Search results for: cluster overlapping system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18395

Search results for: cluster overlapping system

18215 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic

Authors: Budoor Al Abid

Abstract:

Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.

Keywords: machine learning, adaptive, fuzzy logic, data mining

Procedia PDF Downloads 196
18214 Performance Evaluation of Soft RoCE over 1 Gigabit Ethernet

Authors: Gurkirat Kaur, Manoj Kumar, Manju Bala

Abstract:

Ethernet is the most influential and widely used technology in the world. With the growing demand of low latency and high throughput technologies like InfiniBand and RoCE, unique features viz. RDMA (Remote Direct Memory Access) have evolved. RDMA is an effective technology which is used for reducing system load and improving performance. InfiniBand is a well known technology which provides high-bandwidth and low-latency and makes optimal use of in-built features like RDMA. With the rapid evolution of InfiniBand technology and Ethernet lacking the RDMA and zero copy protocol, the Ethernet community has came out with a new enhancements that bridges the gap between InfiniBand and Ethernet. By adding the RDMA and zero copy protocol to the Ethernet a new networking technology is evolved, called RDMA over Converged Ethernet (RoCE). RoCE is a standard released by the IBTA standardization body to define RDMA protocol over Ethernet. With the emergence of lossless Ethernet, RoCE uses InfiniBand’s efficient transport to provide the platform for deploying RDMA technology in mainstream data centres over 10GigE, 40GigE and beyond. RoCE provide all of the InfiniBand benefits transport benefits and well established RDMA ecosystem combined with converged Ethernet. In this paper, we evaluate the heterogeneous Linux cluster, having multi nodes with fast interconnects i.e. gigabit Ethernet and Soft RoCE. This paper presents the heterogeneous Linux cluster configuration and evaluates its performance using Intel’s MPI Benchmarks. Our result shows that Soft RoCE is performing better than Ethernet in various performance metrics like bandwidth, latency and throughput.

Keywords: ethernet, InfiniBand, RoCE, RDMA, MPI, Soft RoCE

Procedia PDF Downloads 462
18213 Evaluation of Groundwater Quality and Contamination Sources Using Geostatistical Methods and GIS in Miryang City, Korea

Authors: H. E. Elzain, S. Y. Chung, V. Senapathi, Kye-Hun Park

Abstract:

Groundwater is considered a significant source for drinking and irrigation purposes in Miryang city, and it is attributed to a limited number of a surface water reservoirs and high seasonal variations in precipitation. Population growth in addition to the expansion of agricultural land uses and industrial development may affect the quality and management of groundwater. This research utilized multidisciplinary approaches of geostatistics such as multivariate statistics, factor analysis, cluster analysis and kriging technique in order to identify the hydrogeochemical process and characterizing the control factors of the groundwater geochemistry distribution for developing risk maps, exploiting data obtained from chemical investigation of groundwater samples under the area of study. A total of 79 samples have been collected and analyzed using atomic absorption spectrometer (AAS) for major and trace elements. Chemical maps using 2-D spatial Geographic Information System (GIS) of groundwater provided a powerful tool for detecting the possible potential sites of groundwater that involve the threat of contamination. GIS computer based map exhibited that the higher rate of contamination observed in the central and southern area with relatively less extent in the northern and southwestern parts. It could be attributed to the effect of irrigation, residual saline water, municipal sewage and livestock wastes. At wells elevation over than 85m, the scatter diagram represents that the groundwater of the research area was mainly influenced by saline water and NO3. Level of pH measurement revealed low acidic condition due to dissolved atmospheric CO2 in the soil, while the saline water had a major impact on the higher values of TDS and EC. Based on the cluster analysis results, the groundwater has been categorized into three group includes the CaHCO3 type of the fresh water, NaHCO3 type slightly influenced by sea water and Ca-Cl, Na-Cl types which are heavily affected by saline water. The most predominant water type was CaHCO3 in the study area. Contamination sources and chemical characteristics were identified from factor analysis interrelationship and cluster analysis. The chemical elements that belong to factor 1 analysis were related to the effect of sea water while the elements of factor 2 associated with agricultural fertilizers. The degree level, distribution, and location of groundwater contamination have been generated by using Kriging methods. Thus, geostatistics model provided more accurate results for identifying the source of contamination and evaluating the groundwater quality. GIS was also a creative tool to visualize and analyze the issues affecting water quality in the Miryang city.

Keywords: groundwater characteristics, GIS chemical maps, factor analysis, cluster analysis, Kriging techniques

Procedia PDF Downloads 168
18212 Coal Preparation Plant:Technology Overview and New Adaptations

Authors: Amit Kumar Sinha

Abstract:

A coal preparation plant typically operates with multiple beneficiation circuits to process individual size fractions of coal obtained from mine so that the targeted overall plant efficiency in terms of yield and ash is achieved. Conventional coal beneficiation plant in India or overseas operates generally in two methods of processing; coarse beneficiation with treatment in dense medium cyclones or in baths and fines beneficiation with treatment in flotation cell. This paper seeks to address the proven application of intermediate circuit along with coarse and fines circuit in Jamadoba New Coal Preparation Plant of capacity 2 Mt/y to treat -0.5 mm+0.25 mm size particles in reflux classifier. Previously this size of particles was treated directly in Flotation cell which had operational and metallurgical limitations which will be discussed in brief in this paper. The paper also details test work results performed on the representative samples of TSL coal washeries to determine the top size of intermediate and fines circuit and discusses about the overlapping process of intermediate circuit and how it is process wise suitable to beneficiate misplaced particles from coarse circuit and fines circuit. This paper also compares the separation efficiency (Ep) of various intermediate circuit process equipment and tries to validate the use of reflux classifier over fine coal DMC or spirals. An overview of Modern coal preparation plant treating Indian coal especially Washery Grade IV coal with reference to Jamadoba New Coal Preparation Plant which was commissioned in 2018 with basis of selection of equipment and plant profile, application of reflux classifier in intermediate circuit and process design criteria is also outlined in this paper.

