Search results for: cohesion metrics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 848

Search results for: cohesion metrics

668 The Impact of Riparian Alien Plant Removal on Aquatic Invertebrate Communities in the Upper Reaches of Luvuvhu River Catchment, Limpopo Province

Authors: Rifilwe Victor Modiba, Stefan Hendric Foord

Abstract:

Alien invasive plants (IAP’s) have considerable negative impacts on freshwater habitats and South Africa has implemented an innovative Work for Water (WfW) programme for the systematic removal of these plants aimed at, amongst other objectives, restoring biodiversity and ecosystem services in these threatened habitats. These restoration processes are expensive and have to be evidence-based. In this study in-stream macroinvertebrate and adult Odonata assemblages were used as indicators of restoration success by quantifying the response of biodiversity metrics for these two groups to the removal of IAP’s in a strategic water resource of South Africa that is extensively invaded by invasive alien plants (IAP’s). The study consisted of a replicated design that included 45 sampling units, viz. 15 invaded, 15 uninvaded and 15 cleared sites stratified across the upper reaches of six sub-catchments of the Luvuvhu river catchment, Limpopo Province. Cleared sites were only considered if they received at least two WfW treatments in the last 3 years. The Benthic macroinvertebrate and adult Odonate assemblages in each of these sampling were surveyed from between November and March, 2013/2014 and 2014/2015 respectively. Generalized Linear Models (GLM) with a log link function and Poisson error distribution were done for metrics (invaded, cleared, and uninvaded) whose residuals were not normally distributed or had unequal variance and for abundance. RDA was done for EPTO genera (Ephemeroptera, Plecoptera, Trichoptera and Odonata) and adult Odonata species abundance. GLM was done to for the abundance of Genera and Odonates that had the association with the RDA environmental factors. Sixty four benthic macroinvertebrate families, 57 EPTO genera, and 45 adult Odonata species were recorded across all 45 sampling units. There was no significant difference between the SASS5 total score, ASPT, and family richness of the three invasion classes. Although clearing only had a weak positive effect on the adult Odonate species richness it had a positive impact on DBI scores. These differences were mainly the result of significantly larger DBI scores in the cleared sites as compared to the invaded sites. Results suggest that water quality is positively impacted by repeated clearing pointing to the importance of follow up procedures after initial clearing. Adult Odonate diversity as measured by richness, endemicity, threat and distribution respond positively to all forms of the clearing. The clearing had a significant impact on Odonate assemblage structure but did not affect EPTO structure. Variation partitioning showed that 21.8% of the variation in EPTO assemblage can be explained by spatial and environmental variables, 16% of the variation in Odonate structure was explained by spatial and environmental variables. The response of the diversity metrics to clearing increased in significance at finer taxonomic resolutions, particularly of adult Odonates whose metrics significantly improved with clearing and whose structure responded to both invasion and clearing. The study recommends the use of DBI for surveying river health when hydraulic biotopes are poor.

Keywords: DBI, evidence-based conservation, EPTO, macroinvetebrates

Procedia PDF Downloads 175
667 A Structured Mechanism for Identifying Political Influencers on Social Media Platforms Top 10 Saudi Political Twitter Users

Authors: Ahmad Alsolami, Darren Mundy, Manuel Hernandez-Perez

Abstract:

Social media networks, such as Twitter, offer the perfect opportunity to either positively or negatively affect political attitudes on large audiences. A most important factor contributing to this effect is the existence of influential users, who have developed a reputation for their awareness and experience on specific subjects. Therefore, knowledge of the mechanisms to identify influential users on social media is vital for understanding their effect on their audience. The concept of the influential user is based on the pioneering work of Katz and Lazarsfeld (1959), who created the concept of opinion leaders' to indicate that ideas first flow from mass media to opinion leaders and then to the rest of the population. Hence, the objective of this research was to provide reliable and accurate structural mechanisms to identify influential users, which could be applied to different platforms, places, and subjects. Twitter was selected as the platform of interest, and Saudi Arabia as the context for the investigation. These were selected because Saudi Arabia has a large number of Twitter users, some of whom are considerably active in setting agendas and disseminating ideas. The study considered the scientific methods that have been used to identify public opinion leaders before, utilizing metrics software on Twitter. The key findings propose multiple novel metrics to compare Twitter influencers, including the number of followers, social authority and the use of political hashtags, and four secondary filtering measures. Thus, using ratio and percentage calculations to classify the most influential users, Twitter accounts were filtered, analyzed and included. The structured approach is used as a mechanism to explore the top ten influencers on Twitter from the political domain in Saudi Arabia.

Keywords: twitter, influencers, structured mechanism, Saudi Arabia

Procedia PDF Downloads 119
666 Automated Computer-Vision Analysis Pipeline of Calcium Imaging Neuronal Network Activity Data

Authors: David Oluigbo, Erik Hemberg, Nathan Shwatal, Wenqi Ding, Yin Yuan, Susanna Mierau

Abstract:

Introduction: Calcium imaging is an established technique in neuroscience research for detecting activity in neural networks. Bursts of action potentials in neurons lead to transient increases in intracellular calcium visualized with fluorescent indicators. Manual identification of cell bodies and their contours by experts typically takes 10-20 minutes per calcium imaging recording. Our aim, therefore, was to design an automated pipeline to facilitate and optimize calcium imaging data analysis. Our pipeline aims to accelerate cell body and contour identification and production of graphical representations reflecting changes in neuronal calcium-based fluorescence. Methods: We created a Python-based pipeline that uses OpenCV (a computer vision Python package) to accurately (1) detect neuron contours, (2) extract the mean fluorescence within the contour, and (3) identify transient changes in the fluorescence due to neuronal activity. The pipeline consisted of 3 Python scripts that could both be easily accessed through a Python Jupyter notebook. In total, we tested this pipeline on ten separate calcium imaging datasets from murine dissociate cortical cultures. We next compared our automated pipeline outputs with the outputs of manually labeled data for neuronal cell location and corresponding fluorescent times series generated by an expert neuroscientist. Results: Our results show that our automated pipeline efficiently pinpoints neuronal cell body location and neuronal contours and provides a graphical representation of neural network metrics accurately reflecting changes in neuronal calcium-based fluorescence. The pipeline detected the shape, area, and location of most neuronal cell body contours by using binary thresholding and grayscale image conversion to allow computer vision to better distinguish between cells and non-cells. Its results were also comparable to manually analyzed results but with significantly reduced result acquisition times of 2-5 minutes per recording versus 10-20 minutes per recording. Based on these findings, our next step is to precisely measure the specificity and sensitivity of the automated pipeline’s cell body and contour detection to extract more robust neural network metrics and dynamics. Conclusion: Our Python-based pipeline performed automated computer vision-based analysis of calcium image recordings from neuronal cell bodies in neuronal cell cultures. Our new goal is to improve cell body and contour detection to produce more robust, accurate neural network metrics and dynamic graphs.

