Search results for: cellular parametes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 788

Search results for: cellular parametes

608 Nanoparticle Induced Neurotoxicity Mediated by Mitochondria

Authors: Nandini Nalika, Suhel Parvez

Abstract:

Nanotechnology has emerged to play a vital role in developing all through the industrial world with an immense production of nanomaterials including nanoparticles (NPs). Many toxicological studies have confirmed that due to unique small size and physico-chemical properties of NPs (1-100nm), they can be potentially hazardous. Metallic NPs of small size have been shown to induce higher levels of cellular oxidative stress and can easily pass through the Blood Brain Barrier (BBB) and significantly accumulate in brain. With the wide applications of titanium dioxide nanoparticles (TNPs) in day-to-day life in form of cosmetics, paints, sterilisation and so on, there is growing concern regarding the deleterious effects of TNPs on central nervous system and mitochondria appear to be important cellular organelles targeted to the pro-oxidative effects of NPs and an important source that contribute significantly for the production of reactive oxygen species after some toxicity or an injury. The aim of our study was to elucidate the effect of TNPs in anatase form with different concentrations (5-50 µg/ml) following with various oxidative stress markers in isolated brain mitochondria as an in vitro model. Oxidative stress was determined by measuring the different oxidative stress markers like lipid peroxidation as well as the protein carbonyl content which was found to be significantly increased. Reduced glutathione content and major glutathione metabolizing enzymes were also modulated signifying the role of glutathione redox cycle in the pathophysiology of TNPs. The study also includes the mitochondrial enzymes (Complex 1, Complex II, complex IV, Complex V ) and the enzymes showed toxicity in a relatively short time due to the effect of TNPs. The study provide a range of concentration that were toxic to the neuronal cells and data pointing to a general toxicity in brain mitochondria by TNPs, therefore, it is in need to consider the proper utilization of NPs in the environment.

Keywords: mitochondria, nanoparticles, brain, in vitro

Procedia PDF Downloads 398
607 The Evaluation of Adjuvant Effects of CD154 in a Subunit Vaccine against Classical Swine Fever Virus

Authors: Yu-Chieh Chen, Li-Yun Wang, Chi-Chih Chen, Huy Hùng Đào, Ya-Mei Chen, Ming-Chu Cheng, Wen-Bin Chung, Hso-Chi Chaung, Guan-Ming Ke

Abstract:

Many recent researches have demonstrated that CD154, a protein primarily expressed on activated T cell molecules, has potentially acted as a molecular adjuvant to improve the immunogenicity of subunit vaccines against viral infections. Classical swine fever (CSF) affects the swine industry worldwide that is one of the most devastating and highly contagious pig diseases. It is listed by the World Organization for Animal Health (OIE) as an infectious animal disease that must be reported. Although pigs vaccinated with subunit vaccines can be differentially diagnosed from those infected animals, subunit vaccines usually need adjuvants to enhance and elicit immune responses. In this study, CD154 was linked with CSFV E2 sequences and then expressed in CHO cells to produce the fusion protein as E2-CD154. The porcine specific CpG adjuvant was also used in one of the formulations. The specific pathogen-free pigs (SPF) at the age of 4-week-old were randomly separated into four groups, vaccinated with E2-CpG, E2-CD154, E2-CD154-CpG or the commercial Bayovac® CSF-E2 vaccine and boosted two weeks after primary vaccination. The results showed that the percentages of CD4+ and CD4+IL2+ in peripheral blood mononuclear cells (PBMC) in E2-CD154 vaccinated piglets seven days after primary vaccination were gained by 1-5% relative to the control group. In addition, the percentages of CD4+IFNγ+ T cells had slightly edged up 0.1-0.3% compared with the control group. Also, increased E2-specific IFNγ levels had edged up CD4+CD8+ T cells found in E2-CD154 and E2-CD154-CpG groups, particularly in the E2-CD154-CpG group. These results implicate that CD154 may enhance cellular immunity and synergistically act with species-specific CpG adjuvant as a dual-phase adjuvant. Therefore, the CD154 may be beneficial as a promising adjuvant in subunit vaccines.