Keywords: intermediate circuit, overlapping process, reflux classifier

Procedia PDF Downloads 136
18211 Concept Mapping to Reach Consensus on an Antibiotic Smart Use Strategy Model to Promote and Support Appropriate Antibiotic Prescribing in a Hospital, Thailand

Authors: Phenphak Horadee, Rodchares Hanrinth, Saithip Suttiruksa

Abstract:

Inappropriate use of antibiotics has happened in several hospitals, Thailand. Drug use evaluation (DUE) is one strategy to overcome this difficulty. However, most community hospitals still encounter incomplete evaluation resulting overuse of antibiotics with high cost. Consequently, drug-resistant bacteria have been rising due to inappropriate antibiotic use. The aim of this study was to involve stakeholders in conceptualizing, developing, and prioritizing a feasible intervention strategy to promote and support appropriate antibiotic prescribing in a community hospital, Thailand. Study antibiotics included four antibiotics such as Meropenem, Piperacillin/tazobactam, Amoxicillin/clavulanic acid, and Vancomycin. The study was conducted for the 1-year period between March 1, 2018, and March 31, 2019, in a community hospital in the northeastern part of Thailand. Concept mapping was used in a purposive sample, including doctors (one was an administrator), pharmacists, and nurses who involving drug use evaluation of antibiotics. In-depth interviews for each participant and survey research were conducted to seek the problems for inappropriate use of antibiotics based on drug use evaluation system. Seventy-seven percent of DUE reported appropriate antibiotic prescribing, which still did not reach the goal of 80 percent appropriateness. Meropenem led other antibiotics for inappropriate prescribing. The causes of the unsuccessful DUE program were classified into three themes such as personnel, lack of public relation and communication, and unsupported policy and impractical regulations. During the first meeting, stakeholders (n = 21) expressed the generation of interventions. During the second meeting, participants who were almost the same group of people in the first meeting (n = 21) were requested to independently rate the feasibility and importance of each idea and to categorize them into relevant clusters to facilitate multidimensional scaling and hierarchical cluster analysis. The outputs of analysis included the idealist, cluster list, point map, point rating map, cluster map, and cluster rating map. All of these were distributed to participants (n = 21) during the third meeting to reach consensus on an intervention model. The final proposed intervention strategy included 29 feasible and crucial interventions in seven clusters: development of information technology system, establishing policy and taking it into the action plan, proactive public relations of the policy, action plan and workflow, in cooperation of multidisciplinary teams in drug use evaluation, work review and evaluation with performance reporting, promoting and developing professional and clinical skill for staff with training programs, and developing practical drug use evaluation guideline for antibiotics. These interventions are relevant and fit to several intervention strategies for antibiotic stewardship program in many international organizations such as participation of the multidisciplinary team, developing information technology to support antibiotic smart use, and communication. These interventions were prioritized for implementation over a 1-year period. Once the possibility of each activity or plan is set up, the proposed program could be applied and integrated into hospital policy after evaluating plans. Effectiveness of each intervention could be promoted to other community hospitals to promote and support antibiotic smart use.

Keywords: antibiotic, concept mapping, drug use evaluation, multidisciplinary teams

Procedia PDF Downloads 118
18210 A Simple User Administration View of Computing Clusters

Authors: Valeria M. Bastos, Myrian A. Costa, Matheus Ambrozio, Nelson F. F. Ebecken

Abstract:

In this paper a very simple and effective user administration view of computing clusters systems is implemented in order of friendly provide the configuration and monitoring of distributed application executions. The user view, the administrator view, and an internal control module create an illusionary management environment for better system usability. The architecture, properties, performance, and the comparison with others software for cluster management are briefly commented.

Keywords: big data, computing clusters, administration view, user view

Procedia PDF Downloads 330
18209 Evaluation of Actual Nutrition Patients of Osteoporosis

Authors: Aigul Abduldayeva, Gulnar Tuleshova

Abstract:

Osteoporosis (OP) is a major socio-economic problem and is a major cause of disability, reduced quality of life and premature death of elderly people. In Astana, the study involved 93 respondents, of whom 17 were men (18.3%), and 76 were women (81.7%). Age distribution of the respondents is as follows: 40-59 (66.7%), 60-75 (29.0%), 75-90 (4.3%). In the city of Astana general breach of bone mass (CCM) was determined in 83.8% (nationwide figure - RRP - 79.0%) of the patients, and normal levels of ultrasound densitometry were detected in 16.1% (RRP 21.0%) of the patients. OP was diagnosed in 20.4% of people over 40 (RRP for citizens is 19.0%), 25.4% in the group older than 50 (23.4% PIU), 22,6% in the group older than 60 (RRP 32.6%), 25.0% in the group older than 70 (47.6% of RRP). OPN was detected in 63.4% (RRP 59.6%) of the surveyed population. These data indicate that, there is no sharp difference between Astana and other cities in the country regarding the incidence of OP, that is, the situation with the OP is not aggravated by any regional characteristics. In the distribution of respondents by clusters it was found that 80.0% of the respondents with CCM were in the "best urban cluster", 93.8% were in "average urban cluster", and 77.4% were in a "poor urban cluster". There is a high rate construction of new buildings in Astana, presumably, that the new settlers inhabit the outskirts of the city, and very difficult to trace the socio-economic differences there. Based on these data the following conclusions can be made: 1. According to the ultrasound densitometry of the calcaneus the prevalence rate of NCM among the residents of Astana is 83.3%, OP - 20.4%, which generally coincides with data elsewhere in the country. 2. The urban population of Astana is under a high degree of risk for low energetic fracture, 46.2% of the population had medium and high risks of fracture, while the nationwide index is 26.7%. 3. In the development of CCM residents of Akmola region play a significant role gender, age, ethnic factors. According to the ultrasound densitometry women are more prone to Astana OP - 22.4% of respondents than men - 11.8% of respondents.

