumps because PRVs just waste excess hydraulic pressure to lower it. Pumps working in reverse or Pumps as Turbine (called PaT in this article) are easily available and also effective sources of reducing the equipment cost in small hydropower plants. Urban areas of developing countries are facing increasing in area and maybe water scarcity in near future. These cities need wider water networks which make it hard to predict, control and have a better operation in the urban water cycle. Using more energy and, therefore, more pollution, slower repairing services, more user dissatisfaction and more leakage are these networks’ serious problems. Therefore, more effective systems are needed to monitor and act in these complicated networks than what is used now. In this article a new approach is proposed and evaluated: Using PAT to produce enough energy for remote valves and sensors in the water network. These sensors can be used to determine the discharge, pressure, water quality and other important network characteristics. With the help of remote valves pipeline discharge can be controlled so Instead of wasting excess hydraulic pressure which may be destructive in some cases, obtaining extra pressure from pipeline and producing clean electricity used by remote instruments is this articles’ goal. Furthermore due to increasing the area of the network there is unwanted high pressure in some critical points which is not destructive but lowering the pressure results to longer lifetime for pipeline networks without users’ dissatisfaction. This strategy proposed in this article, leads to use PaT widely for pressure containment and producing energy needed for remote valves and sensors like what happens in supervisory control and data acquisition (SCADA) systems which make it easy for us to monitor, receive data from urban water cycle and make any needed changes in discharge and pressure of pipelines easily and remotely. This is a clean project of energy production without significant environmental impacts and can be used in urban drinking water networks, without any problem for consumers which leads to a stable and dynamic network which lowers leakage and pollution.Keywords: new energies, pump as turbine, drinking water, distribution network, remote control equipments
Procedia PDF Downloads 464373 Using Pump as Turbine in Urban Water Networks to Control, Monitor, and Simulate Water Processes Remotely
Authors: Morteza Ahmadifar, Sarah Bahari Derakhshan
Abstract:
Leakage is one of the most important problems that water distribution networks face which first reason is high-pressure existence. There are many approaches to control this excess pressure, which using pressure reducing valves (PRVs) or reducing pipe diameter are ones. On the other hand, Pumps are using electricity or fossil fuels to supply needed pressure in distribution networks but excess pressure are made in some branches due to topology problems and water networks’ variables, therefore using pressure valves will be inevitable. Although using PRVs is inevitable but it leads to waste electricity or fuels used by pumps because PRVs just waste excess hydraulic pressure to lower it. Pumps working in reverse or Pumps as Turbine (called PAT in this article) are easily available and also effective sources of reducing the equipment cost in small hydropower plants. Urban areas of developing countries are facing increasing in area and maybe water scarcity in near future. These cities need wider water networks which make it hard to predict, control and have a better operation in the urban water cycle. Using more energy and therefore more pollution, slower repairing services, more user dissatisfaction and more leakage are these networks’ serious problems. Therefore, more effective systems are needed to monitor and act in these complicated networks than what is used now. In this article a new approach is proposed and evaluated: Using PAT to produce enough energy for remote valves and sensors in the water network. These sensors can be used to determine the discharge, pressure, water quality and other important network characteristics. With the help of remote valves pipeline discharge can be controlled so Instead of wasting excess hydraulic pressure which may be destructive in some cases, obtaining extra pressure from pipeline and producing clean electricity used by remote instruments is this articles’ goal. Furthermore, due to increasing the area of network there is unwanted high pressure in some critical points which is not destructive but lowering the pressure results to longer lifetime for pipeline networks without users’ dissatisfaction. This strategy proposed in this article, leads to use PAT widely for pressure containment and producing energy needed for remote valves and sensors like what happens in supervisory control and data acquisition (SCADA) systems which make it easy for us to monitor, receive data from urban water cycle and make any needed changes in discharge and pressure of pipelines easily and remotely. This is a clean project of energy production without significant environmental impacts and can be used in urban drinking water networks, without any problem for consumers which leads to a stable and dynamic network which lowers leakage and pollution.Keywords: clean energies, pump as turbine, remote control, urban water distribution network
Procedia PDF Downloads 396372 Low-Voltage and Low-Power Bulk-Driven Continuous-Time Current-Mode Differentiator Filters
Authors: Ravi Kiran Jaladi, Ezz I. El-Masry
Abstract:
