Search results for: deep wells
2307 Correlation between Speech Emotion Recognition Deep Learning Models and Noises
Authors: Leah Lee
Abstract:
This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16
Procedia PDF Downloads 782306 Deep Reinforcement Learning Model for Autonomous Driving
Authors: Boumaraf Malak
Abstract:
The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning
Procedia PDF Downloads 852305 Evaluation of Formability of AZ61 Magnesium Alloy at Elevated Temperatures
Authors: Ramezani M., Neitzert T.
Abstract:
This paper investigates mechanical properties and formability of the AZ61 magnesium alloy at high temperatures. Tensile tests were performed at elevated temperatures of up to 400ºC. The results showed that as temperature increases, yield strength and ultimate tensile strength decrease significantly, while the material experiences an increase in ductility (maximum elongation before break). A finite element model has been developed to further investigate the formability of the AZ61 alloy by deep drawing a square cup. Effects of different process parameters such as punch and die geometry, forming speed and temperature as well as blank-holder force on deep drawability of the AZ61 alloy were studied and optimum values for these parameters are achieved which can be used as a design guide for deep drawing of this alloy.Keywords: AZ61, formability, magnesium, mechanical properties
Procedia PDF Downloads 5792304 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.Keywords: deep learning, indoor quality, metabolism, predictive model
Procedia PDF Downloads 2582303 Deep Reinforcement Learning Approach for Optimal Control of Industrial Smart Grids
Authors: Niklas Panten, Eberhard Abele
Abstract:
This paper presents a novel approach for real-time and near-optimal control of industrial smart grids by deep reinforcement learning (DRL). To achieve highly energy-efficient factory systems, the energetic linkage of machines, technical building equipment and the building itself is desirable. However, the increased complexity of the interacting sub-systems, multiple time-variant target values and stochastic influences by the production environment, weather and energy markets make it difficult to efficiently control the energy production, storage and consumption in the hybrid industrial smart grids. The studied deep reinforcement learning approach allows to explore the solution space for proper control policies which minimize a cost function. The deep neural network of the DRL agent is based on a multilayer perceptron (MLP), Long Short-Term Memory (LSTM) and convolutional layers. The agent is trained within multiple Modelica-based factory simulation environments by the Advantage Actor Critic algorithm (A2C). The DRL controller is evaluated by means of the simulation and then compared to a conventional, rule-based approach. Finally, the results indicate that the DRL approach is able to improve the control performance and significantly reduce energy respectively operating costs of industrial smart grids.Keywords: industrial smart grids, energy efficiency, deep reinforcement learning, optimal control
Procedia PDF Downloads 1962302 Community Adaptation of Drought Disaster in Grobogan District, Central Java Province, Indonesia
Authors: Chatarina Muryani, Sarwono, Sugiyanto Heribentus
Abstract:
Major part of Grobogan District, Central Java Province, Indonesia, always suffers from drought every year. The drought has implications toward almost all of the community activities, both domestic, agriculture, livestock, and industrial. The aim of this study was to determine (1) the drought distribution area in Grobogan District in 2015; (2) the impact of drought; and (3) the community adaptation toward the drought. The subject of the research was people who were impacted by the drought, purposive sampling technique was used to draw the sample. The data collection method was using field observation and in-depth interview while the data analysis was using descriptive analysis. The results showed that (1) in 2015, there were 14 districts which were affected by the drought and only 5 districts which do not suffer from drought, (2) the drought impacted to the reduction of water for domestic compliance, reduction of agricultural production, reduction of public revenue, (3) community adaptation to meet domestic water need was by making collective deep-wells and building water storages, adaptation in agriculture was done by setting the cropping pattern, while adaptation on economics was by allocating certain amount of funds for the family in anticipation of drought, which was mostly to purchase water.Keywords: adaptation, distribution, drought, impacts
Procedia PDF Downloads 3792301 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets
Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson
Abstract:
Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime
Procedia PDF Downloads 962300 A Deep Learning-Based Pedestrian Trajectory Prediction Algorithm
Authors: Haozhe Xiang
Abstract:
With the rise of the Internet of Things era, intelligent products are gradually integrating into people's lives. Pedestrian trajectory prediction has become a key issue, which is crucial for the motion path planning of intelligent agents such as autonomous vehicles, robots, and drones. In the current technological context, deep learning technology is becoming increasingly sophisticated and gradually replacing traditional models. The pedestrian trajectory prediction algorithm combining neural networks and attention mechanisms has significantly improved prediction accuracy. Based on in-depth research on deep learning and pedestrian trajectory prediction algorithms, this article focuses on physical environment modeling and learning of historical trajectory time dependence. At the same time, social interaction between pedestrians and scene interaction between pedestrians and the environment were handled. An improved pedestrian trajectory prediction algorithm is proposed by analyzing the existing model architecture. With the help of these improvements, acceptable predicted trajectories were successfully obtained. Experiments on public datasets have demonstrated the algorithm's effectiveness and achieved acceptable results.Keywords: deep learning, graph convolutional network, attention mechanism, LSTM
Procedia PDF Downloads 732299 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches
Authors: Gaokai Liu
Abstract:
Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.Keywords: deep learning, defect detection, image segmentation, nanomaterials
Procedia PDF Downloads 1512298 Re-Evaluation of Field X Located in Northern Lake Albert Basin to Refine the Structural Interpretation
Authors: Calorine Twebaze, Jesca Balinga
Abstract:
Field X is located on the Eastern shores of L. Albert, Uganda, on the rift flank where the gross sedimentary fill is typically less than 2,000m. The field was discovered in 2006 and encountered about 20.4m of net pay across three (3) stratigraphic intervals within the discovery well. The field covers an area of 3 km2, with the structural configuration comprising a 3-way dip-closed hanging wall anticline that seals against the basement to the southeast along the bounding fault. Field X had been mapped on reprocessed 3D seismic data, which was originally acquired in 2007 and reprocessed in 2013. The seismic data quality is good across the field, and reprocessing work reduced the uncertainty in the location of the bounding fault and enhanced the lateral continuity of reservoir reflectors. The current study was a re-evaluation of Field X to refine fault interpretation and understand the structural uncertainties associated with the field. The seismic data, and three (3) wells datasets were used during the study. The evaluation followed standard workflows using Petrel software and structural attribute analysis. The process spanned from seismic- -well tie, structural interpretation, and structural uncertainty analysis. Analysis of three (3) well ties generated for the 3 wells provided a geophysical interpretation that was consistent with geological picks. The generated time-depth curves showed a general increase in velocity with burial depth. However, separation in curve trends observed below 1100m was mainly attributed to minimal lateral variation in velocity between the wells. In addition to Attribute analysis, three velocity modeling approaches were evaluated, including the Time-Depth Curve, Vo+ kZ, and Average Velocity Method. The generated models were calibrated at well locations using well tops to obtain the best velocity model for Field X. The Time-depth method resulted in more reliable depth surfaces with good structural coherence between the TWT and depth maps with minimal error at well locations of 2 to 5m. Both the NNE-SSW rift border fault and minor faults in the existing interpretation were reevaluated. However, the new interpretation delineated an E-W trending fault in the northern part of the field that had not been interpreted before. The fault was interpreted at all stratigraphic levels and thus propagates from the basement to the surface and is an active fault today. It was also noted that the entire field is less faulted with more faults in the deeper part of the field. The major structural uncertainties defined included 1) The time horizons due to reduced data quality, especially in the deeper parts of the structure, an error equal to one-third of the reflection time thickness was assumed, 2) Check shot analysis showed varying velocities within the wells thus varying depth values for each well, and 3) Very few average velocity points due to limited wells produced a pessimistic average Velocity model.Keywords: 3D seismic data interpretation, structural uncertainties, attribute analysis, velocity modelling approaches