Keywords: nutrition, osteoporosis, elderly, urban population

Procedia PDF Downloads 473
18208 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism

Authors: Lizhi Ma, Dan Liu

Abstract:

Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.

Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning

Procedia PDF Downloads 18
18207 The Trade Flow of Small Association Agreements When Rules of Origin Are Relaxed

Authors: Esmat Kamel

Abstract:

This paper aims to shed light on the extent to which the Agadir Association agreement has fostered inter regional trade between the E.U_26 and the Agadir_4 countries; once that we control for the evolution of Agadir agreement’s exports to the rest of the world. The next valid question will be regarding any remarkable variation in the spatial/sectoral structure of exports, and to what extent has it been induced by the Agadir agreement itself and precisely after the adoption of rules of origin and the PANEURO diagonal cumulative scheme? The paper’s empirical dataset covering a timeframe from [2000 -2009] was designed to account for sector specific export and intermediate flows and the bilateral structured gravity model was custom tailored to capture sector and regime specific rules of origin and the Poisson Pseudo Maximum Likelihood Estimator was used to calculate the gravity equation. The methodological approach of this work is considered to be a threefold one which starts first by conducting a ‘Hierarchal Cluster Analysis’ to classify final export flows showing a certain degree of linkage between each other. The analysis resulted in three main sectoral clusters of exports between Agadir_4 and E.U_26: cluster 1 for Petrochemical related sectors, cluster 2 durable goods and finally cluster 3 for heavy duty machinery and spare parts sectors. Second step continues by taking export flows resulting from the 3 clusters to be subject to treatment with diagonal Rules of origin through ‘The Double Differences Approach’, versus an equally comparable untreated control group. Third step is to verify results through a robustness check applied by ‘Propensity Score Matching’ to validate that the same sectoral final export and intermediate flows increased when rules of origin were relaxed. Through all the previous analysis, a remarkable and partial significance of the interaction term combining both treatment effects and time for the coefficients of 13 out of the 17 covered sectors turned out to be partially significant and it further asserted that treatment with diagonal rules of origin contributed in increasing Agadir’s_4 final and intermediate exports to the E.U._26 on average by 335% and in changing Agadir_4 exports structure and composition to the E.U._26 countries.

Keywords: agadir association agreement, structured gravity model, hierarchal cluster analysis, double differences estimation, propensity score matching, diagonal and relaxed rules of origin

Procedia PDF Downloads 317
18206 Mg and MgN₃ Cluster in Diamond: Quantum Mechanical Studies

Authors: T. S. Almutairi, Paul May, Neil Allan

Abstract:

The geometrical, electronic and magnetic properties of the neutral Mg center and MgN₃ cluster in diamond have been studied theoretically in detail by means of an HSE06 Hamiltonian that includes a fraction of the exact exchange term; this is important for a satisfactory picture of the electronic states of open-shell systems. Another batch of the calculations by GGA functionals have also been included for comparison, and these support the results from HSE06. The local perturbations in the lattice by introduced Mg defect are restricted in the first and second shell of atoms before eliminated. The formation energy calculated with HSE06 and GGA of single Mg agrees with the previous result. We found the triplet state with C₃ᵥ is the ground state of Mg center with energy lower than the singlet with C₂ᵥ by ~ 0.1 eV. The recent experimental ZPL (557.4 nm) of Mg center in diamond has been discussed in the view of present work. The analysis of the band-structure of the MgN₃ cluster confirms that the MgN₃ defect introduces a shallow donor level in the gap lying within the conduction band edge. This observation is supported by the EMM that produces n-type levels shallower than the P donor level. The formation energy of MgN₂ calculated from a 2NV defect (~ 3.6 eV) is a promising value from which to engineer MgN₃ defects inside the diamond. Ion-implantation followed by heating to about 1200-1600°C might induce migration of N related defects to the localized Mg center. Temperature control is needed for this process to restore the damage and ensure the mobilities of V and N, which demands a more precise experimental study.

Keywords: empirical marker method, generalised gradient approximation, Heyd–Scuseria–Ernzerhof screened hybrid functional, zero phono line

Procedia PDF Downloads 115
18205 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs

Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu

Abstract:

This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.

Keywords: interpolation, approximate solution, collocation, differential system, half step, converges, block method, efficiency

Procedia PDF Downloads 337
18204 Various Advanced Statistical Analyses of Index Values Extracted from Outdoor Agricultural Workers Motion Data

Authors: Shinji Kawakura, Ryosuke Shibasaki

Abstract:

We have been grouping and developing various kinds of practical, promising sensing applied systems concerning agricultural advancement and technical tradition (guidance). These include advanced devices to secure real-time data related to worker motion, and we analyze by methods of various advanced statistics and human dynamics (e.g. primary component analysis, Ward system based cluster analysis, and mapping). What is more, we have been considering worker daily health and safety issues. Targeted fields are mainly common farms, meadows, and gardens. After then, we observed and discussed time-line style, changing data. And, we made some suggestions. The entire plan makes it possible to improve both the aforementioned applied systems and farms.