Emerging technologies such as ultra-wide band wireless access technology that operate at ultra-low power present several challenges due to their inherent design that limits the use of voltage-mode filters. Therefore, Continuous-time current-mode (CTCM) filters have become very popular in recent times due to the fact they have a wider dynamic range, improved linearity, and extended bandwidth compared to their voltage-mode counterparts. The goal of this research is to develop analog filters which are suitable for the current scaling CMOS technologies. Bulk-driven MOSFET is one of the most popular low power design technique for the existing challenges, while other techniques have obvious shortcomings. In this work, a CTCM Gate-driven (GD) differentiator has been presented with a frequency range from dc to 100MHz which operates at very low supply voltage of 0.7 volts. A novel CTCM Bulk-driven (BD) differentiator has been designed for the first time which reduces the power consumption multiple times that of GD differentiator. These GD and BD differentiator has been simulated using CADENCE TSMC 65nm technology for all the bilinear and biquadratic band-pass frequency responses. These basic building blocks can be used to implement the higher order filters. A 6th order cascade CTCM Chebyshev band-pass filter has been designed using the GD and BD techniques. As a conclusion, a low power GD and BD 6th order chebyshev stagger-tuned band-pass filter was simulated and all the parameters obtained from all the resulting realizations are analyzed and compared. Monte Carlo analysis is performed for both the 6th order filters and the results of sensitivity analysis are presented.Keywords: bulk-driven (BD), continuous-time current-mode filters (CTCM), gate-driven (GD)
Procedia PDF Downloads 261371 Life Cycle Assessment of Rare Earth Metals Production: Hotspot Analysis of Didymium Electrolysis Process
Authors: Sandra H. Fukurozaki, Andre L. N. Silva, Joao B. F. Neto, Fernando J. G. Landgraf
Abstract:
Nowadays, the rare earth (RE) metals play an important role in emerging technologies that are crucial for the decarbonisation of the energy sector. Their unique properties have led to increasing clean energy applications, such as wind turbine generators, and hybrid and electric vehicles. Despite the substantial media coverage that has recently surrounded the mining and processing of rare earth metals, very little quantitative information is available concerning their subsequent life stages, especially related to the metallic production of didymium (Nd-Pr) in fluoride molten salt system. Here we investigate a gate to gate scale life cycle assessment (LCA) of the didymium electrolysis based on three different scenarios of operational conditions. The product system is modeled with SimaPro Analyst 8.0.2 software, and IMPACT 2002+ was applied as an impact assessment tool. In order to develop a life cycle inventories built in software databases, patents, and other published sources together with energy/mass balance were utilized. Analysis indicates that from the 14 midpoint impact categories evaluated, the global warming potential (GWP) is the main contributors to the total environmental burden, ranging from 2.7E2 to 3.2E2 kg CO2eq/kg Nd-Pr. At the damage step assessment, the results suggest that slight changes in materials flows associated with enhancement of current efficiency (between 2.5% and 5%), could lead a reduction up to 12% and 15% of human health and climate change damage, respectively. Additionally, this paper highlights the knowledge gaps and future research efforts needing to understand the environmental impacts of Nd-Pr electrolysis process from the life cycle perspective.Keywords: didymium electrolysis, environmental impacts, life cycle assessment, rare earth metals
Procedia PDF Downloads 189370 An Assessment of Airport Collaborative Decision-Making System Using Predictive Maintenance
Authors: Faruk Aras, Melih Inal, Tansel Cinar
Abstract:
The coordination of airport staff especially in the operations and maintenance departments is important for the airport operation. As a result, this coordination will increase the efficiency in all operation. Therefore, a Collaborative Decision-Making (CDM) system targets on improving the overall productivity of all operations by optimizing the use of resources and improving the predictability of actions. Enlarged productivity can be of major benefit for all airport operations. It also increases cost-efficiency. This study explains how predictive maintenance using IoT (Internet of Things), predictive operations and the statistical data such as Mean Time To Failure (MTTF) improves airport terminal operations and utilize airport terminal equipment in collaboration with collaborative decision making system/Airport Operation Control Center (AOCC). Data generated by the predictive maintenance methods is retrieved and analyzed by maintenance managers to predict when a problem is about to occur. With that information, maintenance can be scheduled when needed. As an example, AOCC operator would have chance to assign a new gate that towards to this gate all the equipment such as travellator, elevator, escalator etc. are operational if the maintenance team is in collaboration with AOCC since maintenance team is aware of the health of the equipment because of predictive maintenance methods. Applying predictive maintenance methods based on analyzing the health of airport terminal equipment dramatically reduces the risk of downtime by on time repairs. We can classify the categories as high priority calls for urgent repair action, as medium priority requires repair at the earliest opportunity, and low priority allows maintenance to be scheduled when convenient. In all cases, identifying potential problems early resulted in better allocation airport terminal resources by AOCC.Keywords: airport, predictive maintenance, collaborative decision-making system, Airport Operation Control Center (AOCC)
Procedia PDF Downloads 365369 Hardware Implementation on Field Programmable Gate Array of Two-Stage Algorithm for Rough Set Reduct Generation
Authors: Tomasz Grzes, Maciej Kopczynski, Jaroslaw Stepaniuk
Abstract:
The rough sets theory developed by Prof. Z. Pawlak is one of the tools that can be used in the intelligent systems for data analysis and processing. Banking, medicine, image recognition and security are among the possible fields of utilization. In all these fields, the amount of the collected data is increasing quickly, but with the increase of the data, the computation speed becomes the critical factor. Data reduction is one of the solutions to this problem. Removing the redundancy in the rough sets can be achieved with the reduct. A lot of algorithms of generating the reduct were developed, but most of them are only software implementations, therefore have many limitations. Microprocessor uses the fixed word length, consumes a lot of time for either fetching as well as processing of the instruction and data; consequently, the software based implementations are relatively slow. Hardware systems don’t have these limitations and can process the data faster than a software. Reduct is the subset of the decision attributes that provides the discernibility of the objects. For the given decision table there can be more than one reduct. Core is the set of all indispensable condition attributes. None of its elements can be removed without affecting the classification power of all condition attributes. Moreover, every reduct consists of all the attributes from the core. In this paper, the hardware implementation of the two-stage greedy algorithm to find the one reduct is presented. The decision table is used as an input. Output of the algorithm is the superreduct which is the reduct with some additional removable attributes. First stage of the algorithm is calculating the core using the discernibility matrix. Second stage is generating the superreduct by enriching the core with the most common attributes, i.e., attributes that are more frequent in the decision table. Described above algorithm has two disadvantages: i) generating the superreduct instead of reduct, ii) additional first stage may be unnecessary if the core is empty. But for the systems focused on the fast computation of the reduct the first disadvantage is not the key problem. The core calculation can be achieved with a combinational logic block, and thus add respectively little time to the whole process. Algorithm presented in this paper was implemented in Field Programmable Gate Array (FPGA) as a digital device consisting of blocks that process the data in a single step. Calculating the core is done by the comparators connected to the block called 'singleton detector', which detects if the input word contains only single 'one'. Calculating the number of occurrences of the attribute is performed in the combinational block made up of the cascade of the adders. The superreduct generation process is iterative and thus needs the sequential circuit for controlling the calculations. For the research purpose, the algorithm was also implemented in C language and run on a PC. The times of execution of the reduct calculation in a hardware and software were considered. Results show increase in the speed of data processing.Keywords: data reduction, digital systems design, field programmable gate array (FPGA), reduct, rough set
Procedia PDF Downloads 220368 Design and Implementation of 3kVA Grid-Tied Transformerless Power Inverter for Solar Photovoltaic Application
Authors: Daniel O. Johnson, Abiodun A. Ogunseye, Aaron Aransiola, Majors Samuel
Abstract:
Power Inverter is a very important device in renewable energy use particularly for solar photovoltaic power application because it is the effective interface between the DC power generator and the load or the grid. Transformerless inverter is getting more and more preferred to the power converter with galvanic isolation transformer and may eventually supplant it. Transformerless inverter offers advantages of improved DC to AC conversion and power delivery efficiency; and reduced system cost, weight and complexity. This work presents thorough analysis of the design and prototyping of 3KVA grid-tie transformerless inverter. The inverter employs electronic switching method with minimised heat generation in the system and operates based on the principle of pulse-width modulation (PWM). The design is such that it can take two inputs, one from PV arrays and the other from Battery Energy Storage BES and addresses the safety challenge of leakage current. The inverter system was designed around microcontroller system, modeled with Proteus® software for simulation and testing of the viability of the designed inverter circuit. The firmware governing the operation of the grid-tied inverter is written in C language and was developed using MicroC software by Mikroelectronica® for writing sine wave signal code for synchronization to the grid. The simulation results show that the designed inverter circuit performs excellently with very high efficiency, good quality sinusoidal output waveform, negligible harmonics and gives very stable performance under voltage variation from 36VDC to 60VDC input. The prototype confirmed the simulated results and was successfully synchronized with the utility supply. The comprehensive analyses of the circuit design, the prototype and explanation on overall performance will be presented.Keywords: grid-tied inverter, leakage current, photovoltaic system, power electronic, transformerless inverter
Procedia PDF Downloads 292367 Bacteriological Quality of Commercially Prepared Fermented Ogi (AKAMU) Sold in Some Parts of South Eastern Nigeria
Authors: Alloysius C. Ogodo, Ositadinma C. Ugbogu, Uzochukwu G. Ekeleme
Abstract:
Food poisoning and infection by bacteria are of public health significance to both developing and developed countries. Samples of ogi (akamu) prepared from white and yellow variety of maize sold in Uturu and Okigwe were analyzed together with the laboratory prepared ogi for microbial quality using the standard microbiological methods. The analyses showed that both white and yellow variety had total bacterial counts (cfu/g) of 4.0 ×107 and 3.9 x 107 for the laboratory prepared ogi while the commercial ogi had 5.2 x 107 and 4.9 x107, 4.9 x107 and 4.5 x107, 5.4 x107 and 5.0 x107 for Eke-Okigwe, Up-gate and Nkwo-Achara market respectively. The Staphylococcal counts ranged from 2.0 x 102 to 5.0 x102 and 1.0 x 102 to 4.0 x102 for the white and yellow variety from the different markets while Staphylococcal growth was not recorded on the laboratory prepared ogi. The laboratory prepared ogi had no Coliform growth while the commercially prepared ogi had counts of 0.5 x103 to 1.6 x 103 for white variety and 0.3 x 103 to 1.1 x103 for yellow variety respectively. The Lactic acid bacterial count of 3.5x106 and 3.0x106 was recorded for the laboratory ogi while the commercially prepared ogi ranged from 3.2x106 to 4.2x106 (white variety) and 3.0 x106 to 3.9 x106 (yellow). The presence of bacteria isolates from the commercial and laboratory fermented ogi showed that Lactobacillus sp, Leuconostoc sp and Citrobacter sp were present in all the samples, Micrococcus sp and Klebsiella sp were isolated from Eke-Okigwe and ABSU-up-gate markets varieties respectively, E. coli and Staphylococcus sp were present in Eke-Okigwe and Nkwo-Achara markets while Salmonella sp were isolated from the three markets. Hence, there are chances of contracting food borne diseases from commercially prepared ogi. Therefore, there is the need for sanitary measures in the production of fermented cereals so as to minimize the rate of food borne pathogens during processing and storage.Keywords: ogi, fermentation, bacterial quality, lactic acid bacteria, maize
Procedia PDF Downloads 408366 Estimation of Mobility Parameters and Threshold Voltage of an Organic Thin Film Transistor Using an Asymmetric Capacitive Test Structure
Authors: Rajesh Agarwal
Abstract:
Carrier mobility at the organic/insulator interface is essential to the performance of organic thin film transistors (OTFT). The present work describes estimation of field dependent mobility (FDM) parameters and the threshold voltage of an OTFT using a simple, easy to fabricate two terminal asymmetric capacitive test structure using admittance measurements. Conventionally, transfer characteristics are used to estimate the threshold voltage in an OTFT with field independent mobility (FIDM). Yet, this technique breaks down to give accurate results for devices with high contact resistance and having field dependent mobility. In this work, a new technique is presented for characterization of long channel organic capacitor (LCOC). The proposed technique helps in the accurate estimation of mobility enhancement factor (γ), the threshold voltage (V_th) and band mobility (µ₀) using capacitance-voltage (C-V) measurement in OTFT. This technique also helps to get rid of making short channel OTFT or metal-insulator-metal (MIM) structures for making C-V measurements. To understand the behavior of devices and ease of analysis, transmission line compact model is developed. The 2-D numerical simulation was carried out to illustrate the correctness of the model. Results show that proposed technique estimates device parameters accurately even in the presence of contact resistance and field dependent mobility. Pentacene/Poly (4-vinyl phenol) based top contact bottom-gate OTFT’s are fabricated to illustrate the operation and advantages of the proposed technique. Small signal of frequency varying from 1 kHz to 5 kHz and gate potential ranging from +40 V to -40 V have been applied to the devices for measurement.Keywords: capacitance, mobility, organic, thin film transistor
Procedia PDF Downloads 165365 Prophylactic Replacement of Voice Prosthesis: A Study to Predict Prosthesis Lifetime
Authors: Anne Heirman, Vincent van der Noort, Rob van Son, Marije Petersen, Lisette van der Molen, Gyorgy Halmos, Richard Dirven, Michiel van den Brekel
Abstract:
Objective: Voice prosthesis leakage significantly impacts laryngectomies patients' quality of life, causing insecurity and frequent unplanned hospital visits and costs. In this study, the concept of prophylactic voice prosthesis replacement was explored to prevent leakages. Study Design: A retrospective cohort study. Setting: Tertiary hospital. Methods: Device lifetimes and voice prosthesis replacements of a retrospective cohort, including all patients with laryngectomies between 2000 and 2012 in the Netherlands Cancer Institute, were used to calculate the number of needed voice prostheses per patient per year when preventing 70% of the leakages by prophylactic replacement. Various strategies for the timing of prophylactic replacement were considered: Adaptive strategies based on the individual patient’s history of replacement and fixed strategies based on the results of patients with similar voice prosthesis or treatment characteristics. Results: Patients used a median of 3.4 voice prostheses per year (range 0.1-48.1). We found a high inter-and intrapatient variability in device lifetime. When applying prophylactic replacement, this would become a median of 9.4 voice prostheses per year, which means replacement every 38 days, implying more than six additional voice prostheses per patient per year. The individual adaptive model showed that preventing 70% of the leakages was impossible for most patients, and only a median of 25% can be prevented. Monte-Carlo simulations showed that prophylactic replacement is not feasible due to the high Coefficient of Variation (Standard Deviation/Mean) in device lifetime. Conclusion: Based on our simulations, prophylactic replacement of voice prostheses is not feasible due to high inter-and intrapatient variation in device lifetime.Keywords: voice prosthesis, voice rehabilitation, total laryngectomy, prosthetic leakage, device lifetime
Procedia PDF Downloads 131364 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 193363 EDTA Assisted Phytoremediation of Cadmium by Enhancing Growth and Antioxidant Defense System in Brassica napus L.