Procedia PDF Downloads 592297 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 3412296 Monitoring the Phenomenon of Black Sand in Hurghada’s Artificial Lakes from Sources of Groundwater and Removal Techniques
Authors: Ahmed M. Noureldin, Khaled M. Naguib
Abstract:
This experimental investigation tries to identify the root cause of the black sand issue in one of the man-made lakes in a well-known Hurghada resort. The lake is nourished by the underground wells' source, which continuously empties into the Red Sea. Chemical testing was done by looking at spots of stinky black sand beneath the sandy lake surface. The findings on samples taken from several locations (wells, lake bottom sand samples, and clean sand with exact specifications as bottom sand) indicated the existence of organic sulfur bacteria that are responsible for the phenomena of black sand. Approximately 39.139 mg/kg of sulfide in the form of hydrogen sulfide was present in the lake bottom sand, while 1.145 mg/kg, before usage, was in the bare sand. The study also involved modeling with the GPS-X program for cleaning bottom sand that uses hydro cyclones as a physical-mechanical treatment method. The modeling findings indicated a Total Organic Carbon (TOC) removal effectiveness of 0.65%. The research recommended using hydro cyclones to routinely mechanically clear the sand from lake bottoms.Keywords: man-made lakes, organic sulfur bacteria, total organic carbon, hydro cyclone
Procedia PDF Downloads 732295 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: artificial intelligence and office, NLP, deep learning, text classification
Procedia PDF Downloads 2022294 Assessment of Frying Material by Deep-Fat Frying Method
Authors: Brinda Sharma, Saakshi S. Sarpotdar
Abstract:
Deep-fat frying is popular standard method that has been studied basically to clarify the complicated mechanisms of fat decomposition at high temperatures and to assess their effects on human health. The aim of this paper is to point out the application of method engineering that has been recently improved our understanding of the fundamental principles and mechanisms concerned at different scales and different times throughout the process: pretreatment, frying, and cooling. It covers the several aspects of deep-fat drying. New results regarding the understanding of the frying method that are obtained as a results of major breakthroughs in on-line instrumentation (heat, steam flux, and native pressure sensors), within the methodology of microstructural and imaging analysis (NMR, MRI, SEM) and in software system tools for the simulation of coupled transfer and transport phenomena. Such advances have opened the approach for the creation of significant information of the behavior of varied materials and to the event of latest tools to manage frying operations via final product quality in real conditions. Lastly, this paper promotes an integrated approach to the frying method as well as numerous competencies like those of chemists, engineers, toxicologists, nutritionists, and materials scientists also as of the occupation and industrial sectors.Keywords: frying, cooling, imaging analysis (NMR, MRI, SEM), deep-fat frying
Procedia PDF Downloads 4302293 Extractive Desulfurization of Fuels Using Choline Chloride-Based Deep Eutectic Solvents
Authors: T. Zaki, Fathi S. Soliman
Abstract:
Desulfurization process is required by most, if not all refineries, to achieve ultra-low sulfur fuel, that contains less than 10 ppm sulfur. A lot of research works and many effective technologies have been studied to achieve deep desulfurization process in moderate reaction environment, such as adsorption desulfurization (ADS), oxidative desulfurization (ODS), biodesulfurization and extraction desulfurization (EDS). Extraction desulfurization using deep eutectic solvents (DESs) is considered as simple, cheap, highly efficient and environmentally friend process. In this work, four DESs were designed and synthesized. Choline chloride (ChCl) was selected as typical hydrogen bond acceptors (HBA), and ethylene glycol (EG), glycerol (Gl), urea (Ur) and thiourea (Tu) were selected as hydrogen bond donors (HBD), from which a series of deep eutectic solvents were synthesized. The experimental data showed that the synthesized DESs showed desulfurization affinities towards the thiophene species in cyclohexane solvent. Ethylene glycol molecules showed more affinity to create hydrogen bond with thiophene instead of choline chloride. Accordingly, ethylene glycol choline chloride DES has the highest extraction efficiency.Keywords: DES, desulfurization, green solvent, extraction