Keywords: advanced statistical analysis, wearable sensing system, tradition of skill, supporting for workers, detecting crisis

Procedia PDF Downloads 394
18203 Phenotype and Psychometric Characterization of Phelan-Mcdermid Syndrome Patients

Authors: C. Bel, J. Nevado, F. Ciceri, M. Ropacki, T. Hoffmann, P. Lapunzina, C. Buesa

Abstract:

Background: The Phelan-McDermid syndrome (PMS) is a genetic disorder caused by the deletion of the terminal region of chromosome 22 or mutation of the SHANK3 gene. Shank3 disruption in mice leads to dysfunction of synaptic transmission, which can be restored by epigenetic regulation with both Lysine Specific Demethylase 1 (LSD1) inhibitors. PMS subjects result in a variable degree of intellectual disability, delay or absence of speech, autistic spectrum disorders symptoms, low muscle tone, motor delays and epilepsy. Vafidemstat is an LSD1 inhibitor in Phase II clinical development with a well-established and favorable safety profile, and data supporting the restoration of memory and cognition defects as well as reduction of agitation and aggression in several animal models and clinical studies. Therefore, vafidemstat has the potential to become a first-in-class precision medicine approach to treat PMS patients. Aims: The goal of this research is to perform an observational trial to psychometrically characterize individuals carrying deletions in SHANK3 and build a foundation for subsequent precision psychiatry clinical trials with vafidemstat. Methodology: This study is characterizing the clinical profile of 20 to 40 subjects, > 16-year-old, with genotypically confirmed PMS diagnosis. Subjects will complete a battery of neuropsychological scales, including the Repetitive Behavior Questionnaire (RBQ), Vineland Adaptive Behavior Scales, Escala de Observación para el Diagnostico del Autismo (Autism Diagnostic Observational Scale) (ADOS)-2, the Battelle Developmental Inventory and the Behavior Problems Inventory (BPI). Results: By March 2021, 19 patients have been enrolled. Unsupervised hierarchical clustering of the results obtained so far identifies 3 groups of patients, characterized by different profiles of cognitive and behavioral scores. The first cluster is characterized by low Battelle age, high ADOS and low Vineland, RBQ and BPI scores. Low Vineland, RBQ and BPI scores are also detected in the second cluster, which in contrast has high Battelle age and low ADOS scores. The third cluster is somewhat in the middle for the Battelle, Vineland and ADOS scores while displaying the highest levels of aggression (high BPI) and repeated behaviors (high RBQ). In line with the observation that female patients are generally affected by milder forms of autistic symptoms, no male patients are present in the second cluster. Dividing the results by gender highlights that male patients in the third cluster are characterized by a higher frequency of aggression, whereas female patients from the same cluster display a tendency toward higher repetitive behavior. Finally, statistically significant differences in deletion sizes are detected comparing the three clusters (also after correcting for gender), and deletion size appears to be positively correlated with ADOS and negatively correlated with Vineland A and C scores. No correlation is detected between deletion size and the BPI and RBQ scores. Conclusions: Precision medicine may open a new way to understand and treat Central Nervous System disorders. Epigenetic dysregulation has been proposed to be an important mechanism in the pathogenesis of schizophrenia and autism. Vafidemstat holds exciting therapeutic potential in PMS, and this study will provide data regarding the optimal endpoints for a future clinical study to explore vafidemstat ability to treat shank3-associated psychiatric disorders.

Keywords: autism, epigenetics, LSD1, personalized medicine

Procedia PDF Downloads 164
18202 Spatial Distribution and Cluster Analysis of Sexual Risk Behaviors and STIs Reported by Chinese Adults in Guangzhou, China: A Representative Population-Based Study

Authors: Fangjing Zhou, Wen Chen, Brian J. Hall, Yu Wang, Carl Latkin, Li Ling, Joseph D. Tucker

Abstract:

Background: Economic and social reforms designed to open China to the world has been successful, but also appear to have rapidly laid the foundation for the reemergence of STIs since 1980s. Changes in sexual behaviors, relationships, and norms among Chinese contributed to the STIs epidemic. As the massive population moved during the last 30 years, early coital debut, multiple sexual partnerships, and unprotected sex have increased within the general population. Our objectives were to assess associations between residences location, sexual risk behaviors and sexually transmitted infections (STIs) among adults living in Guangzhou, China. Methods: Stratified cluster sampling followed a two-step process was used to select populations aged 18-59 years in Guangzhou, China. Spatial methods including Geographic Information Systems (GIS) were utilized to identify 1400 coordinates with latitude and longitude. Face-to-face household interviews were conducted to collect self-report data on sexual risk behaviors and diagnosed STIs. Kulldorff’s spatial scan statistic was implemented to identify and detect spatial distribution and clusters of sexual risk behaviors and STIs. The presence and location of statistically significant clusters were mapped in the study areas using ArcGIS software. Results: In this study, 1215 of 1400 households attempted surveys, with 368 refusals, resulting in a sample of 751 completed surveys. The prevalence of self-reported sexual risk behaviors was between 5.1% and 50.0%. The self-reported lifetime prevalence of diagnosed STIs was 7.06%. Anal intercourse clustered in an area located along the border within the rural-urban continuum (p=0.001). High rate clusters for alcohol or other drugs using before sex (p=0.008) and migrants who lived in Guangzhou less than one year (p=0.007) overlapped this cluster. Excess cases for sex without a condom (p=0.031) overlapped the cluster for college students (p<0.001). Conclusions: Short-term migrants and college students reported greater sexual risk behaviors. Programs to increase safer sex within these communities to reduce the risk of STIs are warranted in Guangzhou. Spatial analysis identified geographical clusters of sexual risk behaviors, which is critical for optimizing surveillance and targeting control measures for these locations in the future.

