Search results for: cessed buildings
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1782

Search results for: cessed buildings

1602 Performance Gap and near Zero Energy Buildings Compliance of Monitored Passivhaus in Northern Ireland, the Republic of Ireland and Italy

Authors: S. Colclough, V. Costanzo, K. Fabbri, S. Piraccini, P. Griffiths

Abstract:

The near Zero Energy Building (nZEB) standard is required for all buildings from 2020. The Passive House (PH) standard is a well-established low-energy building standard, having been designed over 25 years ago, and could potentially be used to achieve the nZEB standard in combination with renewables. By comparing measured performance with design predictions, this paper considers if there is a performance gap for a number of monitored properties and assesses if the nZEB standard can be achieved by following the well-established PH scheme. Analysis is carried out based on monitoring results from real buildings located in Northern Ireland, the Republic of Ireland and Italy respectively, with particular focus on the indoor air quality including the assumed and measured indoor temperature and heating periods for both standards as recorded during a full annual cycle. An analysis is carried out also on the energy performance certificates of each of the dwellings to determine if they meet the near Zero Energy Buildings primary energy consumption targets set in the respective jurisdictions. Each of the dwellings is certified as complying with the passive house standard, and accordingly have very good insulation levels, heat recovery and ventilation systems of greater than 75% efficiency and an airtightness of less than 0.6 air changes per hour at 50 Pa. It is found that indoor temperature and relative humidity were within the comfort boundaries set in the design stage, while carbon dioxide concentrations are sometimes higher than the values suggested by EN 15251 Standard for comfort class I especially in bedrooms.

Keywords: monitoring campaign, nZEB (near zero energy buildings), Passivhaus, performance gap

Procedia PDF Downloads 152
1601 Integrated Genetic-A* Graph Search Algorithm Decision Model for Evaluating Cost and Quality of School Renovation Strategies

Authors: Yu-Ching Cheng, Yi-Kai Juan, Daniel Castro

Abstract:

Energy consumption of buildings has been an increasing concern for researchers and practitioners in the last decade. Sustainable building renovation can reduce energy consumption and carbon dioxide emissions; meanwhile, it also can extend existing buildings useful life and facilitate environmental sustainability while providing social and economic benefits to the society. School buildings are different from other designed spaces as they are more crowded and host the largest portion of daily activities and occupants. Strategies that focus on reducing energy use but also improve the students’ learning environment becomes a significant subject in sustainable school buildings development. A decision model is developed in this study to solve complicated and large-scale combinational, discrete and determinate problems such as school renovation projects. The task of this model is to automatically search for the most cost-effective (lower cost and higher quality) renovation strategies. In this study, the search process of optimal school building renovation solutions is by nature a large-scale zero-one programming determinate problem. A* is suitable for solving deterministic problems due to its stable and effective search process, and genetic algorithms (GA) provides opportunities to acquire global optimal solutions in a short time via its indeterminate search process based on probability. These two algorithms are combined in this study to consider trade-offs between renovation cost and improved quality, this decision model is able to evaluate current school environmental conditions and suggest an optimal scheme of sustainable school buildings renovation strategies. Through adoption of this decision model, school managers can overcome existing limitations and transform school buildings into spaces more beneficial to students and friendly to the environment.

Keywords: decision model, school buildings, sustainable renovation, genetic algorithm, A* search algorithm

Procedia PDF Downloads 118
1600 Fires in Historic Buildings: Assessment of Evacuation of People by Computational Simulation

Authors: Ivana R. Moser, Joao C. Souza

Abstract:

Building fires are random phenomena that can be extremely violent, and safe evacuation of people is the most guaranteed tactic in saving lives. The correct evacuation of buildings, and other spaces occupied by people, means leaving the place in a short time and by the appropriate way. It depends on the perception of spaces by the individual, the architectural layout and the presence of appropriate routing systems. As historical buildings were constructed in other times, when, as in general, the current security requirements were not available yet, it is necessary to adapt these spaces to make them safe. Computer models of evacuation simulation are widely used tools for assessing the safety of people in a building or agglomeration sites and these are associated with the analysis of human behaviour, makes the results of emergency evacuation more correct and conclusive. The objective of this research is the performance evaluation of historical interest buildings, regarding the safe evacuation of people, through computer simulation, using PTV Viswalk software. The buildings objects of study are the Colégio Catarinense, centennial building, located in the city of Florianópolis, Santa Catarina / Brazil. The software used uses the variables of human behaviour, such as: avoid collision with other pedestrians and avoid obstacles. Scenarios were run on the three-dimensional models and the contribution to safety in risk situations was verified as an alternative measure, especially in the impossibility of applying those measures foreseen by the current fire safety codes in Brazil. The simulations verified the evacuation time in situations of normality and emergency situations, as well as indicate the bottlenecks and critical points of the studied buildings, to seek solutions to prevent and correct these undesirable events. It is understood that adopting an advanced computational performance-based approach promotes greater knowledge of the building and how people behave in these specific environments, in emergency situations.

Keywords: computer simulation, escape routes, fire safety, historic buildings, human behavior

Procedia PDF Downloads 187
1599 The Use of Energy Efficiency and Renewable Energy in Building for Sustainable Development

Authors: Zakariya B. H., Idris M. I., Jungudo M. A.