Keywords: calcium imaging, computer vision, neural activity, neural networks

Procedia PDF Downloads 69
665 Importance of Secularism in Iraq

Authors: Azhin Hamad Ameen

Abstract:

This research paper explores the concept of secularism in Iraq, analyzing its historical development, contemporary manifestations, and potential future trajectories. Using a combination of qualitative and quantitative methods, including archival research, interviews with experts and practitioners, and surveys of public opinion, the study examines the complex and often contested relationship between religion, politics, and state power in Iraq. The research finds that secularism has played a significant role in shaping Iraq's political and social landscape over the past century, reflecting both the influence of Western modernity and the challenges of managing religious diversity in a multiethnic, multi-sectarian society. However, the study also reveals that secularism in Iraq is highly contested and fragmented, with competing visions and interpretations among different groups and factions. The research identifies several key factors that have contributed to this fragmentation, including the legacy of colonialism, sectarian conflicts, external interventions, and the rise of Islamist movements. Despite these challenges, the study suggests that secularism continues to hold important potential for promoting democratic governance, protecting human rights, and fostering social cohesion in Iraq. The research concludes by outlining several key policy recommendations for strengthening secularism in Iraq, including promoting interfaith dialogue and tolerance, enhancing public education and civic engagement, and supporting grassroots initiatives for social and political reform. Overall, this research contributes to our understanding of the complex dynamics of secularism in Iraq and highlights the urgent need for innovative and inclusive approaches to promoting democratic governance and social justice in the country.

Keywords: secularism, Iraq, religion, politics, state power, historical development, contemporary manifestations, multiethnic society, multi-sectarian society, western modernity, religious diversity, fragmentation, colonialism, sectarian conflicts, external interventions, Islamist movements, democratic governance, human rights, social cohesion, interfaith dialogue, tolerance, public education, civic engagement, grassroots initiatives, social and political reform

Procedia PDF Downloads 54
664 The Executive Functioning Profile of Children and Adolescents with a Diagnosis of OCD: A Systematic Review and Meta-Analysis

Authors: Parker Townes, Aisouda Savadlou, Shoshana Weiss, Marina Jarenova, Suzzane Ferris, Dan Devoe, Russel Schachar, Scott Patten, Tomas Lange, Marlena Colasanto, Holly McGinn, Paul Arnold

Abstract:

Some research suggests obsessive-compulsive disorder (OCD) is associated with impaired executive functioning: higher-level mental processes involved in carrying out tasks and solving problems. Relevant literature was identified systematically through online databases. Meta-analyses were conducted for task performance metrics reported by at least two articles. Results were synthesized by the executive functioning domain measured through each performance metric. Heterogeneous literature was identified, typically involving few studies using consistent measures. From 29 included studies, analyses were conducted on 33 performance metrics from 12 tasks. Results suggest moderate associations of working memory (two out of five tasks presented significant findings), planning (one out of two tasks presented significant findings), and visuospatial abilities (one out of two tasks presented significant findings) with OCD in youth. There was inadequate literature or contradictory findings for other executive functioning domains. These findings suggest working memory, planning, and visuospatial abilities are impaired in pediatric OCD, with mixed results. More work is needed to identify the effect of age and sex on these results. Acknowledgment: This work was supported by the Alberta Innovates Translational Health Chair in Child and Youth Mental Health. The funders had no role in the design, conducting, writing, or decision to submit this article for publication.

Keywords: obsessive-compulsive disorder, neurocognition, executive functioning, adolescents, children

Procedia PDF Downloads 80
663 Analyzing the Efficiency of Initiatives Taken against Disinformation during Election Campaigns: Case Study of Young Voters

Authors: Fatima-Zohra Ghedir

Abstract:

Social media platforms have been actively working on solutions and combined their efforts with media, policy makers, educators and researchers to protect citizens and prevent interferences in information, political discourses and elections. Facebook, for instance, deleted fake accounts, implemented fake accounts and fake content detection algorithms, partnered with news agencies to manually fact check content and changed its newsfeeds display. Twitter and Instagram regularly communicate on their efforts and notify their users of improvements and safety guidelines. More funds have been allocated to media literacy programs to empower citizens in prevision of the coming elections. This paper investigates the efficiency of these initiatives and analyzes the metrics to measure their success or failure. The objective is also to determine the segments of population more prone to fall in disinformation traps during the elections despite the measures taken over the last four years. This study will also examine the groups who were positively impacted by these measures. This paper relies on both desk and field methodologies. For this study, a survey was administered to French students aged between 17 and 29 years old. Semi-guided interviews were conducted on a similar audience. The analysis of the survey and of the interviews show that respondents were exposed to the initiatives described above and are aware of the existence of disinformation issues. However, they do not understand what disinformation really entails or means. For instance, for most of them, disinformation is synonymous of the opposite point of view without taking into account the truthfulness of the content. Besides, they still consume and believe the information shared by their friends and family, with little questioning about the ways their closed ones get informed.