Keywords: cluster analysis, migrant, sexual risk behaviors, spatial distribution

Procedia PDF Downloads 340
18201 FLEX: A Backdoor Detection and Elimination Method in Federated Scenario

Authors: Shuqi Zhang

Abstract:

Federated learning allows users to participate in collaborative model training without sending data to third-party servers, reducing the risk of user data privacy leakage, and is widely used in smart finance and smart healthcare. However, the distributed architecture design of federation learning itself and the existence of secure aggregation protocols make it inherently vulnerable to backdoor attacks. To solve this problem, the federated learning backdoor defense framework FLEX based on group aggregation, cluster analysis, and neuron pruning is proposed, and inter-compatibility with secure aggregation protocols is achieved. The good performance of FLEX is verified by building a horizontal federated learning framework on the CIFAR-10 dataset for experiments, which achieves 98% success rate of backdoor detection and reduces the success rate of backdoor tasks to 0% ~ 10%.

Keywords: federated learning, secure aggregation, backdoor attack, cluster analysis, neuron pruning

Procedia PDF Downloads 95
18200 Unlocking E-commerce: Analyzing User Behavior and Segmenting Customers for Strategic Insights

Authors: Aditya Patil, Arun Patil, Vaishali Patil, Sudhir Chitnis, Anjum Patel

Abstract:

Rapid growth has given e-commerce platforms a lot of client behavior and spending data. To maximize their strategy, businesses must understand how customers utilize online shopping platforms and what influences their purchases. Our research focuses on e-commerce user behavior and purchasing trends. This extensive study examines spending and user behavior. Regression and grouping disclose relevant data from the dataset. We can understand user spending trends via multilevel regression. We can analyze how pricing, user demographics, and product categories affect customer purchase decisions with this technique. Clustering groups consumers by spending. Important information was found. Purchase habits vary by user group. Our analysis illuminates the complex world of e-commerce consumer behavior and purchase trends. Understanding user behavior helps create effective e-commerce marketing strategies. This market can benefit from K-means clustering. This study focuses on tailoring strategies to user groups and improving product and price effectiveness. Customer buying behaviors across categories were shown via K-means clusters. Average spending is highest in Cluster 4 and lowest in Cluster 3. Clothing is less popular than gadgets and appliances around the holidays. Cluster spending distribution is examined using average variables. Our research enhances e-commerce analytics. Companies can improve customer service and decision-making with this data.

Keywords: e-commerce, regression, clustering, k-means

Procedia PDF Downloads 18
18199 Spectroscopic Relation between Open Cluster and Globular Cluster

Authors: Robin Singh, Mayank Nautiyal, Priyank Jain, Vatasta Koul, Vaibhav Sharma

Abstract:

The curiosity to investigate the space and its mysteries was dependably the main impetus of human interest, as the particle of livings exists from the "debut de l'Univers" (beginning of the Universe) typified with its few other living things. The sharp drive to uncover the secrets of stars and their unusual deportment was dependably an ignitor of stars investigation. As humankind lives in civilizations and states, stars likewise live in provinces named ‘clusters’. Clusters are separates into 2 composes i.e. open clusters and globular clusters. An open cluster is a gathering of thousand stars that were moulded from a comparable goliath sub-nuclear cloud and for the most part; contain Propulsion I (extremely metal-rich) and Propulsion II (mild metal-rich), where globular clusters are around gathering of more than thirty thousand stars that circles a galactic focus and basically contain Propulsion III (to a great degree metal-poor) stars. Futurology of this paper lies in the spectroscopic investigation of globular clusters like M92 and NGC419 and open clusters like M34 and IC2391 in different color bands by using software like VIREO virtual observatory, Aladin, CMUNIWIN, and MS-Excel. Assessing the outcome Hertzsprung-Russel (HR) diagram with exemplary cosmological models like Einstein model, De Sitter and Planck survey demonstrate for a superior age estimation of respective clusters. Colour-Magnitude Diagram of these clusters was obtained by photometric analysis in g and r bands which further transformed into BV bands which will unravel the idea of stars exhibit in the individual clusters.

Keywords: color magnitude diagram, globular clusters, open clusters, Einstein model

Procedia PDF Downloads 226
18198 Ultrasonographic Study of Normal Scapula in Horse

Authors: Mohamad Saeed Ahrari-Khafi, Abutorab Tabatabai-Naini, Niloofar Ajvadi

Abstract:

Scapular fracture is not common in horses, due to the proper protection of scapular muscles. However, if it happens, it can cause lameness in horses. Because of the overlapping of the scapula on the contralateral scapula and the thorax, usually radiography cannot be helpful in evaluation, except in small amount of its ventral part. Although ultrasonography is mainly used for diagnosis of soft tissue injuries, it also can be used for evaluation of bone surface abnormalities. This study was intended to document the normal ultrasonographic appearance of the equine scapula. Right forelimb of six horses was used. To facilitate the image assessment, a zoning system was developed. Ultrasonography was performed by using a 5-11 MHz linear array transducer. Ultrasonographic anatomy of scapula in different parts and planes was imaged and documented, hoping to help practitioners to diagnose fractures and injuries. Results showed that ultrasonography is capable to depict different parts of the scapula and regional muscles, and can be used for detecting fractures and other abnormalities.