Procedia PDF Downloads 2892292 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 782291 Numerical Method for Productivity Prediction of Water-Producing Gas Well with Complex 3D Fractures: Case Study of Xujiahe Gas Well in Sichuan Basin
Authors: Hong Li, Haiyang Yu, Shiqing Cheng, Nai Cao, Zhiliang Shi
Abstract:
Unconventional resources have gradually become the main direction for oil and gas exploration and development. However, the productivity of gas wells, the level of water production, and the seepage law in tight fractured gas reservoirs are very different. These are the reasons why production prediction is so difficult. Firstly, a three-dimensional multi-scale fracture and multiphase mathematical model based on an embedded discrete fracture model (EDFM) is established. And the material balance method is used to calculate the water body multiple according to the production performance characteristics of water-producing gas well. This will help construct a 'virtual water body'. Based on these, this paper presents a numerical simulation process that can adapt to different production modes of gas wells. The research results show that fractures have a double-sided effect. The positive side is that it can increase the initial production capacity, but the negative side is that it can connect to the water body, which will lead to the gas production drop and the water production rise both rapidly, showing a 'scissor-like' characteristic. It is worth noting that fractures with different angles have different abilities to connect with the water body. The higher the angle of gas well development, the earlier the water maybe break through. When the reservoir is a single layer, there may be a stable production period without water before the fractures connect with the water body. Once connected, a 'scissors shape' will appear. If the reservoir has multiple layers, the gas and water will produce at the same time. The above gas-water relationship can be matched with the gas well production date of the Xujiahe gas reservoir in the Sichuan Basin. This method is used to predict the productivity of a well with hydraulic fractures in this gas reservoir, and the prediction results are in agreement with on-site production data by more than 90%. It shows that this research idea has great potential in the productivity prediction of water-producing gas wells. Early prediction results are of great significance to guide the design of development plans.Keywords: EDFM, multiphase, multilayer, water body
Procedia PDF Downloads 1952290 Simulation of Nano Drilling Fluid in an Extended Reach Well
Authors: Lina Jassim, Robiah Yunus, , Amran Salleh
Abstract:
Since nano particles have been assessed as thermo stabilizer, rheology enhancer, and ecology safer, nano drilling fluid can be utilized to overcome the complexity of hole cleaning in highly deviated interval of an extended reach wells. The eccentric annular flow is a flow with special considerations; it forms a vital part of drilling fluid flow analysis in an extended reach wells. In this work eccentric, dual phase flow (different types of rock cuttings with different size were blended with nano fluid) through horizontal well (an extended reach well) are simulated with the help of CFD, Fluent package. In horizontal wells flow occurs in an adverse pressure gradient condition, that makes the particle inside it susceptible to reversed flow. Thus the flow has to be analyzed in a three dimensional manner. Moreover the non-Newtonian behavior of the nano fluid makes the problem really challenging in numerical and physical aspects. The primary objective of the work is to establish a relationship between different flow characteristics with the speed of inner wall rotation. The nano fluid flow characteristics include swirl of flow and its effect on wellbore cleaning ability , wall shear stress and its effect on fluid viscosity to suspend and carry the rock cuttings, axial velocity and its effect on transportation of rock cuttings to the wellbore surface, finally pressure drop and its effect on managed of drilling pressure. The importance of eccentricity of the inner cylinder has to be analyzed as a part of it. Practical horizontal well flows contain a good amount of particles (rock cuttings) with moderate axial velocity, which verified nano drilling fluid ability of carrying and transferring cuttings particles in the highly deviated eccentric annular flow is also of utmost importance.Keywords: Non-Newtonian, dual phase, eccentric annular, CFD
Procedia PDF Downloads 4342289 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells
Authors: Victorita Radulescu
Abstract:
Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils
Procedia PDF Downloads 1562288 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device
Authors: Muthana A. M. Jameel Al-Jaboori
Abstract:
In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.Keywords: water wave, models, Wells turbine, MATLAB program
Procedia PDF Downloads 3642287 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs
Authors: Dingyang Hu, Dan Liu
Abstract:
DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.Keywords: adversarial sample, gradient, probability, black box
Procedia PDF Downloads 1052286 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 1022285 Shale Gas and Oil Resource Assessment in Middle and Lower Indus Basin of Pakistan
Authors: Amjad Ali Khan, Muhammad Ishaq Saqi, Kashif Ali
Abstract:
The focus of hydrocarbon exploration in Pakistan has been primarily on conventional hydrocarbon resources. Directorate General Petroleum Concessions (DGPC) has taken the lead on the assessment of indigenous unconventional oil and gas resources, which has resulted in a ‘Shale Oil/Gas Resource Assessment Study’ conducted with the help of USAID. This was critically required in the energy-starved Pakistan, where the gap between indigenous oil & gas production and demand continues to widen for a long time. Exploration & exploitation of indigenous unconventional resources of Pakistan have become vital to meet our energy demand and reduction of oil and gas import bill of the country. This study has attempted to bridge a critical gap in geological information about the potential of shale gas & oil in Pakistan in the four formations, i.e., Sembar, Lower Goru, Ranikot and Ghazij in the Middle and Lower Indus Basins, which were selected for the study as for resource assessment for shale gas & oil. The primary objective of the study was to estimate and establish shale oil/gas resource assessment of the study area by carrying out extensive geological analysis of exploration, appraisal and development wells drilled in the Middle and Lower Indus Basins, along with identification of fairway(s) and sweet spots in the study area. The Study covers the Lower parts of the Middle Indus basins located in Sindh, southern Punjab & eastern parts of the Baluchistan provinces, with a total sedimentary area of 271,795 km2. Initially, 1611 wells were reviewed, including 1324 wells drilled through different shale formations. Based on the availability of required technical data, a detailed petrophysical analysis of 124 wells (21 Confidential & 103 in the public domain) has been conducted for the shale gas/oil potential of the above-referred formations. The core & cuttings samples of 32 wells and 33 geochemical reports of prospective Shale Formations were available, which were analyzed to calibrate the results of petrophysical analysis with petrographic/ laboratory analyses to increase the credibility of the Shale Gas Resource assessment. This study has identified the most prospective intervals, mainly in Sembar and Lower Goru Formations, for shale gas/oil exploration in the Middle and Lower Indus Basins of Pakistan. The study recommends seven (07) sweet spots for undertaking pilot projects, which will enable to evaluate of the actual production capability and production sustainability of shale oil/gas reservoirs of Pakistan for formulating future strategies to explore and exploit shale/oil resources of Pakistan including fiscal incentives required for developing shale oil/gas resources of Pakistan. Some E&P Companies are being persuaded to make a consortium for undertaking pilot projects that have shown their willingness to participate in the pilot project at appropriate times. The location for undertaking the pilot project has been finalized as a result of a series of technical sessions by geoscientists of the potential consortium members after the review and evaluation of available studies.Keywords: conventional resources, petrographic analysis, petrophysical analysis, unconventional resources, shale gas & oil, sweet spots
Procedia PDF Downloads 512284 A Comparison of YOLO Family for Apple Detection and Counting in Orchards
Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long
Abstract:
In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.Keywords: agricultural object detection, deep learning, machine vision, YOLO family
Procedia PDF Downloads 2012283 COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration
Authors: Tayeb Aissaoui, Inas M. AlNashef
Abstract:
In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry.Keywords: COSMO-RS, deep eutectic solvents, dehydration, natural gas, structure, organic salt
Procedia PDF Downloads 2932282 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network (CNN) architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia PDF Downloads 2002281 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.Keywords: ANPR, CS, CNN, deep learning, NPL