Keywords: democratic elections, disinformation, foreign interference, social media, success metrics

Procedia PDF Downloads 91
662 Development of a Regression Based Model to Predict Subjective Perception of Squeak and Rattle Noise

Authors: Ramkumar R., Gaurav Shinde, Pratik Shroff, Sachin Kumar Jain, Nagesh Walke

Abstract:

Advancements in electric vehicles have significantly reduced the powertrain noise and moving components of vehicles. As a result, in-cab noises have become more noticeable to passengers inside the car. To ensure a comfortable ride for drivers and other passengers, it has become crucial to eliminate undesirable component noises during the development phase. Standard practices are followed to identify the severity of noises based on subjective ratings, but it can be a tedious process to identify the severity of each development sample and make changes to reduce it. Additionally, the severity rating can vary from jury to jury, making it challenging to arrive at a definitive conclusion. To address this, an automotive component was identified to evaluate squeak and rattle noise issue. Physical tests were carried out for random and sine excitation profiles. Aim was to subjectively assess the noise using jury rating method and objectively evaluate the same by measuring the noise. Suitable jury evaluation method was selected for the said activity, and recorded sounds were replayed for jury rating. Objective data sound quality metrics viz., loudness, sharpness, roughness, fluctuation strength and overall Sound Pressure Level (SPL) were measured. Based on this, correlation co-efficients was established to identify the most relevant sound quality metrics that are contributing to particular identified noise issue. Regression analysis was then performed to establish the correlation between subjective and objective data. Mathematical model was prepared using artificial intelligence and machine learning algorithm. The developed model was able to predict the subjective rating with good accuracy.

Keywords: BSR, noise, correlation, regression

Procedia PDF Downloads 63
661 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 10
660 The Properties of Risk-based Approaches to Asset Allocation Using Combined Metrics of Portfolio Volatility and Kurtosis: Theoretical and Empirical Analysis

Authors: Maria Debora Braga, Luigi Riso, Maria Grazia Zoia

Abstract:

Risk-based approaches to asset allocation are portfolio construction methods that do not rely on the input of expected returns for the asset classes in the investment universe and only use risk information. They include the Minimum Variance Strategy (MV strategy), the traditional (volatility-based) Risk Parity Strategy (SRP strategy), the Most Diversified Portfolio Strategy (MDP strategy) and, for many, the Equally Weighted Strategy (EW strategy). All the mentioned approaches were based on portfolio volatility as a reference risk measure but in 2023, the Kurtosis-based Risk Parity strategy (KRP strategy) and the Minimum Kurtosis strategy (MK strategy) were introduced. Understandably, they used the fourth root of the portfolio-fourth moment as a proxy for portfolio kurtosis to work with a homogeneous function of degree one. This paper contributes mainly theoretically and methodologically to the framework of risk-based asset allocation approaches with two steps forward. First, a new and more flexible objective function considering a linear combination (with positive coefficients that sum to one) of portfolio volatility and portfolio kurtosis is used to alternatively serve a risk minimization goal or a homogeneous risk distribution goal. Hence, the new basic idea consists in extending the achievement of typical risk-based approaches’ goals to a combined risk measure. To give the rationale behind operating with such a risk measure, it is worth remembering that volatility and kurtosis are expressions of uncertainty, to be read as dispersion of returns around the mean and that both preserve adherence to a symmetric framework and consideration for the entire returns distribution as well, but also that they differ from each other in that the former captures the “normal” / “ordinary” dispersion of returns, while the latter is able to catch the huge dispersion. Therefore, the combined risk metric that uses two individual metrics focused on the same phenomena but differently sensitive to its intensity allows the asset manager to express, in the context of an objective function by varying the “relevance coefficient” associated with the individual metrics, alternatively, a wide set of plausible investment goals for the portfolio construction process while serving investors differently concerned with tail risk and traditional risk. Since this is the first study that also implements risk-based approaches using a combined risk measure, it becomes of fundamental importance to investigate the portfolio effects triggered by this innovation. The paper also offers a second contribution. Until the recent advent of the MK strategy and the KRP strategy, efforts to highlight interesting properties of risk-based approaches were inevitably directed towards the traditional MV strategy and SRP strategy. Previous literature established an increasing order in terms of portfolio volatility, starting from the MV strategy, through the SRP strategy, arriving at the EQ strategy and provided the mathematical proof for the “equalization effect” concerning marginal risks when the MV strategy is considered, and concerning risk contributions when the SRP strategy is considered. Regarding the validity of similar conclusions when referring to the MK strategy and KRP strategy, the development of a theoretical demonstration is still pending. This paper fills this gap.

Keywords: risk parity, portfolio kurtosis, risk diversification, asset allocation

Procedia PDF Downloads 48
659 Application of a Lighting Design Method Using Mean Room Surface Exitance

Authors: Antonello Durante, James Duff, Kevin Kelly

Abstract:

The visual needs of people in modern work based buildings are changing. Self-illuminated screens of computers, televisions, tablets and smart phones have changed the relationship between people and the lit environment. In the past, lighting design practice was primarily based on providing uniform horizontal illuminance on the working plane, but this has failed to ensure good quality lit environments. Lighting standards of today continue to be set based upon a 100 year old approach that at its core, considers the task illuminance of the utmost importance, with this task typically being located on a horizontal plane. An alternative method focused on appearance has been proposed, as opposed to the traditional performance based approach. Mean Room Surface Exitance (MRSE) and Target-Ambient Illuminance Ratio (TAIR) are two new metrics proposed to assess illumination adequacy in interiors. The hypothesis is that these factors will be superior to the existing metrics used, which are horizontal illuminance led. For the six past years, research has examined this, within the Dublin Institute of Technology, with a view to determining the suitability of this approach for application to general lighting practice. Since the start of this research, a number of key findings have been produced that centered on how occupants will react to various levels of MRSE. This paper provides a broad update on how this research has progressed. More specifically, this paper will: i) Demonstrate how MRSE can be measured using HDR images technology, ii) Illustrate how MRSE can be calculated using scripting and an open source lighting computation engine, iii) Describe experimental results that demonstrate how occupants have reacted to various levels of MRSE within experimental office environments.