Authors: Mujahid Farid, Shafaqat Ali, Muhammad Bilal Shakoor
Abstract:
Heavy metals pollution of soil is a prevalent global problem and oilseed rape (Brassica napus L.) are considered useful for the restoration of metal contaminated soils. Phytoextraction is an in-situ environment-friendly technique for the clean-up of contaminated soils. Response to cadmium (Cd) toxicity in combination with a chelator, Ethylenediamminetetraacetic acid (EDTA) was studied in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 10, and 50 µM) and two levels of EDTA (0 and 2.5 mM). Cd decreased plant growth, biomass and chlorophyll concentrations while the application of EDTA enhanced plant growth by reducing Cd-induced effects in Cd-stressed plants. Significant decrease in photosynthetic parameters was found by the Cd alone. Addition of EDTA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. Cd at 10 and 50 μM significantly increased electrolyte leakage, the production of hydrogen peroxidase (H2O2) and malondialdehyde (MDA) and a significant reduction was observed in the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and superoxide dismutase under Cd stress plants. Application of EDTA at the rate of 2.5 mM alone and with combination of Cd increased the antioxidant enzymes activities and reduced the electrolyte leakage and production of H2O2 and MDA. Oilseed rape (Brassica napus L.) actively accumulated Cd in roots, stems and leaves and the addition of EDTA boosted the uptake and accumulation of Cd in oil seed rape by dissociating Cd in culture media. The present results suggest that under 8 weeks Cd-induced stress, application of EDTA significantly improve plant growth, chlorophyll content, photosynthetic, gas exchange capacity, improving enzymes activities and increased the metal uptake in roots, stems and leaves of oilseed rape (Brassica napus L.) respectively.Keywords: antioxidant enzymes, cadmium, chelator, EDTA, growth, oilseed rape
Procedia PDF Downloads 393362 Ultrasound as an Aid to Predict the Onset of Leaking in Dengue Haemorrhagic Fever: Experience of a Dengue Treatment Facility in South Asia
Authors: Hasn Perera, Is Almeida, Hnk Perera, Mzf Mohammed, Ade Silva, H. Wijesinghe, Ajal Fernando
Abstract:
Introduction: Dengue is a major Public Health burden of two clinical entities, Dengue Fever & Dengue Haemorrhagic Fever (DHF). The vast majority of dengue deaths occur in DHF patients, where the diagnosis hinges on the presence of fluid leakage. Limited Ultrasound Scans (USS) of chest and abdomen are used widely at Centre for Clinical Management of Dengue & Dengue Haemorrhagic Fever (CCMDDHF), as the primary method for detecting fluid leaking in DHF. This study analyses the relationship between haematological and USS findings at the onset of leaking and to further determine the usefulness of ultrasound in diagnosing DHF. Methods: A prospective analysis of 80 serologically confirmed dengue patients initially admitted to a General Medical and Paediatric wards who were subsequently transferred to the CCMDDHF from March to September 2017 were analysed. In addition to repeated blood counts and capillary haematocrits’, serial USS were done to detect the onset fluid leaking by three competent and experienced doctors at CCMDDHF. Results: 80 patients (male: female: 38:42) with a mean age of 20 years (SD ±16.8, range 3-74) were evaluated. Dropping of platelet counts below 100,000 and haematocrit rise towards 20% started 4±1.3 day of fever with a mean platelet value of 69x103(range17-98x103). Gallbladder wall thickening was the commonest (98.7%) USS finding followed by fluid in hepato-renal pouch (95%), pelvic fluid (58.7%), right-sided pleural effusion (35%), bilateral effusions (7.5%). USS evidence of plasma leakage was detected in 11.25 %( n=9) of DHF cases from 1 day before significant haematocrit rise was noted. 35 (43.7%) patients with lowering platelets and haematocrit rise showed no objective evidence of plasma leaking on ultrasound scan. Conclusion: This outbreak underscores the importance of USS as a useful, sensitive and cost-effective tool for early diagnosis of suspected DHF cases, facilitating the tracking of progress of leaking and management of epidemics.Keywords: dengue, ultrasound, plasma leaking, South Asia
Procedia PDF Downloads 236361 Localized Recharge Modeling of a Coastal Aquifer from a Dam Reservoir (Korba, Tunisia)
Authors: Nejmeddine Ouhichi, Fethi Lachaal, Radhouane Hamdi, Olivier Grunberger
Abstract:
Located in Cap Bon peninsula (Tunisia), the Lebna dam was built in 1987 to balance local water salt intrusion taking place in the coastal aquifer of Korba. The first intention was to reduce coastal groundwater over-pumping by supplying surface water to a large irrigation system. The unpredicted beneficial effect was recorded with the occurrence of a direct localized recharge to the coastal aquifer by leakage through the geological material of the southern bank of the lake. The hydrological balance of the reservoir dam gave an estimation of the annual leakage volume, but dynamic processes and sound quantification of recharge inputs are still required to understand the localized effect of the recharge in terms of piezometry and quality. Present work focused on simulating the recharge process to confirm the hypothesis, and established a sound quantification of the water supply to the coastal aquifer and extend it to multi-annual effects. A spatial frame of 30km² was used for modeling. Intensive outcrops and geophysical surveys based on 68 electrical resistivity soundings were used to characterize the aquifer 3D geometry and the limit of the Plio-quaternary geological material concerned by the underground flow paths. Permeabilities were determined using 17 pumping tests on wells and piezometers. Six seasonal piezometric surveys on 71 wells around southern reservoir dam banks were performed during the 2019-2021 period. Eight monitoring boreholes of high frequency (15min) piezometric data were used to examine dynamical aspects. Model boundary conditions were specified using the geophysics interpretations coupled with the piezometric maps. The dam-groundwater flow model was performed using Visual MODFLOW software. Firstly, permanent state calibration based on the first piezometric map of February 2019 was established to estimate the permanent flow related to the different reservoir levels. Secondly, piezometric data for the 2019-2021 period were used for transient state calibration and to confirm the robustness of the model. Preliminary results confirmed the temporal link between the reservoir level and the localized recharge flow with a strong threshold effect for levels below 16 m.a.s.l. The good agreement of computed flow through recharge cells on the southern banks and hydrological budget of the reservoir open the path to future simulation scenarios of the dilution plume imposed by the localized recharge. The dam reservoir-groundwater flow-model simulation results approve a potential for storage of up to 17mm/year in existing wells, under gravity-feed conditions during level increases on the reservoir into the three years of operation. The Lebna dam groundwater flow model characterized a spatiotemporal relation between groundwater and surface water.Keywords: leakage, MODFLOW, saltwater intrusion, surface water-groundwater interaction