Procedia PDF Downloads 3072280 Numerical Evaluation of Deep Ground Settlement Induced by Groundwater Changes During Pumping and Recovery Test in Shanghai
Authors: Shuo Wang
Abstract:
The hydrogeological parameters of the engineering site and the hydraulic connection between the aquifers can be obtained by the pumping test. Through the recovery test, the characteristics of water level recovery and the law of surface subsidence recovery can be understood. The above two tests can provide the basis for subsequent engineering design. At present, the deformation of deep soil caused by pumping tests is often neglected. However, some studies have shown that the maximum settlement subject to groundwater drawdown is not necessarily on the surface but in the deep soil. In addition, the law of settlement recovery of each soil layer subject to water level recovery is not clear. If the deformation-sensitive structure is deep in the test site, safety accidents may occur. In this study, the pumping test and recovery test of a confined aquifer in Shanghai are introduced. The law of measured groundwater changes and surface subsidence are analyzed. In addition, the fluid-solid coupling model was established by ABAQUS based on the Biot consolidation theory. The models are verified by comparing the computed and measured results. Further, the variation law of water level and the deformation law of deep soil during pumping and recovery tests under different site conditions and different times and spaces are discussed through the above model. It is found that the maximum soil settlement caused by pumping in a confined aquifer is related to the permeability of the overlying aquitard and pumping time. There is a lag between soil deformation and groundwater changes, and the recovery rate of settlement deformation of each soil layer caused by the rise of water level is different. Finally, some possible research directions are proposed to provide new ideas for academic research in this field.Keywords: coupled hydro-mechanical analysis, deep ground settlement, numerical simulation, pumping test, recovery test
Procedia PDF Downloads 452279 Multi-Spectral Deep Learning Models for Forest Fire Detection
Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani
Abstract:
Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection
Procedia PDF Downloads 2412278 Study of Surface Water Quality in the Wadi El Harrach for Its Use in the Artificial Groundwater Recharge of the Mitidja, North Algeria
Authors: M. Meddi, A. Boufekane
Abstract:
The Mitidja coastal groundwater which extends over an area of 1450 km2 is a strategic resource in the Algiers region. The high dependence of the regional economy on the use of this groundwater forces us to have recourse to its artificial recharge from the Wadi El Harrach in its upstream part. This system of artificial recharge has shown its effectiveness in the development of water resource mentioned in the succeeding works in several regions of the world. The objective of this study is to: Increase the reserves of water inputs by infiltration, raise the water level and its good quality in wells and boreholes, reduce losses to the sea, and address seawater intrusion by maintaining balance in the freshwater-saltwater interface in the downstream part of the groundwater basin. After analyzing the situation, it was noticed that a qualitative monitoring of the Wadi water for the groundwater recharge has to be done. For this purpose, we proceeded during three successive years (2010, 2011, and 2012) to the monthly sampling of water in the upstream part of the Wadi El Harrach for chemical analysis. The variation of the sediment transport concentration will be also measured. This monitoring aims to characterize the water quality and avoid clogging in the proposed recharge area. The results of these analyses showed the good chemical quality according to the analyses we performed in the laboratory during the three years, but they are too loaded with suspended matters. We noticed that these fine particles come from the grinding of limestone of sandpit located upstream of the area of the proposed recharge system. This problem can be solved by a water supply upstream of sandpit. For the recharge, we propose the method of using two wells for dual use, which means that it can be used for water supply and extraction. This solution is inexpensive in our case and could easily be used as wells are already drilled in the upstream part. This solution increases over time the piezometric level and also reduce groundwater contamination by saltwater in the downstream part.Keywords: water quality, artificial groundwater recharge, Mitidja, North Algeria
Procedia PDF Downloads 287