Keywords: illumination hierarchy (IH), mean room surface exitance (MRSE), perceived adequacy of illumination (PAI), target-ambient illumination ratio (TAIR)

Procedia PDF Downloads 167
658 Creativity and Innovation in a Military Unit of South America: Decision Making Process, Socio-Emotional Climate, Shared Flow and Leadership

Authors: S. da Costa, D. Páez, E. Martínez, A. Torres, M. Beramendi, D. Hermosilla, M. Muratori

Abstract:

This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.

Keywords: creativity, innovation, military, organization, teams

Procedia PDF Downloads 112
657 Modern Technology for Strengthening Concrete Structures Makes Them Resistant to Earthquakes

Authors: Mohsen Abdelrazek Khorshid Ali Selim

Abstract:

Disadvantages and errors of current concrete reinforcement methodsL: Current concrete reinforcement methods are adopted in most parts of the world in their various doctrines and names. They adopt the so-called concrete slab system, where these slabs are semi-independent and isolated from each other and from the surrounding environment of concrete columns or beams, so that the reinforcing steel does not cross from one slab to another or from one slab to adjacent columns. It or the beams surrounding it and vice versa are only a few centimeters and no more. The same applies exactly to the concrete columns that support the building, where the reinforcing steel does not extend from the slabs or beams to the inside of the columns or vice versa except for a few centimeters and no more, just as the reinforcing steel does not extend from inside the column at the top. The ceiling is only a few centimetres, and the same thing is literally repeated in the concrete beams that connect the columns and separate the slabs, where the reinforcing steel does not cross from one beam to another or from one beam to the slabs or columns adjacent to it and vice versa, except for a few centimeters, which makes the basic building elements of columns, slabs and beams They all work in isolation from each other and from the environment surrounding them from all sides. This traditional method of reinforcement may be valid and lasting in geographical areas that are not exposed to earthquakes and earthquakes, where all the loads and tensile forces in the building are constantly directed vertically downward due to gravity and are borne directly by the vertical reinforcement of the building. However, in the case of earthquakes and earthquakes, the loads and tensile forces in the building shift from the vertical direction to the horizontal direction at an angle of inclination that depends on the strength of the earthquake, and most of them are borne by the horizontal reinforcement extending between the basic elements of the building, such as columns, slabs and beams, and since the crossing of the reinforcement between each of the columns, slabs and beams between them And each other, and vice versa, does not exceed several centimeters. In any case, the tensile strength, cohesion and bonding between the various parts of the building are very weak, which causes the buildings to disintegrate and collapse in the horrific manner that we saw in the earthquake in Turkey and Syria in February 2023, which caused the collapse of tens of thousands of buildings in A few seconds later, it left more than 50,000 dead, hundreds of thousands injured, and millions displaced. Description of the new earthquake-resistant model: The idea of the new model in the reinforcement of concrete buildings and constructions is based on the theory that we have formulated as follows: [The tensile strength, cohesion and bonding between the basic parts of the concrete building (columns, beams and slabs) increases as the lengths of the reinforcing steel bars increase and they extend and branch and the different parts of the building share them with each other.] . In other words, the strength, solidity, and cohesion of concrete buildings increase and they become resistant to earthquakes as the lengths of the reinforcing steel bars increase, extend, branch, and share with the various parts of the building, such as columns, beams, and slabs. That is, the reinforcing skewers of the columns must extend in their lengths without cutting to cross from one floor to another until their end. Likewise, the reinforcing skewers of the beams must extend in their lengths without cutting to cross from one beam to another. The ends of these skewers must rest at the bottom of the columns adjacent to the beams. The same thing applies to the reinforcing skewers of the slabs where they must These skewers should be extended in their lengths without cutting to cross from one tile to another, and the ends of these skewers should rest either under the adjacent columns or inside the beams adjacent to the slabs as follows: First, reinforce the columns: The columns have the lion's share of the reinforcing steel in this model in terms of type and quantity, as the columns contain two types of reinforcing bars. The first type is large-diameter bars that emerge from the base of the building, which are the nerves of the column. These bars must extend over their normal length of 12 meters or more and extend to a height of three floors, if desired. In raising other floors, bars with the same diameter and the same length are added to the top after the second floor. The second type is bars with a smaller diameter, and they are the same ones that are used to reinforce beams and slabs, so that the bars that reinforce the beams and slabs facing each column are bent down inside this column and along the entire length of the column. This requires an order. Most engineers do not prefer it, which is to pour the entire columns and pour the roof at once, but we prefer this method because it enables us to extend the reinforcing bars of both the beams and slabs to the bottom of the columns so that the entire building becomes one concrete block that is cohesive and resistant to earthquakes. Secondly, arming the cameras: The beams' reinforcing skewers must also extend to a full length of 12 meters or more without cutting. The ends of the skewers are bent and dropped inside the column at the beginning of the beam to its bottom. Then the skewers are extended inside the beam so that their other end falls under the facing column at the end of the beam. The skewers may cross over the head of a column. Another passes through another adjacent beam and rests at the bottom of a third column, according to the lengths of each of the skewers and beams. Third, reinforcement of slabs: The slab reinforcing skewers must also extend their entire length, 12 meters or more, without cutting, distinguishing between two cases. The first case is the skewers opposite the columns, and their ends are dropped inside one of the columns. Then the skewers cross inside the adjacent slab and their other end falls below the opposite column. The skewers may cross over The head of the adjacent column passes through another adjacent slab and rests at the bottom of a third column, according to the dimensions of the slabs and the lengths of the skewers. The second case is the skewers opposite the beams, and their ends must be bent in the form of a square or rectangle according to the dimensions of the beam’s width and height, and this square or rectangle is dropped inside the beam at the beginning of the slab, and it serves as The skewers are for the beams, then the skewers are extended along the length of the slab, and at the end of the slab, the skewers are bent down to the bottom of the adjacent beam in the shape of the letter U, after which the skewers are extended inside the adjacent slab, and this is repeated in the same way inside the other adjacent beams until the end of the skewer, then it is bent downward in the form of a square or rectangle inside the beam, as happened. In its beginning.