Procedia PDF Downloads 138360 Corpus Stylistics and Multidimensional Analysis for English for Specific Purposes Teaching and Assessment
Authors: Svetlana Strinyuk, Viacheslav Lanin
Abstract:
Academic English has become lingua franca for international scientific community which stimulates universities to introduce English for Specific Purposes (EAP) courses into curriculum. Teaching L2 EAP students might be fulfilled with corpus technologies and digital stylistics. A special software developed to reach the manifold task of teaching, assessing and researching academic writing of L2 students on basis of digital stylistics and multidimensional analysis was created. A set of annotations (style markers) – grammar, lexical and syntactic features most significant of academic writing was built. Contrastive comparison of two corpora “model corpus”, subject domain limited papers published by competent writers in leading academic journals, and “students’ corpus”, subject domain limited papers written by last year students allows to receive data about the features of academic writing underused or overused by L2 EAP student. Both corpora are tagged with a special software created in GATE Developer. Style markers within the framework of research might be replaced depending on the relevance and validity of the result which is achieved from research corpora. Thus, selecting relevant (high frequency) style markers and excluding less relevant, i.e. less frequent annotations, high validity of the model is achieved. Software allows to compare the data received from processing model corpus to students’ corpus and get reports which can be used in teaching and assessment. The less deviation from the model corpus students demonstrates in their writing the higher is academic writing skill acquisition. The research showed that several style markers (hedging devices) were underused by L2 EAP students whereas lexical linking devices were used excessively. A special software implemented into teaching of EAP courses serves as a successful visual aid, makes assessment more valid; it is indicative of the degree of writing skill acquisition, and provides data for further research.Keywords: corpus technologies in EAP teaching, multidimensional analysis, GATE Developer, corpus stylistics
Procedia PDF Downloads 202359 Protection of the Valves against AC Faults Using the Fast-Acting HVDC Controls
Authors: Mesbah Tarek, Kelaiaia Samia, Chiheb Sofien, Kelaiaia Mounia Samira, Labar Hocine
Abstract:
Short circuit causes important damage in power systems. The aim of this paper is the investigation of the effect of short circuit at the AC side inverter in HVDC transmission line. The cutoff of HVDC transmission line implies important economic losses. In this paper it is proposed an efficient procedure which can protect and eliminate the fault quickly. The theoretical development and simulation are well detailed and illustrated.Keywords: AC inverter, HVDC, short circuit, switcher gate, power system
Procedia PDF Downloads 563358 Effect of Oil Contamination on the Liquefaction Behavior of Sandy Soils
Authors: Seyed Abolhasan Naeini, Mohammad Mahdi Shojaedin
Abstract:
Oil leakage from the pipelines and the tanks carrying them, or during oil extraction, could lead to the changes in the characteristics and properties of the soil. In this paper, conducting a series of experimental cyclic triaxial tests, the effects of oil contamination on the liquefaction potential of sandy soils is investigated. The studied specimens are prepared by mixing the Firoozkuh sand with crude oil in 4, 8 and 12 percent by soil dry weight. The results show that the oil contamination up to 8% causes an increase in the soil liquefaction resistance and then with increase in the contamination, the liquefaction resistance decreases.Keywords: cyclic triaxial test, liquefaction resistance, oil contamination, sandy soil
Procedia PDF Downloads 530357 Exceptional Cost and Time Optimization with Successful Leak Repair and Restoration of Oil Production: West Kuwait Case Study
Authors: Nasser Al-Azmi, Al-Sabea Salem, Abu-Eida Abdullah, Milan Patra, Mohamed Elyas, Daniel Freile, Larisa Tagarieva
Abstract:
Well intervention was done along with Production Logging Tools (PLT) to detect sources of water, and to check well integrity for two West Kuwait oil wells started to produce 100 % water. For the first well, to detect the source of water, PLT was performed to check the perforations, no production observed from the bottom two perforation intervals, and an intake of water was observed from the top most perforation. Then a decision was taken to extend the PLT survey from tag depth to the Y-tool. For the second well, the aim was to detect the source of water and if there was a leak in the 7’’liner in front of the upper zones. Data could not be recorded in flowing conditions due to the casing deformation at almost 8300 ft. For the first well from the interpretation of PLT and well integrity data, there was a hole in the 9 5/8'' casing from 8468 ft to 8494 ft producing almost the majority of water, which is 2478 bbl/d. The upper perforation from 10812 ft to 10854 ft was taking 534 stb/d. For the second well, there was a hole in the 7’’liner from 8303 ft MD to 8324 ft MD producing 8334.0 stb/d of water with an intake zone from10322.9-10380.8 ft MD taking the whole fluid. To restore the oil production, W/O rig was mobilized to prevent dump flooding, and during the W/O, the