Abstract:

High energy consumptions of urban settlements in Nigeria are escalating due to strong population growth and migration as a result of crises. The demand for lighting, heating, ventilation and air conditioning (LHVAC) is becoming higher. Conversely, there is a poor electricity supply to both rural and urban settlement in Nigeria. Generators were mostly used in Nigeria as a source of energy for LHVAC. Energy efficiency can be defined as any measure taken to reduce the amount of energy consumed for heating ventilation and air-conditioning (HVAC), and house hold appliances like computers, stoves, refrigerators, televisions etc. The aim of the study was to minimize energy consumption in building through the integration of energy efficiency and renewable energy in building sector. Some of the energy efficient buildings within the study area were identified, the study covers there major cities of Nigeria namely, Abuja, Kaduna and Lagos city. The cost of investment on the energy efficiency and renewable energy was determined and compared with other fossil energy source for conventional building. Findings revealed that the low energy and energy efficient buildings in Nigeria are cheaper than the conventional ones. Based on the finding of the research, construction stake holders are strongly encouraged to abandon the conventional buildings and consider energy efficiency and renewable energy in buildings.

Keywords: energy, efficiency, LHVAC, sustainable development

Procedia PDF Downloads 581
1598 Indoor Environment Quality and Occupant Resilience Toward Climate Change: A Case Study from Gold Coast, Australia

Authors: Soheil Roumi, Fan Zhang, Rodney Stewart

Abstract:

Indoor environmental quality (IEQ) indexes represented the suitability of a place to study, work, and live. Many indexes have been introduced based on the physical measurement or occupant surveys in commercial buildings. The earlier studies did not elaborate on the relationship between energy consumption and IEQ in office buildings. Such a relationship can provide a comprehensive overview of the building's performance. Also, it would find the potential of already constructed buildings under the upcoming climate change. A commercial building in southeast Queensland, Australia, was evaluated in this study. Physical measurements of IEQ and Energy areconducted, and their relationship will be determined using statistical analysis. The case study building is modelled in TRNSys software, and it will be validatedusingthe actual building's BMS data. Then, the modelled buildingwill be simulated by predicted weather data developed by the commonwealth scientific and industrial research organisation of Australia to investigate the occupant resilience and energy consumption. Finally, recommendations will be presented to consume less energy while providinga proper indoor environment for office occupants.

Keywords: IEQ, office buildings, thermal comfort, occupant resilience

Procedia PDF Downloads 112
1597 Qualitative Analysis of Occupant’s Satisfaction in Green Buildings

Authors: S. Srinivas Rao, Pallavi Chitnis, Himanshu Prajapati

Abstract:

The green building movement in India commenced in 2003. Since then, more than 4,300 projects have adopted green building concepts. For last 15 years, the green building movement has grown strong across the country and has resulted in immense tangible and intangible benefits to the stakeholders. Several success stories have demonstrated the tangible benefit experienced in green buildings. However, extensive data interpretation and qualitative analysis are required to report the intangible benefits in green buildings. The emphasis is now shifting to the concept of people-centric design and productivity, health and wellbeing of occupants are gaining importance. This research was part of World Green Building Council’s initiative on 'Better Places for People' which aims to create a world where buildings support healthier and happier lives. The overarching objective of this study was to understand the perception of users living and working in green buildings. The study was conducted in twenty-five IGBC certified green buildings across India, and a comprehensive questionnaire was designed to capture occupant’s perception and experience in the built environment. The entire research focussed on the eight attributes of healthy buildings. The factors considered for the study include thermal comfort, visual comfort, acoustic comfort, ergonomics, greenery, fitness, green transit and sanitation and hygiene. The occupant’s perception and experience were analysed to understand their satisfaction level. The macro level findings of the study indicate that green buildings have addressed attributes of healthy buildings to a larger extent. Few important findings of the study focussed on the parameters such as visual comfort, fitness, greenery, etc. The study indicated that occupants give tremendous importance to the attributes such as visual comfort, daylight, fitness, greenery, etc. 89% occupants were comfortable with the visual environment, on account of various lighting element incorporated as part of the design. Tremendous importance to fitness related activities is highlighted by the study. 84% occupants had actively utilised sports and meditation facilities provided in their facility. Further, 88% occupants had access to the ample greenery and felt connected to the natural biodiversity. This study aims to focus on the immense advantages gained by users occupying green buildings. This will empower green building movement to achieve new avenues to design and construct healthy buildings. The study will also support towards implementing human-centric measures and in turn, will go a long way in addressing people welfare and wellbeing in the built environment.