Keywords: earthquake resistant buildings, earthquake resistant concrete constructions, new technology for reinforcement of concrete buildings, new technology in concrete reinforcement

Procedia PDF Downloads 47
656 Fault Prognostic and Prediction Based on the Importance Degree of Test Point

Authors: Junfeng Yan, Wenkui Hou

Abstract:

Prognostics and Health Management (PHM) is a technology to monitor the equipment status and predict impending faults. It is used to predict the potential fault and provide fault information and track trends of system degradation by capturing characteristics signals. So how to detect characteristics signals is very important. The select of test point plays a very important role in detecting characteristics signal. Traditionally, we use dependency model to select the test point containing the most detecting information. But, facing the large complicated system, the dependency model is not built so easily sometimes and the greater trouble is how to calculate the matrix. Rely on this premise, the paper provide a highly effective method to select test point without dependency model. Because signal flow model is a diagnosis model based on failure mode, which focuses on system’s failure mode and the dependency relationship between the test points and faults. In the signal flow model, a fault information can flow from the beginning to the end. According to the signal flow model, we can find out location and structure information of every test point and module. We break the signal flow model up into serial and parallel parts to obtain the final relationship function between the system’s testability or prediction metrics and test points. Further, through the partial derivatives operation, we can obtain every test point’s importance degree in determining the testability metrics, such as undetected rate, false alarm rate, untrusted rate. This contributes to installing the test point according to the real requirement and also provides a solid foundation for the Prognostics and Health Management. According to the real effect of the practical engineering application, the method is very efficient.

Keywords: false alarm rate, importance degree, signal flow model, undetected rate, untrusted rate

Procedia PDF Downloads 363
655 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers

Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist

Abstract:

Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.

Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden

Procedia PDF Downloads 98
654 The Mechanical Behavior of a Chemically Stabilized Soil

Authors: I Lamri, L Arabet, M. Hidjeb

Abstract:

The direct shear test was used to determine the shear strength parameters C and Ø of a series of samples with different cement content. Samples stabilized with a certain percentage of cement showed a substantial gain in compressive strength and a significant increase in shear strength parameters. C and Ø. The laboratory equipment used in UCS tests consisted of a conventional 102mm diameter sample triaxial loading machine. Beyond 4% cement content a very important increase in shear strength was observed. It can be deduced from a comparative study of shear strength of soil samples with 4%, 7%, and 10% cement with sample containing 2 %, that the sample with a 4% cement content showed 90% increase in shear strength while those with 7% and 10% showed an increase of around 13 and 21 fold.

Keywords: cement, compression strength, shear stress, cohesion, angle of internal friction

Procedia PDF Downloads 468
653 First-Principles Investigation of the Structural and Electronic Properties of Mg1-xBixO

Authors: G. P. Abdel Rahim, M. María Guadalupe Moreno Armenta, Jairo Arbey Rodriguez

Abstract:

We investigated the structure and electronic properties of the compound Mg1-xBixO with varying concentrations of 0, ¼, ½, and ¾ x bismuth in the the NaCl (rock-salt) and WZ (wurtzite) phases. The calculations were performed using the first-principles pseudo-potential method within the framework of spin density functional theory (DFT). Our calculations predict that for Bi concentrations greater than ~70%, the WZ structure is more favorable than the NaCl one and that for x = 0 (pure MgO), x = 0.25 and x = 0.50 of Bi concentration the NaCl structure is more favorable than the WZ one. For x = 0.75 of Bi, a transition from wurtzite towards NaCl is possible, when the pressure is about 22 GPa. Also It has been observed the crystal lattice constant closely follows Vegard’s law, that the bulk modulus and the cohesion energy decrease with the concentration x of Bi.

Keywords: DFT, Mg1-xBixO, pseudo-potential, rock-salt, wurtzite

Procedia PDF Downloads 504
652 Collaboration versus Cooperation: Grassroots Activism in Divided Cities and Communication Networks

Authors: R. Barbour

Abstract:

Peace-building organisations act as a network of information for communities. Through fieldwork, it was highlighted that grassroots organisations and activists may cooperate with each other in their actions of peace-building; however, they would not collaborate. Within two divided societies; Nicosia in Cyprus and Jerusalem in Israel, there is a distinction made by organisations and activists with regards to activities being more ‘co-operative’ than ‘collaborative’. This theme became apparent when having informal conversations and semi-structured interviews with various members of the activist communities. This idea needs further exploration as these distinctions could impact upon the efficiency of peacebuilding activities within divided societies. Civil societies within divided landscapes, both physically and socially, play an important role in conflict resolution. How organisations and activists interact with each other has the possibility to be very influential with regards to peacebuilding activities. Working together sets a positive example for divided communities. Cooperation may be considered a primary level of interaction between CSOs. Therefore, at the beginning of a working relationship, organisations cooperate over basic agendas, parallel power structures and focus, which led to the same objective. Over time, in some instances, due to varying factors such as funding, more trust and understanding within the relationship, it could be seen that processes progressed to more collaborative ways. It is evident to see that NGOs and activist groups are highly independent and focus on their own agendas before coming together over shared issues. At this time, there appears to be more collaboration in Nicosia among CSOs and activists than Jerusalem. The aims and objectives of agendas also influence how organisations work together. In recent years, Nicosia, and Cyprus in general, have perhaps changed their focus from peace-building initiatives to more environmental issues which have become new-age reconciliation topics. Civil society does not automatically indicate like-minded organisations however solidarity within social groups can create ties that bring people and resources together. In unequal societies, such as those in Nicosia and Jerusalem, it is these ties that cut across groups and are essential for social cohesion. Societies are a collection of social groups; individuals who have come together over common beliefs. These groups in turn shape the identities and determine the values and structures within societies. At many different levels and stages, social groups work together through cooperation and collaboration. These structures in turn have the capabilities to open up networks to less powerful or excluded groups, with the aim to produce social cohesion which may contribute social stability and economic welfare over any extended period.