Keywords: horse, scapula, scapular fracture, ultrasonography

Procedia PDF Downloads 305
18197 An E-Assessment Website to Implement Hierarchical Aggregate Assessment

Authors: M. Lesage, G. Raîche, M. Riopel, F. Fortin, D. Sebkhi

Abstract:

This paper describes a Web server implementation of the hierarchical aggregate assessment process in the field of education. This process describes itself as a field of teamwork assessment where teams can have multiple levels of hierarchy and supervision. This process is applied everywhere and is part of the management, education, assessment and computer science fields. The E-Assessment website named “Cluster” records in its database the students, the course material, the teams and the hierarchical relationships between the students. For the present research, the hierarchical relationships are team member, team leader and group administrator appointments. The group administrators have the responsibility to supervise team leaders. The experimentation of the application has been performed by high school students in geology courses and Canadian army cadets for navigation patrols in teams. This research extends the work of Nance that uses a hierarchical aggregation process similar as the one implemented in the “Cluster” application.

Keywords: e-learning, e-assessment, teamwork assessment, hierarchical aggregate assessment

Procedia PDF Downloads 369
18196 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem

Authors: Ouafa Amira, Jiangshe Zhang

Abstract:

Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.

Keywords: clustering, fuzzy c-means, regularization, relative entropy

Procedia PDF Downloads 259
18195 A Methodology Based on Image Processing and Deep Learning for Automatic Characterization of Graphene Oxide

Authors: Rafael do Amaral Teodoro, Leandro Augusto da Silva

Abstract:

Originated from graphite, graphene is a two-dimensional (2D) material that promises to revolutionize technology in many different areas, such as energy, telecommunications, civil construction, aviation, textile, and medicine. This is possible because its structure, formed by carbon bonds, provides desirable optical, thermal, and mechanical characteristics that are interesting to multiple areas of the market. Thus, several research and development centers are studying different manufacturing methods and material applications of graphene, which are often compromised by the scarcity of more agile and accurate methodologies to characterize the material – that is to determine its composition, shape, size, and the number of layers and crystals. To engage in this search, this study proposes a computational methodology that applies deep learning to identify graphene oxide crystals in order to characterize samples by crystal sizes. To achieve this, a fully convolutional neural network called U-net has been trained to segment SEM graphene oxide images. The segmentation generated by the U-net is fine-tuned with a standard deviation technique by classes, which allows crystals to be distinguished with different labels through an object delimitation algorithm. As a next step, the characteristics of the position, area, perimeter, and lateral measures of each detected crystal are extracted from the images. This information generates a database with the dimensions of the crystals that compose the samples. Finally, graphs are automatically created showing the frequency distributions by area size and perimeter of the crystals. This methodological process resulted in a high capacity of segmentation of graphene oxide crystals, presenting accuracy and F-score equal to 95% and 94%, respectively, over the test set. Such performance demonstrates a high generalization capacity of the method in crystal segmentation, since its performance considers significant changes in image extraction quality. The measurement of non-overlapping crystals presented an average error of 6% for the different measurement metrics, thus suggesting that the model provides a high-performance measurement for non-overlapping segmentations. For overlapping crystals, however, a limitation of the model was identified. To overcome this limitation, it is important to ensure that the samples to be analyzed are properly prepared. This will minimize crystal overlap in the SEM image acquisition and guarantee a lower error in the measurements without greater efforts for data handling. All in all, the method developed is a time optimizer with a high measurement value, considering that it is capable of measuring hundreds of graphene oxide crystals in seconds, saving weeks of manual work.

Keywords: characterization, graphene oxide, nanomaterials, U-net, deep learning

Procedia PDF Downloads 160
18194 Analysis of Universal Mobile Telecommunications Service (UMTS) Planning Using High Altitude Platform Station (HAPS)

Authors: Yosika Dian Komala, Uke Kurniawan Usman, Yuyun Siti Rohmah

Abstract:

The enable technology fills up needs of high-speed data service is Universal Mobile Telecommunications Service (UMTS). UMTS has a data rate up to 2Mbps.UMTS terrestrial system has a coverage area about 1-2km. High Altitude Platform Station (HAPS) can be built by a macro cell that is able to serve the wider area. Design method of UMTS using HAPS is planning base on coverage and capacity. The planning method is simulated with 2.8.1 Atoll’s software. Determination of radius of the cell based on the coverage uses free space loss propagation model. While the capacity planning to determine the average cell through put is available with the Offered Bit Quantity (OBQ).