Keywords: health and wellbeing, green buildings, Indian green building council, occupant’s satisfaction

Procedia PDF Downloads 183
1596 The Potential in the Use of Building Information Modelling and Life-Cycle Assessment for Retrofitting Buildings: A Study Based on Interviews with Experts in Both Fields

Authors: Alex Gonzalez Caceres, Jan Karlshøj, Tor Arvid Vik

Abstract:

Life cycle of residential buildings are expected to be several decades, 40% of European residential buildings have inefficient energy conservation measure. The existing building represents 20-40% of the energy use and the CO₂ emission. Since net zero energy buildings are a short-term goal, (should be achieved by EU countries after 2020), is necessary to plan the next logical step, which is to prepare the existing outdated stack of building to retrofit them into an energy efficiency buildings. In order to accomplish this, two specialize and widespread tool can be used Building Information Modelling (BIM) and life-cycle assessment (LCA). BIM and LCA are tools used by a variety of disciplines; both are able to represent and analyze the constructions in different stages. The combination of these technologies could improve greatly the retrofitting techniques. The incorporation of the carbon footprint, introducing a single database source for different material analysis. To this is added the possibility of considering different analysis approaches such as costs and energy saving. Is expected with these measures, enrich the decision-making. The methodology is based on two main activities; the first task involved the collection of data this is accomplished by literature review and interview with experts in the retrofitting field and BIM technologies. The results of this task are presented as an evaluation checklist of BIM ability to manage data and improve decision-making in retrofitting projects. The last activity involves an evaluation using the results of the previous tasks, to check how far the IFC format can support the requirements by each specialist, and its uses by third party software. The result indicates that BIM/LCA have a great potential to improve the retrofitting process in existing buildings, but some modification must be done in order to meet the requirements of the specialists for both, retrofitting and LCA evaluators.

Keywords: retrofitting, BIM, LCA, energy efficiency

Procedia PDF Downloads 220
1595 Waste-based Porous Geopolymers to Regulate the Temperature and Humidity Fluctuations Inside Buildings

Authors: Joao A. Labrincha, Rui M. Novais, L. Senff, J. Carvalheiras

Abstract:

The development of multifunctional materials to tackle the energy consumption and improve the hygrothermal performance of buildings is very relevant. This work reports the development of porous geopolymers or bi-layered composites, composed by a highly porous top-layer and a dense bottom-layer, showing high ability to reduce the temperature swings inside buildings and simultaneously buffer the humidity levels. The use of phase change materials (PCM) strongly reduces the indoor thermal fluctuation (up to 5 °C). The potential to modulate indoor humidity is demonstrated by the very high practical MBV (2.71 g/m2 Δ%HR). Since geopolymer matrixes are produced from wastes (biomass fly ash, red mud) the developed solutions contribute to sustainable and energy efficient and healthy building.

Keywords: waste-based geopolymers, thermal insulation, temperature regulation, moisture buffer

Procedia PDF Downloads 61
1594 Study on the Influence of Cladding and Finishing Materials of Apartment Buildings on the Architectural Identity of Amman

Authors: Asil Zureigat, Ayat Odat

Abstract:

Analyzing the old and bringing in the new is an ever ongoing process in driving innovations in architecture. This paper looks at the excessive use of stone in apartment buildings in Amman and speculates on the existing possibilities of changing the cladding material. By looking at architectural exceptions present in Amman the paper seeks to make the exception, the rule by adding new materials to the architectural library of Amman and in turn, project a series of possible new identities to the existing stone scape. Through distributing a survey, conducting a photographic study on exceptional buildings and shedding light on the historical narrative of stone, the paper highlights the ways in which new finishing materials such as plaster, paint and stone variations could be introduced in an attempt to project a new architectural identity to Amman.

Keywords: architectural city identity, cladding materials, façade architecture, image of the city

Procedia PDF Downloads 225
1593 Scientometrics Review of Embodied Carbon Benchmarks for Buildings

Authors: A. Rana, M. Badri, D. Lopez Behar, O. Yee, H. Al Bqaei

Abstract:

The building sector is one of the largest emitters of greenhouse gases. However, as operation energy demands of this sector decrease with more effective energy policies and strategies, there is an urgent need to parallel focus on the growing proportion of embodied carbons. In this regard, benchmarks on embodied carbon of buildings can provide a point of reference to compare and improve the environmental performance of buildings for the stakeholders. Therefore, embodied carbon benchmarks can serve as a useful tool to address climate change challenges. This research utilizes the method to provide a knowledge roadmap of embodied carbon benchmarks development and implementation trends. Two main databases, Web of Science and Engineering Village, are considered for the study. The mapping was conducted with the help of VosViewer tool to provide information regarding: the critical research areas; most cited authors and publications; and countries with the highest publications. It is revealed that the role of benchmarks in energy policies is an emerging trend. In addition, the research highlighted that in policies, embodied carbon benchmarks are gaining importance at the material, whole building, and building portfolio levels. This research reveals direction for improvement and future research and of relevance to building industry professionals, policymakers, and researchers.