leaking interval was confirmed for both wells. The leakage was cement squeezed and tested at 900-psi positive pressure and 500-psi drawdown pressure. The cement squeeze job was successful. After W/O, the wells kept producing for cleaning, and eventually, the WC reduced to 0%. Regular PLT and well integrity logs are required to study well performance, and well integrity issues, proper cement behind casing is essential to well longevity and well integrity, and the presence of the Y-tool is essential as monitoring of well parameters and ESP to facilitate well intervention tasks. Cost and time optimization in oil and gas and especially during rig operations is crucial. PLT data quality and the accuracy of the interpretations contributed a lot to identify the leakage interval accurately and, in turn, saved a lot of time and reduced the repair cost with almost 35 to 45 %. The added value here was more related to the cost reduction and effective and quick proper decision making based on the economic environment.Keywords: leak, water shut-off, cement, water leak
Procedia PDF Downloads 117356 Area-Efficient FPGA Implementation of an FFT Processor by Reusing Butterfly Units
Authors: Atin Mukherjee, Amitabha Sinha, Debesh Choudhury
Abstract:
Fast Fourier transform (FFT) of large-number of samples requires larger hardware resources of field programmable gate arrays and it asks for more area as well as power. In this paper, an area efficient architecture of FFT processor is proposed, that reuses the butterfly units more than once. The FFT processor is emulated and the results are validated on Virtex-6 FPGA. The proposed architecture outperforms the conventional architecture of a N-point FFT processor in terms of area which is reduced by a factor of log_N(2) with the negligible increase of processing time.Keywords: FFT, FPGA, resource optimization, butterfly units
Procedia PDF Downloads 523355 A Bibliometric Analysis of Trends in Change Management Sciences
Authors: Thomas Lauer
Abstract:
The paper aims to give an overview of change management research by using bibliometric methodology. Based on research papers of the last decade, which are listed on Research Gate, a multidimensional categorization is done. Considering categories like topic (e.g., success factors), industry, or research methodology, the development of the discipline is traced and, in a second step, confronted with external developments of the business environment, such as climate change, gen Z or COVID, to name a few. Based on these findings, a final evaluation concerning the thematical fit of previous research topics is also made, as well as a preview of likely future trends in change management sciences.Keywords: change management, bibliometrics, scientific trends, research topics
Procedia PDF Downloads 64354 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 248353 Investigation of the Flow in Impeller Sidewall Gap of a Centrifugal Pump Using CFD
Authors: Mohammadreza DaqiqShirazi, Rouhollah Torabi, Alireza Riasi, Ahmad Nourbakhsh
Abstract:
In this paper, the flow in a sidewall gap of an impeller which belongs to a centrifugal pump is studied using numerical method. The flow in sidewall gap forms internal leakage and is the source of “disk friction loss” which is the most important cause of reduced efficiency in low specific speed centrifugal pumps. Simulation is done using CFX software and a high quality mesh, therefore the modeling error has been reduced. Navier-Stokes equations have been solved for this domain. In order to predict the turbulence effects the SST model has been employed.Keywords: numerical study, centrifugal pumps, disk friction loss, sidewall gap
Procedia PDF Downloads 533352 Development of 90y-Chitosan Complex for Radiosynovectomy
Authors: A. Mirzaei, S. Zolghadri, M. Athari-Allaf, H. Yousefnia, A. R. Jalilian
Abstract:
Rheumatoid arthritis is the most common autoimmune disease, leading to the destruction of the joints. The aim of this study was the preparation of 90Y-chitosan complex as a novel agent for radiosynovectomy. The complex was prepared in the diluted acetic acid solution. At the optimized condition, the radiochemical purity of higher than 99% was obtained by ITLC method on Whatman No. 1 and by using a mixture of methanol/water/acetic acid (4:4:2) as the mobile phase. The complex was stable in acidic media (pH=3) and its radiochemical purity was above 98% even after 48 hours. The biodistribution data in rats showed that there was no significant leakage of the injected activity even after 48 h. Considering all of the excellent features of the complex, 90Y-chitosan can be used to manipulate synovial inflammation effectively.Keywords: chitosan, Y-90, radiosynovectomy, biodistribution
Procedia PDF Downloads 484351 Portable and Parallel Accelerated Development Method for Field-Programmable Gate Array (FPGA)-Central Processing Unit (CPU)- Graphics Processing Unit (GPU) Heterogeneous Computing
Authors: Nan Hu, Chao Wang, Xi Li, Xuehai Zhou
Abstract:
The field-programmable gate array (FPGA) has been widely adopted in the high-performance computing domain. In recent years, the embedded system-on-a-chip (SoC) contains coarse granularity multi-core CPU (central processing unit) and mobile GPU (graphics processing unit) that can be used as general-purpose accelerators. The motivation is that algorithms of various parallel characteristics can be efficiently mapped to the heterogeneous architecture coupled with these three processors. The CPU and GPU offload partial computationally intensive tasks from the FPGA to reduce the resource consumption and lower the overall cost of the system. However, in present common scenarios, the applications always utilize only one type of accelerator because the development approach supporting the collaboration of the heterogeneous processors faces challenges. Therefore, a systematic approach takes advantage of write-once-run-anywhere portability, high execution performance of the modules mapped to various architectures and facilitates the exploration of design space. In this paper, A servant-execution-flow model is proposed for the abstraction of the cooperation of the heterogeneous processors, which supports task partition, communication and synchronization. At its first run, the intermediate language represented by the data flow diagram can generate the executable code of the target processor or can be converted into high-level programming languages. The instantiation parameters efficiently control the relationship between the modules and computational units, including two hierarchical processing units mapping and adjustment of data-level parallelism. An embedded system of a three-dimensional waveform oscilloscope is selected as a case study. The performance of algorithms such as contrast stretching, etc., are analyzed with implementations on various combinations of these processors. The experimental results show that the heterogeneous computing system with less than 35% resources achieves similar performance to the pure FPGA and approximate energy efficiency.Keywords: FPGA-CPU-GPU collaboration, design space exploration, heterogeneous computing, intermediate language, parameterized instantiation