Keywords: collaboration, cooperation, grassroots activism, networks of communication

Procedia PDF Downloads 139
651 Competitive DNA Calibrators as Quality Reference Standards (QRS™) for Germline and Somatic Copy Number Variations/Variant Allelic Frequencies Analyses

Authors: Eirini Konstanta, Cedric Gouedard, Aggeliki Delimitsou, Stefania Patera, Samuel Murray

Abstract:

Introduction: Quality reference DNA standards (QRS) for molecular testing by next-generation sequencing (NGS) are essential for accurate quantitation of copy number variations (CNV) for germline and variant allelic frequencies (VAF) for somatic analyses. Objectives: Presently, several molecular analytics for oncology patients are reliant upon quantitative metrics. Test validation and standardisation are also reliant upon the availability of surrogate control materials allowing for understanding test LOD (limit of detection), sensitivity, specificity. We have developed a dual calibration platform allowing for QRS pairs to be included in analysed DNA samples, allowing for accurate quantitation of CNV and VAF metrics within and between patient samples. Methods: QRS™ blocks up to 500nt were designed for common NGS panel targets incorporating ≥ 2 identification tags (IDTDNA.com). These were analysed upon spiking into gDNA, somatic, and ctDNA using a proprietary CalSuite™ platform adaptable to common LIMS. Results: We demonstrate QRS™ calibration reproducibility spiked to 5–25% at ± 2.5% in gDNA and ctDNA. Furthermore, we demonstrate CNV and VAF within and between samples (gDNA and ctDNA) with the same reproducibility (± 2.5%) in a clinical sample of lung cancer and HBOC (EGFR and BRCA1, respectively). CNV analytics was performed with similar accuracy using a single pair of QRS calibrators when using multiple single targeted sequencing controls. Conclusion: Dual paired QRS™ calibrators allow for accurate and reproducible quantitative analyses of CNV, VAF, intrinsic sample allele measurement, inter and intra-sample measure not only simplifying NGS analytics but allowing for monitoring clinically relevant biomarker VAF across patient ctDNA samples with improved accuracy.

Keywords: calibrator, CNV, gene copy number, VAF

Procedia PDF Downloads 138
650 Measurement of in-situ Horizontal Root Tensile Strength of Herbaceous Vegetation for Improved Evaluation of Slope Stability in the Alps

Authors: Michael T. Lobmann, Camilla Wellstein, Stefan Zerbe

Abstract:

Vegetation plays an important role for the stabilization of slopes against erosion processes, such as shallow erosion and landslides. Plant roots reinforce the soil, increase soil cohesion and often cross possible shear planes. Hence, plant roots reduce the risk of slope failure. Generally, shrub and tree roots penetrate deeper into the soil vertically, while roots of forbs and grasses are concentrated horizontally in the topsoil and organic layer. Therefore, shrubs and trees have a higher potential for stabilization of slopes with deep soil layers than forbs and grasses. Consequently, research mainly focused on the vertical root effects of shrubs and trees. Nevertheless, a better understanding of the stabilizing effects of grasses and forbs is needed for better evaluation of the stability of natural and artificial slopes with herbaceous vegetation. Despite the importance of vertical root effects, field observations indicate that horizontal root effects also play an important role for slope stabilization. Not only forbs and grasses, but also some shrubs and trees form tight horizontal networks of fine and coarse roots and rhizomes in the topsoil. These root networks increase soil cohesion and horizontal tensile strength. Available methods for physical measurements, such as shear-box tests, pullout tests and singular root tensile strength measurement can only provide a detailed picture of vertical effects of roots on slope stabilization. However, the assessment of horizontal root effects is largely limited to computer modeling. Here, a method for measurement of in-situ cumulative horizontal root tensile strength is presented. A traction machine was developed that allows fixation of rectangular grass sods (max. 30x60cm) on the short ends with a 30x30cm measurement zone in the middle. On two alpine grass slopes in South Tyrol (northern Italy), 30x60cm grass sods were cut out (max. depth 20cm). Grass sods were pulled apart measuring the horizontal tensile strength over 30cm width over the time. The horizontal tensile strength of the sods was measured and compared for different soil depths, hydrological conditions, and root physiological properties. The results improve our understanding of horizontal root effects on slope stabilization and can be used for improved evaluation of grass slope stability.

Keywords: grassland, horizontal root effect, landslide, mountain, pasture, shallow erosion

Procedia PDF Downloads 149
649 Termite Mound Floors: Ready-to-Use Ecological Materials

Authors: Yanné Etienne

Abstract:

The current climatic conditions necessarily impose the development and use of construction materials with low or no carbon footprint. The Far North Region of Cameroon has huge deposits of termite mounds. Various tests in this work have been carried out on these soils with the aim of using them as construction materials. They are mainly geotechnical tests, physical and mechanical tests. The different tests gave the following values: uniformity coefficient (4.95), curvature coefficient (1.80), plasticity index (12.85%), optimum moisture content (6.70%), maximum dry density (2.05 g.cm-³), friction angles (14.07°), and cohesion of 100.29 kN.m2. The results obtained show that termite mound soils, which are ecological materials, are plastic and water-stable can be used for the production of load-bearing elements in construction.