Keywords: buildings embodied carbon benchmark, methods, policy

Procedia PDF Downloads 172
1592 Applying ASHRAE Standards on the Hospital Buildings of UAE

Authors: Hanan M. Taleb

Abstract:

Energy consumption associated with buildings has a significant impact on the environment. To that end, and as a transaction between the inside and outside and between the building and urban space, the building skin plays an especially important role. It provides protection from the elements; demarcates private property and creates privacy. More importantly, it controls the admission of solar radiation. Therefore, designing the building skin sustainably will help to achieve optimal performance in terms of both energy consumption and thermal comfort. Unfortunately, with accelerating construction expansion, many recent buildings do not pay attention to the importance of the envelope design. This piece of research will highlight the importance of this part of the creation of buildings by providing evidence of a significant reduction in energy consumption if the envelopes are redesigned. Consequently, the aim of this paper is to enhance the performance of the hospital envelope in order to achieve sustainable performance. A hospital building sited in Abu Dhabi, in the UAE, has been chosen to act as a case study. A detailed analysis of the annual energy performance of the case study will be performed with the use of a computerised simulation; this is in order to explore their energy performance shortcomings. The energy consumption of the base case will then be compared with that resulting from the new proposed building skin. The results will inform architects and designers of the savings potential from various strategies.

Keywords: ASHREA, building skin, building envelopes, hospitals, Abu Dhabi, UAE, IES software

Procedia PDF Downloads 364
1591 Energy Performance of Buildings Due to Downscaled Seasonal Models

Authors: Anastasia K. Eleftheriadou, Athanasios Sfetsos, Nikolaos Gounaris

Abstract:

The present work examines the suitability of a seasonal forecasting model downscaled with a very high spatial resolution in order to assess the energy performance and requirements of buildings. The application of the developed model is applied on Greece for a period and with a forecast horizon of 5 months in the future. Greece, as a country in the middle of a financial crisis and facing serious societal challenges, is also very sensitive to climate changes. The commonly used method for the correlation of climate change with the buildings energy consumption is the concept of Degree Days (DD). This method can be applied to heating and cooling systems for a better management of environmental, economic and energy crisis, and can be used as medium (3-6 months) planning tools in order to predict the building needs and country’s requirements for residential energy use.

Keywords: downscaled seasonal models, degree days, energy performance

Procedia PDF Downloads 453
1590 Influence of Coatings on Energy Conservation in Construction Industry

Authors: Nancy Sakr, Mohamed Abou-Zeid

Abstract:

World energy consumption has increased rapidly in the past few years. Due to population growth, total energy consumption is increasing; a large amount of energy is wasted on the cooling and heating processes in buildings. However, using thermal heating management can minimize costs, heat consumption and create a management system for the heat insulation for buildings. This concept is being implemented through different approaches. Based on analysis and research, there is evidence in the energy consumption before and after testing and applying construction approaches for thermal heating management in building units. This investigation addresses the evaluation of the influence of external coatings on energy consumption. Coatings are considered one of the smart effective available approaches for energy efficiency. Unfortunately, this approach is not widely applied in the construction industry. It needs more data to prove effectiveness and credibility between people to use it as a smart thermal insulation approach. Two precedents have been analyzed in order to monitor buildings’ heat exposure, and how the buildings will be affected by thermal insulation materials. Data sheets from chemical companies which produce similar coatings are compared with the usual products and the protective thermal products.

Keywords: energy consumption, building envelope, thermal insulation, protective coatings

Procedia PDF Downloads 144
1589 Integrated Passive Cooling Systems for Tropical Residential Buildings: A Review through the Lens of Latent Heat Assessment

Authors: O. Eso, M. Mohammadi, J. Darkwa, J. Calautit

Abstract:

Residential buildings are responsible for 22% of the global end-use energy demand and 17% of global CO₂ emissions. Tropical climates particularly present higher latent heat gains, leading to more cooling loads. However, the cooling processes are all based on conventional mechanical air conditioning systems which are energy and carbon intensive technologies. Passive cooling systems have in the past been considered as alternative technologies for minimizing energy consumption in buildings. Nevertheless, replacing mechanical cooling systems with passive ones will require a careful assessment of the passive cooling system heat transfer to determine if suitable to outperform their conventional counterparts. This is because internal heat gains, indoor-outdoor heat transfer, and heat transfer through envelope affects the performance of passive cooling systems. While many studies have investigated sensible heat transfer in passive cooling systems, not many studies have focused on their latent heat transfer capabilities. Furthermore, combining heat prevention, heat modulation and heat dissipation to passively cool indoor spaces in the tropical climates is critical to achieve thermal comfort. Since passive cooling systems use only one of these three approaches at a time, integrating more than one passive cooling system for effective indoor latent heat removal while still saving energy is studied. This study is a systematic review of recently published peer review journals on integrated passive cooling systems for tropical residential buildings. The missing links in the experimental and numerical studies with regards to latent heat reduction interventions are presented. Energy simulation studies of integrated passive cooling systems in tropical residential buildings are also discussed. The review has shown that comfortable indoor environment is attainable when two or more passive cooling systems are integrated in tropical residential buildings. Improvement occurs in the heat transfer rate and cooling performance of the passive cooling systems when thermal energy storage systems like phase change materials are included. Integrating passive cooling systems in tropical residential buildings can reduce energy consumption by 6-87% while achieving up to 17.55% reduction in indoor heat flux. The review has highlighted a lack of numerical studies regarding passive cooling system performance in tropical savannah climates. In addition, detailed studies are required to establish suitable latent heat transfer rate in passive cooling ventilation devices under this climate category. This should be considered in subsequent studies. The conclusions and outcomes of this study will help researchers understand the overall energy performance of integrated passive cooling systems in tropical climates and help them identify and design suitable climate specific options for residential buildings.