Procedia PDF Downloads 118350 Evaluating Global ‘Thing’ Security of Consumer Products
Authors: Achutha Raman
Abstract:
Today's brave new world features a bonanza of digitally interconnected products, or ‘things,’ that improve convenience, possibilities, and in some cases efficiency for consumers. Nonetheless, even as the market accelerates, this Internet of ‘things’ is subject to substantial leakage of consumer personal data. First defining the fluid concept of ‘things,’ this paper subsequently uses case studies taken from the EU, Asia, and the US, to highlight large gaps and comprehensively evaluate the state of security for consumer ‘things.’ Ultimately, this paper offers several ways of improving the present status quo, and especially focuses on an evaluative approach that augments the standard mechanism of Firmware Over the Air Updates, and ought to be easily implementable.Keywords: cybersecurity, FOTA, Internet of Things, transnational privacy
Procedia PDF Downloads 218349 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning
Procedia PDF Downloads 232348 Application of Flow Cytometry for Detection of Influence of Abiotic Stress on Plants
Authors: Dace Grauda, Inta Belogrudova, Alexei Katashev, Linda Lancere, Isaak Rashal
Abstract:
The goal of study was the elaboration of easy applicable flow cytometry method for detection of influence of abiotic stress factors on plants, which could be useful for detection of environmental stresses in urban areas. The lime tree Tillia vulgaris H. is a popular tree species used for urban landscaping in Europe and is one of the main species of street greenery in Riga, Latvia. Tree decline and low vitality has observed in the central part of Riga. For this reason lime trees were select as a model object for the investigation. During the period of end of June and beginning of July 12 samples from different urban environment locations as well as plant material from a greenhouse were collected. BD FACSJazz® cell sorter (BD Biosciences, USA) with flow cytometer function was used to test viability of plant cells. The method was based on changes of relative fluorescence intensity of cells in blue laser (488 nm) after influence of stress factors. SpheroTM rainbow calibration particles (3.0–3.4 μm, BD Biosciences, USA) in phosphate buffered saline (PBS) were used for calibration of flow cytometer. BD PharmingenTM PBS (BD Biosciences, USA) was used for flow cytometry assays. The mean fluorescence intensity information from the purified cell suspension samples was recorded. Preliminary, multiple gate sizes and shapes were tested to find one with the lowest CV. It was found that low CV can be obtained if only the densest part of plant cells forward scatter/side scatter profile is analysed because in this case plant cells are most similar in size and shape. The young pollen cells in one nucleus stage were found as the best for detection of influence of abiotic stress. For experiments only fresh plant material was used– the buds of Tillia vulgaris with diameter 2 mm. For the cell suspension (in vitro culture) establishment modified protocol of microspore culture was applied. The cells were suspended in the MS (Murashige and Skoog) medium. For imitation of dust of urban area SiO2 nanoparticles with concentration 0.001 g/ml were dissolved in distilled water. Into 10 ml of cell suspension 1 ml of SiO2 nanoparticles suspension was added, then cells were incubated in speed shaking regime for 1 and 3 hours. As a stress factor the irradiation of cells for 20 min by UV was used (Hamamatsu light source L9566-02A, L10852 lamp, A10014-50-0110), maximum relative intensity (100%) at 365 nm and at ~310 nm (75%). Before UV irradiation the suspension of cells were placed onto a thin layer on a filter paper disk (diameter 45 mm) in a Petri dish with solid MS media. Cells without treatment were used as a control. Experiments were performed at room temperature (23-25 °C). Using flow cytometer BS FACS Software cells plot was created to determine the densest part, which was later gated using oval-shaped gate. Gate included from 95 to 99% of all cells. To determine relative fluorescence of cells logarithmic fluorescence scale in arbitrary fluorescence units were used. 3x103 gated cells were analysed from the each sample. The significant differences were found among relative fluorescence of cells from different trees after treatment with SiO2 nanoparticles and UV irradiation in comparison with the control.Keywords: flow cytometry, fluorescence, SiO2 nanoparticles, UV irradiation
Procedia PDF Downloads 415347 FPGA Implementation of the BB84 Protocol
Authors: Jaouadi Ikram, Machhout Mohsen
Abstract:
The development of a quantum key distribution (QKD) system on a field-programmable gate array (FPGA) platform is the subject of this paper. A quantum cryptographic protocol is designed based on the properties of quantum information and the characteristics of FPGAs. The proposed protocol performs key extraction, reconciliation, error correction, and privacy amplification tasks to generate a perfectly secret final key. We modeled the presence of the spy in our system with a strategy to reveal some of the exchanged information without being noticed. Using an FPGA card with a 100 MHz clock frequency, we have demonstrated the evolution of the error rate as well as the amounts of mutual information (between the two interlocutors and that of the spy) passing from one step to another in the key generation process.Keywords: QKD, BB84, protocol, cryptography, FPGA, key, security, communication
Procedia PDF Downloads 184