Keywords: termite mound soil, ecological materials, building materials, geotechnical tests, physical and mechanical tests

Procedia PDF Downloads 171
648 Integrated Risk Assessment of Storm Surge and Climate Change for the Coastal Infrastructure

Authors: Sergey V. Vinogradov

Abstract:

Coastal communities are presently facing increased vulnerabilities due to rising sea levels and shifts in global climate patterns, a trend expected to escalate in the long run. To address the needs of government entities, the public sector, and private enterprises, there is an urgent need to thoroughly investigate, assess, and manage the present and projected risks associated with coastal flooding, including storm surges, sea level rise, and nuisance flooding. In response to these challenges, a practical approach to evaluating storm surge inundation risks has been developed. This methodology offers an integrated assessment of potential flood risk in targeted coastal areas. The physical modeling framework involves simulating synthetic storms and utilizing hydrodynamic models that align with projected future climate and ocean conditions. Both publicly available and site-specific data form the basis for a risk assessment methodology designed to translate inundation model outputs into statistically significant projections of expected financial and operational consequences. This integrated approach produces measurable indicators of impacts stemming from floods, encompassing economic and other dimensions. By establishing connections between the frequency of modeled flood events and their consequences across a spectrum of potential future climate conditions, our methodology generates probabilistic risk assessments. These assessments not only account for future uncertainty but also yield comparable metrics, such as expected annual losses for each inundation event. These metrics furnish stakeholders with a dependable dataset to guide strategic planning and inform investments in mitigation. Importantly, the model's adaptability ensures its relevance across diverse coastal environments, even in instances where site-specific data for analysis may be limited.

Keywords: climate, coastal, surge, risk

Procedia PDF Downloads 37
647 Collaborative Team Work in Higher Education: A Case Study

Authors: Swapna Bhargavi Gantasala

Abstract:

If teamwork is the key to organizational learning, productivity, and growth, then, why do some teams succeed in achieving these, while others falter at different stages? Building teams in higher education institutions has been a challenge and an open-ended constructivist approach was considered on an experimental basis for this study to address this challenge. For this research, teams of students from the MBA program were chosen to study the effect of teamwork in learning, the motivation levels among student team members, and the effect of collaboration in achieving team goals. The teams were built on shared vision and goals, cohesion was ensured, positive induction in the form of faculty mentoring was provided for each participating team and the results have been presented with conclusions and suggestions.

Keywords: teamwork, leadership, motivation and reinforcement, collaboration

Procedia PDF Downloads 353
646 Islamic Social Security: A Discourse

Authors: Safiyya A. Abba, Shehu U. R. Aliyu

Abstract:

This paper deals with Islamic social security: a discourse explores the meaning and nature of Islamic social security system. The paper reviews the social security framework and operations during the early period. The paper further identifies the instruments of Islamic social security discusses its principles and objectives. The paper discovers that Islamic social security is a personification of a comprehensive welfare approach in view of its varied instruments that are deeply rooted in the Islamic law, unique principles and realistic and achievable objectives. Furthermore, the Islamic social security system has far reaching socioeconomic implications; social justice, cohesion, equity, a catalyst for poverty eradication, income redistribution, economic growth and development.

Keywords: Islamic social security, basic needs, zakat, socioeconomic justice, equity

Procedia PDF Downloads 418
645 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data

Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali

Abstract:

The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.

Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors

Procedia PDF Downloads 45
644 Mechanical Characterization of Extrudable Foamed Concrete: An Experimental Study

Authors: D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo

Abstract:

This paper is focused on the mechanical characterization of foamed concrete specimens with protein-based foaming agent. Unlike classic foamed concrete, a peculiar property of the analyzed foamed concrete is the extrudability, which is achieved via a specific additive in the concrete mix that significantly improves the cohesion and viscosity of the fresh cementitious paste. A broad experimental campaign was conducted to evaluate the compressive strength and the indirect tensile strength of the specimens. The study has comprised three different cement types, two water/cement ratios, three curing conditions and three target dry densities. The variability of the strength values upon the above mentioned factors is discussed.

Keywords: cement type, curing conditions, density, extrudable concrete, foamed concrete, mechanical characterization

Procedia PDF Downloads 244
643 Community Empowerment: The Contribution of Network Urbanism on Urban Poverty Reduction

Authors: Lucia Antonela Mitidieri

Abstract:

This research analyzes the application of a model of settlements management based on networks of territorial integration that advocates planning as a cyclical and participatory process that engages early on with civic society, the private sector and the state. Through qualitative methods such as participant observation, interviews with snowball technique and an active research on territories, concrete results of community empowerment are obtained from the promotion of productive enterprises and community spaces of encounter and exchange. Studying the cultural and organizational dimensions of empowerment allows building indicators such as increase of capacities or community cohesion that can lead to support local governments in achieving sustainable urban development for a reduction of urban poverty.

Keywords: community spaces, empowerment, network urbanism, participatory process

Procedia PDF Downloads 311
642 Computational Fluid Dynamicsfd Simulations of Air Pollutant Dispersion: Validation of Fire Dynamic Simulator Against the Cute Experiments of the Cost ES1006 Action

Authors: Virginie Hergault, Siham Chebbah, Bertrand Frere

Abstract:

Following in-house objectives, Central laboratory of Paris police Prefecture conducted a general review on models and Computational Fluid Dynamics (CFD) codes used to simulate pollutant dispersion in the atmosphere. Starting from that review and considering main features of Large Eddy Simulation, Central Laboratory Of Paris Police Prefecture (LCPP) postulates that the Fire Dynamics Simulator (FDS) model, from National Institute of Standards and Technology (NIST), should be well suited for air pollutant dispersion modeling. This paper focuses on the implementation and the evaluation of FDS in the frame of the European COST ES1006 Action. This action aimed at quantifying the performance of modeling approaches. In this paper, the CUTE dataset carried out in the city of Hamburg, and its mock-up has been used. We have performed a comparison of FDS results with wind tunnel measurements from CUTE trials on the one hand, and, on the other, with the models results involved in the COST Action. The most time-consuming part of creating input data for simulations is the transfer of obstacle geometry information to the format required by SDS. Thus, we have developed Python codes to convert automatically building and topographic data to the FDS input file. In order to evaluate the predictions of FDS with observations, statistical performance measures have been used. These metrics include the fractional bias (FB), the normalized mean square error (NMSE) and the fraction of predictions within a factor of two of observations (FAC2). As well as the CFD models tested in the COST Action, FDS results demonstrate a good agreement with measured concentrations. Furthermore, the metrics assessment indicate that FB and NMSE meet the tolerance acceptable.