Keywords: energy savings, latent heat, passive cooling systems, residential buildings, tropical residential buildings

Procedia PDF Downloads 149
1588 A Case Study of Building Behavior Damaged during 26th Oct, 2015 Earthquake in Northern Areas of Pakistan

Authors: Rahmat Ali, Amjad Naseer, Abid A. Shah

Abstract:

This paper is an attempt to presents the performance of building observed during 26th Oct, 2015 earthquake in District Swat and Shangla region. Most of the buildings in the earthquake hit areas were built with Rubble stone masonry, dress Stone Masonry, brick masonry with and without RC column, Brick masonry with RC beams and column, Block Masonry with and without RC column. It was found that most of the buildings were built without proper supervision and without following any codes. A majority of load bearing masonry walls were highly affected during the earthquake. The load bearing walls built with rubble stone masonry were collapsed resulting huge damages and loss of property and life. Load bearing bricks masonry walls were also affected in most of the region. In some residential buildings the bricks were crushed in a single brick walls. Severe cracks were also found in double brick masonry walls. In RC frame structure beams and columns were also seriously affected. A majority of building structures were non-engineered. Some buildings designed by unskilled local consultants were also affected during the earthquake. Several architectural and structural mistakes were also found in various buildings designed by local consultant. It was found that the structures were collapsed prematurely either because of unskillful labor and using substandard materials or avoiding delicate repair, maintenance, and health monitoring activities because of lack of available sophisticated technology in our country.

Keywords: cracks, collapse, earthquake, masonry, repair

Procedia PDF Downloads 492
1587 Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle

Authors: Elham Delzendeh, Song Wu, Mustafa Al-Adhami, Rima Alaaeddine

Abstract:

Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings.

Keywords: building lifecycle, efficiency, energy analysis, energy performance, uncertainty

Procedia PDF Downloads 137
1586 Risk Assessment in Construction of K-Span Buildings in United Arab Emirates (UAE)

Authors: Imtiaz Ali, Imam Mansoor

Abstract:

Investigations as a part of the academic study were undertaken to identify and evaluate the significant risks associated with the construction of K-span buildings in the region of UAE. Primary field data was collected through questionnaires obtaining specific open and close-ended questions from carefully selected construction firms, civil engineers and, construction manager regarding risks associated to K-span building construction. Historical data available for other regions of the same construction technique was available which was compared for identifying various non-critical and critical risk parameters by comparative evaluation techniques to come up with important risks and potential sources for their control and minimization in K-Span buildings that is increasing in the region. The associated risks have been determined with their Relative Importance Index (RII) values of which Risk involved in Change of Design required by Owners carries the highest value (RII=0.79) whereas, Delayed Payment by Owner to Contractor is one of the least (RII=0.42) value. The overall findings suggest that most relative risks as quantified originate or associated with the contractors. It may be concluded that project proponents undertaking K-span projects in planning and budgeting the cost and delays should take into account of risks on high account if changes in design are also required any delays in the material by the supplier would then be a major risk in K-span project delay. Since projects are, less costly, so owners have limited budgets, then they hire small contractors, which are not highly competent contractors. So study suggests that owner should be aware of these types of risks associated with the construction of K-span buildings in order to make it cost effective.

Keywords: k-span buildings, k-span construction, risk management, relative improvement index (RII)

Procedia PDF Downloads 375
1585 A Case Study on Post-Occupancy Evaluation of User Satisfaction in Higher Educational Buildings

Authors: Yuanhong Zhao, Qingping Yang, Andrew Fox, Tao Zhang

Abstract:

Post-occupancy evaluation (POE) is a systematic approach to assess the actual building performance after the building has been occupied for some time. In this paper, a structured POE assessment was conducted using the building use survey (BUS) methodology in two higher educational buildings in the United Kingdom. This study aims to help close the building performance gap, provide optimized building operation suggestions, and to improve occupants’ satisfaction level. In this research, the questionnaire survey investigated the influences of environmental factors on user satisfaction from the main aspects of building overall design, thermal comfort, perceived control, indoor environment quality for noise, lighting, ventilation, and other non-environmental factors, such as the background information about age, sex, time in buildings, workgroup size, and so on. The results indicate that the occupant satisfaction level with the main aspects of building overall design, indoor environment quality, and thermal comfort in summer and winter on both two buildings, which is lower than the benchmark data. The feedback of this POE assessment has been reported to the building management team to allow managers to develop high-performance building operation plans. Finally, this research provided improvement suggestions to the building operation system to narrow down the performance gap and improve the user work experience satisfaction and productivity level.