Keywords: UMTS, HAPS, coverage planning, capacity planning, signal level, Ec/Io, overlapping zone, throughput

Procedia PDF Downloads 639
18193 Developing Wearable EMG Sensor Designed for Parkinson's Disease (PD) Monitoring, and Treatment

Authors: Bulcha Belay Etana

Abstract:

Electromyography is used to measure the electrical activity of muscles for various health monitoring applications using surface electrodes or needle electrodes. Recent developments in electromyogram signal acquisition using textile electrodes open the door for wearable health monitoring which enables patients to monitor and control their health issues outside of traditional healthcare facilities. The aim of this research is therefore to develop and analyze wearable textile electrodes for the acquisition of electromyography signals for Parkinson’s patients and apply an appropriate thermal stimulus to relieve muscle cramping. In order to achieve this, textile electrodes are sewn with a silver-coated thread in an overlapping zigzag pattern into an inextensible fabric, and stainless steel knitted textile electrodes attached to a sleeve were prepared and its electrical characteristics including signal to noise ratio were compared with traditional electrodes. To relieve muscle cramping, a heating element using stainless steel conductive yarn Sewn onto a cotton fabric, coupled with a vibration system were developed. The system was integrated using a microcontroller and a Myoware muscle sensor so that when muscle cramping occurs, measured by the system activates the heating elements and vibration motors. The optimum temperature considered for treatment was 35.50c, so a Temperature measurement system was incorporated to deactivate the heating system when the temperature reaches this threshold, and the signals indicating muscle cramping have subsided. The textile electrode exhibited a signal to noise ratio of 6.38dB while the signal to noise ratio of the traditional electrode was 7.05dB. The rise time of the developed heating element was about 6 minutes to reach the optimum temperature using a 9volt power supply. The treatment of muscle cramping in Parkinson's patients using heat and muscle vibration simultaneously with a wearable electromyography signal acquisition system will improve patients’ livelihoods and enable better chronic pain management.

Keywords: electromyography, heating textile, vibration therapy, parkinson’s disease, wearable electronic textile

Procedia PDF Downloads 135
18192 An Intelligent Traffic Management System Based on the WiFi and Bluetooth Sensing

Authors: Hamed Hossein Afshari, Shahrzad Jalali, Amir Hossein Ghods, Bijan Raahemi

Abstract:

This paper introduces an automated clustering solution that applies to WiFi/Bluetooth sensing data and is later used for traffic management applications. The paper initially summarizes a number of clustering approaches and thereafter shows their performance for noise removal. In this context, clustering is used to recognize WiFi and Bluetooth MAC addresses that belong to passengers traveling by a public urban transit bus. The main objective is to build an intelligent system that automatically filters out MAC addresses that belong to persons located outside the bus for different routes in the city of Ottawa. The proposed intelligent system alleviates the need for defining restrictive thresholds that however reduces the accuracy as well as the range of applicability of the solution for different routes. This paper moreover discusses the performance benefits of the presented clustering approaches in terms of the accuracy, time and space complexity, and the ease of use. Note that results of clustering can further be used for the purpose of the origin-destination estimation of individual passengers, predicting the traffic load, and intelligent management of urban bus schedules.

Keywords: WiFi-Bluetooth sensing, cluster analysis, artificial intelligence, traffic management

Procedia PDF Downloads 241
18191 Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters

Authors: Farzaneh Rajabighamchi, Stan van Hoesel, Christof Defryn

Abstract:

The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations.

Keywords: warehouse optimization, order picking problem, generalised travelling salesman problem, heuristic algorithm

Procedia PDF Downloads 112
18190 Atomic Clusters: A Unique Building Motif for Future Smart Nanomaterials

Authors: Debesh R. Roy

Abstract:

The fundamental issue in understanding the origin and growth mechanism of nanomaterials, from a fundamental unit is a big challenging problem to the scientists. Recently, an immense attention is generated to the researchers for prediction of exceptionally stable atomic cluster units as the building units for future smart materials. The present study is a systematic investigation on the stability and electronic properties of a series of bimetallic (semiconductor-alkaline earth) clusters, viz., BxMg3 (x=1-5) is performed, in search for exceptional and/ or unusual stable motifs. A very popular hybrid exchange-correlation functional, B3LYP as proposed by A. D. Becke along with a higher basis set, viz., 6-31+G[d,p] is employed for this purpose under the density functional formalism. The magic stability among the concerned clusters is explained using the jellium model. It is evident from the present study that the magic stability of B4Mg3 cluster arises due to the jellium shell closure.

Keywords: atomic clusters, density functional theory, jellium model, magic clusters, smart nanomaterials

Procedia PDF Downloads 528
18189 A Non-parametric Clustering Approach for Multivariate Geostatistical Data

Authors: Francky Fouedjio

Abstract:

Multivariate geostatistical data have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations within the same cluster are more similar while clusters are different from each other, in some sense. Spatially contiguous clusters can significantly improve the interpretation that turns the resulting clusters into meaningful geographical subregions. In this paper, we develop an agglomerative hierarchical clustering approach that takes into account the spatial dependency between observations. It relies on a dissimilarity matrix built from a non-parametric kernel estimator of the spatial dependence structure of data. It integrates existing methods to find the optimal cluster number and to evaluate the contribution of variables to the clustering. The capability of the proposed approach to provide spatially compact, connected and meaningful clusters is assessed using bivariate synthetic dataset and multivariate geochemical dataset. The proposed clustering method gives satisfactory results compared to other similar geostatistical clustering methods.