Keywords: numerical simulations, atmospheric dispersion, cost ES1006 action, CFD model, cute experiments, wind tunnel data, numerical results

Procedia PDF Downloads 120
641 Community Singing, a Pathway to Social Capital: A Cross-Cultural Comparative Assessment of the Benefits of Singing Communities in South Tyrol and South Africa

Authors: Johannes Van Der Sandt

Abstract:

This quantitative study investigates different approaches of community singing, in building social capital in South Tyrol, Italy, and South Africa. The impact of the various approaches of community singing is examined by investigating the main components of social capital, namely, social norms and obligations, social networks and associations and trust, and how these components are manifested in two different societies. The research is based on the premise that community singing is an important agent for the development of social capital. It seeks to establish in what form community singing can best enhance the social capital of communities in South Tyrol that are undergoing significant changes in the ways in which social capital is generally being generated on account of demographic, economic, technological and cultural changes. South Tyrol and South Africa share some similarities in the management of their multi-cultural composition. By comparing the different approaches to community singing in two multi-cultural societies, it is hoped to gain insight, and an understanding of the connections between culture, social cohesion, identity and therefore to be able to add to the understanding of the building of social capital through community singing. Participation in music contributes to the growth of social capital in communities, this is amongst others the finding of an ever increasing amount of research. In sociological discourses on social capital generation, the dimension of community music making is recognized as an important factor. Trust and mutual cooperation are products when people listen to each other, when they work or play together, and when they care about each other. This is how social capital develops as an important shared resource. Scholars of Community Music still do not agree on a short and concise definition for Community Music. For the purpose of this research, the author concurs with the definition of Community Music of the Community Music Activity commission of the International Society of Music Education as having the following characteristics: decentralization, accessibility, equal opportunity, and active participation in music-making. These principles are social and political ones, and there can be no doubt that community music activity is more than a purely musical one. Trust, shared norms and values civic and community involvement, networks, knowledge resources, contact with families and friends, and fellowship are key components in fostering group cohesion and social capital development in a community. The research will show that there is no better place for these factors to flourish than in a community singing group. Through this comparative study, it is the aim to identify, analyze and explain similarities and differences in approaches to community across societies that find themselves in a rapid transition from traditional cultural to global cultural habits characterized by a plurality of orientation points, with the aim to gain a better understanding of the various directions South Tyrolean singing culture can take.

Keywords: community music, multicultural, singing, social capital

Procedia PDF Downloads 266
640 PLO-AIM: Potential-Based Lane Organization in Autonomous Intersection Management

Authors: Berk Ecer, Ebru Akcapinar Sezer

Abstract:

Traditional management models of intersections, such as no-light intersections or signalized intersection, are not the most effective way of passing the intersections if the vehicles are intelligent. To this end, Dresner and Stone proposed a new intersection control model called Autonomous Intersection Management (AIM). In the AIM simulation, they were examining the problem from a multi-agent perspective, demonstrating that intelligent intersection control can be made more efficient than existing control mechanisms. In this study, autonomous intersection management has been investigated. We extended their works and added a potential-based lane organization layer. In order to distribute vehicles evenly to each lane, this layer triggers vehicles to analyze near lanes, and they change their lane if other lanes have an advantage. We can observe this behavior in real life, such as drivers, change their lane by considering their intuitions. Basic intuition on selecting the correct lane for traffic is selecting a less crowded lane in order to reduce delay. We model that behavior without any change in the AIM workflow. Experiment results show us that intersection performance is directly connected with the vehicle distribution in lanes of roads of intersections. We see the advantage of handling lane management with a potential approach in performance metrics such as average delay of intersection and average travel time. Therefore, lane management and intersection management are problems that need to be handled together. This study shows us that the lane through which vehicles enter the intersection is an effective parameter for intersection management. Our study draws attention to this parameter and suggested a solution for it. We observed that the regulation of AIM inputs, which are vehicles in lanes, was as effective as contributing to aim intersection management. PLO-AIM model outperforms AIM in evaluation metrics such as average delay of intersection and average travel time for reasonable traffic rates, which is in between 600 vehicle/hour per lane to 1300 vehicle/hour per lane. The proposed model reduced the average travel time reduced in between %0.2 - %17.3 and reduced the average delay of intersection in between %1.6 - %17.1 for 4-lane and 6-lane scenarios.

Keywords: AIM project, autonomous intersection management, lane organization, potential-based approach

Procedia PDF Downloads 123
639 Trip Reduction in Turbo Machinery

Authors: Pranay Mathur, Carlo Michelassi, Simi Karatha, Gilda Pedoto

Abstract:

Industrial plant uptime is top most importance for reliable, profitable & sustainable operation. Trip and failed start has major impact on plant reliability and all plant operators focussed on efforts required to minimise the trips & failed starts. The performance of these CTQs are measured with 2 metrics, MTBT(Mean time between trips) and SR (Starting reliability). These metrics helps to identify top failure modes and identify units need more effort to improve plant reliability. Baker Hughes Trip reduction program structured to reduce these unwanted trip 1. Real time machine operational parameters remotely available and capturing the signature of malfunction including related boundary condition. 2. Real time alerting system based on analytics available remotely. 3. Remote access to trip logs and alarms from control system to identify the cause of events. 4. Continuous support to field engineers by remotely connecting with subject matter expert. 5. Live tracking of key CTQs 6. Benchmark against fleet 7. Break down to the cause of failure to component level 8. Investigate top contributor, identify design and operational root cause 9. Implement corrective and preventive action 10. Assessing effectiveness of implemented solution using reliability growth models. 11. Develop analytics for predictive maintenance With this approach , Baker Hughes team is able to support customer in achieving their Reliability Key performance Indicators for monitored units, huge cost savings for plant operators. This Presentation explains these approach while providing successful case studies, in particular where 12nos. of LNG and Pipeline operators with about 140 gas compressing line-ups has adopted these techniques and significantly reduce the number of trips and improved MTBT

Keywords: reliability, availability, sustainability, digital infrastructure, weibull, effectiveness, automation, trips, fail start

Procedia PDF Downloads 57