Keywords: building performance assessment systems, higher educational buildings, post-occupancy evaluation, user satisfaction

Procedia PDF Downloads 152
1584 An Investigation on Climate Responsive Design Strategies of Apartment Buildings in Athens of the Period 1920-1960s

Authors: Angeliki Chronopoulou, Eleni Alexandrou

Abstract:

This paper thoroughly investigates residential buildings of the period 1920 – 1960 in Athens and evaluates their bioclimatic response and energy performance. A methodology adapted to the specific context of the city is proposed and applied in order to assess and extract results related to the climate analysis of the city of Athens, the general/architectural design and construction characteristics of the apartment buildings constructed during the period 1920 – 1960, the bioclimatic strategies applied on them, and the achieved thermal comfort based on questionnaires answered by their users. The results of the current study indicate that the residential architecture of that period in the city of Athens is adapted to an extend to the local climate with various climate responsive strategies. As an outcome of the analysis, the most frequently applied depending on the period of construction are presented. For this reason, the examined period is divided into 3 sub – periods: 1st period 1920s – 1930s (late neoclassicism & eclecticism), 2nd period 1930s – 1940s (modernism), 3rd period 1940s – 1960s (postwar modernism).

Keywords: Athens, climatic design strategies, residential buildings, middle war and post war architecture, thermal comfort

Procedia PDF Downloads 102
1583 Feasibility of Two Positive-Energy Schools in a Hot-Humid Tropical Climate: A Methodological Approach

Authors: Shashwat, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg

Abstract:

Achieving zero-energy targets in existing buildings is known to be a difficult task, hence targets are addressed at new buildings almost exclusively. Although these ultra-efficient case-studies remain essential to develop future technologies and drive the concepts of Zero-energy, the immediate need to cut the consumption of the existing building stock remains unaddressed. This work aims to present a reliable and straightforward methodology for assessing the potential of energy-efficient upgrading in existing buildings. Public Singaporean school buildings, characterized by low energy use intensity and large roof areas, were identified as potential objects for conversion to highly-efficient buildings with a positive energy balance. A first study phase included the development of a detailed energy model for two case studies (a primary and a secondary school), based on the architectural drawings provided, site-visits and calibrated using measured end-use power consumption of different spaces. The energy model was used to demonstrate compliances or predict energy consumption of proposed changes in the two buildings. As complete energy monitoring is difficult and substantially time-consuming, short-term energy data was collected in the schools by taking spot measurements of power, voltage, and current for all the blocks of school. The figures revealed that the bulk of the consumption is attributed in decreasing order of magnitude to air-conditioning, plug loads, and lighting. In a second study-phase, a number of energy-efficient technologies and strategies were evaluated through energy-modeling to identify the alternatives giving the highest energy saving potential, achieving a reduction in energy use intensity down to 19.71 kWh/m²/y and 28.46 kWh/m²/y for the primary and the secondary schools respectively. This exercise of field evaluation and computer simulation of energy saving potential aims at a preliminary assessment of the positive-energy feasibility enabling future implementation of the technologies on the buildings studied, in anticipation of a broader and more widespread adoption in Singaporean schools.

Keywords: energy simulation, school building, tropical climate, zero energy buildings, positive energy

Procedia PDF Downloads 148
1582 Integration of PV Systems in Residential Buildings: A Solution for Supporting Electrical Grid in Kuwait

Authors: Nabil A. Ahmed, Nasser A. N. Mhaisen

Abstract:

The paper presents a solution to enhance the power quality and to reduce the peak load demand in Kuwait electric grid as a solution to the shortage of electricity production. Technical, environmental and economic feasibility study of utilizing integrated grid-connected photovoltaic (PV) system in residential buildings for supplying 7.1% of electrical power consumption in Kuwait is carried out using RETScreen software. A 10 KWp on-grid PV power generation system spread on the rooftop of the residential buildings is adopted and investigated and the complete system performance is simulated using PSIM software. Taking into account the international prices of electricity and natural gas, the proposed solution is investigated and tested for four different types of installation systems in terms of power generation and costs which includes horizontal installation, 25º tilted angle, single axis tracking and dual axis tracking. Results shows that the 25º tilted angle fixed mounted system is the most efficient type. The payback period as a tool of benefit analysis of the proposed system is calculated and it found to be 2.55 years.

Keywords: photovoltaics, residential buildings, electrical grid, production capacity, on-grid, power generation

Procedia PDF Downloads 494
1581 Considering the Relationship between Architecture and Philosophy: Toyo Ito’s Conceptual Architecture

Authors: Serap Durmus

Abstract:

The aim of this paper is to exemplify the relation of architecture and philosophy over the Japanese architect Toyo Ito’s conceptual architecture. The study is practiced in ‘Architecture and Philosophy Readings’ elective course with 22 sophomore architecture students in Karadeniz Technical University Department of Architecture. It is planned as a workshop, which discusses the design philosophy of Toyo Ito’s buildings and the reflections of concept in his intellectual architecture. So, the paper contains Toyo Ito’s philosophy, his discourses and buildings and also thinking similarities with philosopher Gilles Deleuze. Thus, the workshop of course is about architecture and philosophy relationship. With this aspect, a holistic graphic representation is aimed for Toyo Ito who thinks that everything composes a whole. As a result, it can be said that architect and philosopher interaction in architecture and philosophy relation supports creative thinking. Conceptual architecture of Toyo Ito has philosophical roots and his philosophy can be read over his buildings and can be represent totally via a holistic pattern.