Keywords: clustering, geostatistics, multivariate data, non-parametric

Procedia PDF Downloads 477
18188 A Design for Customer Preferences Model by Cluster Analysis of Geometric Features and Customer Preferences

Authors: Yuan-Jye Tseng, Ching-Yen Chen

Abstract:

In the design cycle, a main design task is to determine the external shape of the product. The external shape of a product is one of the key factors that can affect the customers’ preferences linking to the motivation to buy the product, especially in the case of a consumer electronic product such as a mobile phone. The relationship between the external shape and the customer preferences needs to be studied to enhance the customer’s purchase desire and action. In this research, a design for customer preferences model is developed for investigating the relationships between the external shape and the customer preferences of a product. In the first stage, the names of the geometric features are collected and evaluated from the data of the specified internet web pages using the developed text miner. The key geometric features can be determined if the number of occurrence on the web pages is relatively high. For each key geometric feature, the numerical values are explored using the text miner to collect the internet data from the web pages. In the second stage, a cluster analysis model is developed to evaluate the numerical values of the key geometric features to divide the external shapes into several groups. Several design suggestion cases can be proposed, for example, large model, mid-size model, and mini model, for designing a mobile phone. A customer preference index is developed by evaluating the numerical data of each of the key geometric features of the design suggestion cases. The design suggestion case with the top ranking of the customer preference index can be selected as the final design of the product. In this paper, an example product of a notebook computer is illustrated. It shows that the external shape of a product can be used to drive customer preferences. The presented design for customer preferences model is useful for determining a suitable external shape of the product to increase customer preferences.

Keywords: cluster analysis, customer preferences, design evaluation, design for customer preferences, product design

Procedia PDF Downloads 191
18187 Liquid Waste Management in Cluster Development

Authors: Abheyjit Singh, Kulwant Singh

Abstract:

There is a gradual depletion of the water table in the earth's crust, and it is required to converse and reduce the scarcity of water. This is only done by rainwater harvesting, recycling of water and by judicially consumption/utilization of water and adopting unique treatment measures. Domestic waste is generated in residential areas, commercial settings, and institutions. Waste, in general, is unwanted, undesirable, and nevertheless an inevitable and inherent product of social, economic, and cultural life. In a cluster, a need-based system is formed where the project is designed for systematic analysis, collection of sewage from the cluster, treating it and then recycling it for multifarious work. The liquid waste may consist of Sanitary sewage/ Domestic waste, Industrial waste, Storm waste, or Mixed Waste. The sewage contains both suspended and dissolved particles, and the total amount of organic material is related to the strength of the sewage. The untreated domestic sanitary sewage has a BOD (Biochemical Oxygen Demand) of 200 mg/l. TSS (Total Suspended Solids) about 240 mg/l. Industrial Waste may have BOD and TSS values much higher than those of sanitary sewage. Another type of impurities of wastewater is plant nutrients, especially when there are compounds of nitrogen N phosphorus P in the sewage; raw sanitary contains approx. 35 mg/l Nitrogen and 10 mg/l of Phosphorus. Finally, the pathogen in the waste is expected to be proportional to the concentration of facial coliform bacteria. The coliform concentration in raw sanitary sewage is roughly 1 billion per liter. The system of sewage disposal technique has been universally applied to all conditions, which are the nature of soil formation, Availability of land, Quantity of Sewage to be disposed of, The degree of treatment and the relative cost of disposal technique. The adopted Thappar Model (India) has the following designed parameters consisting of a Screen Chamber, a Digestion Tank, a Skimming Tank, a Stabilization Tank, an Oxidation Pond and a Water Storage Pond. The screening Chamber is used to remove plastic and other solids, The Digestion Tank is designed as an anaerobic tank having a retention period of 8 hours, The Skimming Tank has an outlet that is kept 1 meter below the surface anaerobic condition at the bottom and also help in organic solid remover, Stabilization Tank is designed as primary settling tank, Oxidation Pond is a facultative pond having a depth of 1.5 meter, Storage Pond is designed as per the requirement. The cost of the Thappar model is Rs. 185 Lakh per 3,000 to 4,000 population, and the Area required is 1.5 Acre. The complete structure will linning as per the requirement. The annual maintenance will be Rs. 5 lakh per year. The project is useful for water conservation, silage water for irrigation, decrease of BOD and there will be no longer damage to community assets and economic loss to the farmer community by inundation. There will be a healthy and clean environment in the community.

Keywords: collection, treatment, utilization, economic

Procedia PDF Downloads 76
18186 A QoS Aware Cluster Based Routing Algorithm for Wireless Mesh Network Using LZW Lossless Compression

Authors: J. S. Saini, P. P. K. Sandhu

Abstract:

The multi-hop nature of Wireless Mesh Networks and the hasty progression of throughput demands results in multi- channels and multi-radios structures in mesh networks, but the main problem of co-channels interference reduces the total throughput, specifically in multi-hop networks. Quality of Service mentions a vast collection of networking technologies and techniques that guarantee the ability of a network to make available desired services with predictable results. Quality of Service (QoS) can be directed at a network interface, towards a specific server or router's performance, or in specific applications. Due to interference among various transmissions, the QoS routing in multi-hop wireless networks is formidable task. In case of multi-channel wireless network, since two transmissions using the same channel may interfere with each other. This paper has considered the Destination Sequenced Distance Vector (DSDV) routing protocol to locate the secure and optimised path. The proposed technique also utilizes the Lempel–Ziv–Welch (LZW) based lossless data compression and intra cluster data aggregation to enhance the communication between the source and the destination. The use of clustering has the ability to aggregate the multiple packets and locates a single route using the clusters to improve the intra cluster data aggregation. The use of the LZW based lossless data compression has ability to reduce the data packet size and hence it will consume less energy, thus increasing the network QoS. The MATLAB tool has been used to evaluate the effectiveness of the projected technique. The comparative analysis has shown that the proposed technique outperforms over the existing techniques.

Keywords: WMNS, QOS, flooding, collision avoidance, LZW, congestion control

Procedia PDF Downloads 338