Keywords: architecture, conceptual architecture, Gilles Deleuze, philosophy, Toyo Ito

Procedia PDF Downloads 570
1580 Ilorin Traditional Architecture as a Good Example of a Green Building Design

Authors: Olutola Funmilayo Adekeye

Abstract:

Tradition African practice of architecture can be said to be deeply rooted in Green Architecture in concept, design and execution. A study into the ancient building techniques in Ilorin Emirate depicts prominent (eco-centric approach of) Green Architecture principles. In the Pre-colonial era before the introduction of modern architecture and Western building materials, the Nigeria traditional communities built their houses to meet their cultural, religious and social needs using mainly indigenous building materials such as mud (Amo), cowdung (Boto), straws (koriko), palm fronts (Imo-Ope) to mention a few. This research attempts to identify the various techniques of applying the traditional African principles of Green Architecture to Ilorin traditional buildings. It will examine and assess some case studies to understand the extent to which Green architecture principles have been applied to traditional building designs that are still preserved today in Ilorin, Nigeria. Furthermore, this study intends to answer many questions, which can be summarized into two basic questions which are: (1) What aspects of what today are recognized as important green architecture principles have been applied to Ilorin traditional buildings? (2) To what extent have the principles of green architecture applied to Ilorin traditional buildings been ways of demonstrating a cultural attachment to the earth as an expression of the African sense of human being as one with nature?

Keywords: green architecture, Ilorin, traditional buildings, design principles, ecocentric, application

Procedia PDF Downloads 548
1579 Evaluation of the Sustainability of Greek Vernacular Architecture in Different Climate Zones: Architectural Typology and Building Physics

Authors: Christina Kalogirou

Abstract:

Investigating the integration of bioclimatic design into vernacular architecture could lead to interesting results regarding the preservation of cultural heritage while enhancing the energy efficiency of historic buildings. Furthermore, these recognized principles and systems of bioclimatic design in vernacular settlements could be applied to modern architecture and thus to new buildings in such areas. This study introduces an approach to categorizing distinct technologies and design principles of bioclimatic design based on a thoughtful approach to various climatic zones and environment in Greece (mountainous areas, islands and lowlands). For this purpose, various types of dwellings are evaluated for their response to climate, regarding the layout of the buildings (orientation, floor plans’ shape, semi-open spaces), the site planning, the openings (size, position, protection), the building envelope (walls: construction materials-thickness, roof construction detailing) and the migratory living pattern according to seasonal needs. As a result, various passive design principles (that could be adapted to current architectural practice in such areas, in order to optimize the relationship between site, building, climate and energy efficiency) are proposed.

Keywords: bioclimatic design, buildings physics, climatic zones, energy efficiency, vernacular architecture

Procedia PDF Downloads 387
1578 Experiencing Daylight in Architectural Spaces: A Case Study of Public Buildings in the Context of Karachi, Pakistan

Authors: Safia Asif, Saadia Bano

Abstract:

In a world with rapidly depleting resources, using artificial lighting during daytime is an act of human ignorance. Imitated light is the major source of energy consumption in public buildings. Despite, the fact that substantial working hours of these buildings usually persist in natural daylight time; there is a trend of isolated, un-fenestrated and a-contextual interiors majorly dependent on active energy sources. On the contrary, if direct and un-controlled sunlight is allowed inside the building, it will create visual and thermal discomfort. Controlled daylighting with appropriate design mechanisms is one of the important aspects of achieving thermal and visual comfort. The natural sunlight can be utilized intelligently with the help of architectural thermal controlling mechanisms to achieve a healthy and productive environment. This paper is an attempt to investigate and analyze the importance of daylighting with reference to energy efficiency and thermal comfort. For this purpose, three public buildings including two educational institutions and one general post office are selected, as case-studies in the context of Karachi, Pakistan. Various parameters of visual and thermal comfort are analyzed which includes orientation, ceiling heights, overall building profile along with daylight controlling mechanisms in terms of penetration, distribution, protection, and control. In the later part of the research, a questionnaire survey is also conducted to evaluate the user experience in terms of adequate daylighting and thermal comfort.

Keywords: daylight, public buildings, sustainable architecture, visual and thermal comfort

Procedia PDF Downloads 210
1577 Reinvestment of the Urban Context in Historic Cities: The Case Study of El Sheikh Kandil Street, Rosetta, Egypt

Authors: Riham A. Ragheb, Ingy M. Naguib

Abstract:

Conservation and urban investment are a prerequisite to improve the quality of life. Since the historic street is a part of the economic system, it should be able to play an important role in the city development by upgrading all services, public open spaces and reuse of historical buildings and sites. Furthermore, historical conservation enriches the political, economic, social, cultural and functional aspects of the site. Rosetta has been selected as an area of study because it has a unique character due to its possession of a variety of monuments and historical buildings. The aim of this research is to analyze the existing situation of an historic street named El Sheikh Kandil, to be able to identify the potentials and problems. The paper gives a proposal for the redesign and reinvestment of the street and the reuse for the historical buildings to serve the community, users and visitors. Then, it concludes with recommendations to improve quality of life through the rehabilitation of the historical buildings and strengthening of the cultural and historical identity of the street. Rosetta city can benefit from these development proposals by preserving and revitalizing its unique character which leads to tourism development and benefits from the new investments.

Keywords: adaptive reuse, heritage street, historic investment, restoration, urban design

Procedia PDF Downloads 178
1576 Energy Efficient Buildings in Tehran by Reviewing High-Tech Methods and Vernacular Architecture Principles

Authors: Shima Naderi, Abbas Abbaszadeh Shahri

Abstract:

Energy resources are reachable and affordable in Iran, thus surplus access to fossil fuels besides high level of economic growth leads to serious environmental critical such as pollutants and greenhouse gases in the atmosphere, increase in average degrease and lack of water sources specially in Tehran as a capital city of Iran. As building sector consumes a huge portion of energy, taking actions towards alternative sources of energy as well as conserving non-renewable energy resources and architectural energy saving methods are the fundamental basis for achieving sustainability`s goals. This study tries to explore implantation of both high technologies and traditional issues for reduction of energy demands in buildings of Tehran and introduce some factors and instructions for achieving this purpose. Green and energy efficient buildings such as ZEBs make it possible to preserve natural resources for the next generations by reducing pollution and increasing ecosystem self-recovery. However ZEB is not widely spread in Iran because of its low economic efficiency, it is not viable for a private entrepreneur without the governmental supports. Therefore executing of Architectural Energy Efficiency can be a better option. It is necessary to experience a substructure expansion with respect to traditional residential building style. Renewable energies and passive design which are the substantial part of the history of architecture in Iran can be regenerated and employed as an essential part of designing energy efficient buildings.

Keywords: architectural energy efficiency, passive design, renewable energies, zero energy buildings

Procedia PDF Downloads 360
1575 On the Stability Exact Analysis of Tall Buildings with Outrigger System

Authors: Mahrooz Abed, Amir R. Masoodi

Abstract:

Many structural lateral systems are used in tall buildings such as rigid frames, braced frames, shear walls, tubular structures and core structures. Some efficient structures for drift control and base moment reduction in tall buildings is outrigger and belt truss systems. When adopting outrigger beams in building design, their location should be in an optimum position for an economical design. A range of different strategies has been employed to identify the optimum locations of these outrigger beams under wind load. However, there is an absence of scientific research or case studies dealing with optimum outrigger location using buckling analysis. In this paper, one outrigger system is considered at the middle of height of structure. The optimum location of outrigger will be found based on the buckling load limitation. The core of structure is modeled by a clamped tapered beam. The exact stiffness matrix of tapered beam is formulated based on the Euler-Bernoulli theory. Finally, based on the buckling load of structure, the optimal location of outrigger will be found.

Keywords: tall buildings, outrigger system, buckling load, second-order effects, Euler-Bernoulli beam theory

Procedia PDF Downloads 396
1574 Analysis of Experimentally Designed Soundproof Gypsum Partition Wall's Sections in Terms of Structural Engineering

Authors: Abdulkerim Ilgun, Ahmad Javid Zia

Abstract:

In developing countries, the urban populations are increasing rapidly and with this increment the residential areas are experiencing major problems. Construction of high-rise buildings in confined spaces is one of the most practical solutions for this problem. However, by living in high-rise buildings and sharing common residential areas, residents will face many problems. Irritating sound problem which is known as noise is one of the major problems mentioned above. The second most important problem is the weight of the high-rise buildings which makes the structure more vulnerable to earthquakes. To decrease earthquake loads it’s very important to decrease the weight of the buildings. To solve the problem of noise and keep the building weight at minimum level, experimentally designed soundproof gypsum partition wall which has optimum thickness has been used in high-rise story building and the results have been compared with ordinary brick partition walls. In this compression the effect of weights of soundproof gypsum walls and ordinary brick walls in accordance to structural engineering have been investigated.

Keywords: cellubor, gypsum board, gypsum partition walls, light partition walls, noise, sound

Procedia PDF Downloads 307
1573 Research on Natural Lighting Design of Atriums Based on Energy-Saving Aim

Authors: Fan Yu

Abstract:

An atrium is a place for natural climate exchanging of indoor and outdoor space of buildings, which plays an active role in the overall energy conservation, climate control and environmental purification of buildings. Its greatest contribution is serving as a natural light collector and distributor to solve the problem of natural lighting in large and deep spaces. However, in real situations, the atrium space often results in energy consumption due to improper design in considering its big size and large amount use of glass. Based on the purpose of energy conservation of buildings, this paper emphasizes the significance of natural lighting of atriums. Through literature research, case analysis and other methods, four factors, namely: the light transmittance through the top of the atrium, the geometric proportion of the atrium space, the size and position of windows and the material of the surface of walls in the atrium, were studied, and the influence of different architectural compositions on the natural light distribution of the atrium is discussed. Relying on the analysis of relevant cases, it is proposed that when designing the natural lighting of the atrium, the height and width of the atrium should be paid attention to, the atrium walls are required being rough surfaces and the atrium top-level windows need to be minimized in order to introduce more natural light into the buildings and achieve the purpose of energy conservation.

Keywords: energy conservation, atrium, natural lighting, architectural design

Procedia PDF Downloads 191