Keywords: CD154, CpG adjuvant, cellular immunity, subunit vaccine, pig

Procedia PDF Downloads 68
606 Anti-Parasite Targeting with Amino Acid-Capped Nanoparticles Modulates Multiple Cellular Processes in Host

Authors: Oluyomi Stephen Adeyemi, Kentaro Kato

Abstract:

Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease capable of infecting a range of hosts, including nearly one-third of the human population. Current treatment options for toxoplasmosis patients are limited. In consequence, toxoplasmosis represents a large global burden that is further enhanced by the shortcomings of the current therapeutic options. These factors underscore the need for better anti-T. gondii agents and/or new treatment approach. In the present study, we sought to find out whether preparing and capping nanoparticles (NPs) in amino acids, would enhance specificity toward the parasite versus the host cell. The selection of amino acids was premised on the fact that T. gondii is auxotrophic for some amino acids. The amino acid-nanoparticles (amino-NPs) were synthesized, purified and characterized following established protocols. Next, we tested to determine the anti-T. gondii activity of the amino-NPs using in vitro experimental model of infection. Overall, our data show evidence that supports enhanced and excellent selective action against the parasite versus the host cells by amino-NPs. The findings are promising and provide additional support that warrants exploring the prospects of NPs as alternative anti-parasite agents. In addition, the anti-parasite action by amino-NPs indicates that nutritional requirement of parasite may represent a viable target in the development of better alternative anti-parasite agents. Furthermore, data suggest the anti-parasite mechanism of the amino-NPs involves multiple cellular processes including the production of reactive oxygen species (ROS), modulation of hypoxia-inducing factor-1 alpha (HIF-1α) as well as the activation of kynurenine pathway. Taken together, findings highlight further, the prospects of NPs as alternative source of anti-parasite agents.

Keywords: drug discovery, infectious diseases, mode of action, nanomedicine

Procedia PDF Downloads 112
605 Effect of Silica Fume at Cellular Sprayed Concrete

Authors: Kyong-Ku Yun, Seung-Yeon Han, Kyeo-Re Lee

Abstract:

Silica fume which is a super-fine byproduct of ferrosilicon or silicon metal has a filling effect on micro-air voids or a transition zone in a hardened cement paste by appropriate mixing, placement, and curing. It, also, has a Pozzolan reaction which enhances the interior density of the hydrated cement paste through a formation of calcium silicate hydroxide. When substituting cement with silica fume, it improves water tightness and durability by filling effect and Pozzolan reaction. However, it needs high range water reducer or super-plasticizer to distribute silica fume into a concrete because of its finesses and high specific surface area. In order to distribute into concrete evenly, cement manufacturers make a pre-blended cement of silica fume and provide to a market. However, a special mixing procedures and another transportation charge another cost and this result in a high price of pre-blended cement of silica fume. The purpose of this dissertation was to investigate the dispersion of silica fume by air slurry and its effect on the mechanical properties of at ready-mixed concrete. The results are as follows: A dispersion effect of silica fume was measured from an analysis of standard deviation for compressive strength test results. It showed that the standard deviation decreased as the air bubble content increased, which means that the dispersion became better as the air bubble content increased. The test result of rapid chloride permeability test showed that permeability resistance increased as the percentages of silica fume increased, but the permeability resistance decreased as the quantity of mixing air bubble increased. The image analysis showed that a spacing factor decreased and a specific surface area increased as the quantity of mixing air bubble increased.

Keywords: cellular sprayed concrete, silica fume, deviation, permeability

Procedia PDF Downloads 131
604 Environmental and Toxicological Impacts of Glyphosate with Its Formulating Adjuvant

Authors: I. Székács, Á. Fejes, S. Klátyik, E. Takács, D. Patkó, J. Pomóthy, M. Mörtl, R. Horváth, E. Madarász, B. Darvas, A. Székács

Abstract:

Environmental and toxicological characteristics of formulated pesticides may substantially differ from those of their active ingredients or other components alone. This phenomenon is demonstrated in the case of the herbicide active ingredient glyphosate. Due to its extensive application, this active ingredient was found in surface and ground water samples collected in Békés County, Hungary, in the concentration range of 0.54–0.98 ng/ml. The occurrence of glyphosate appeared to be somewhat higher at areas under intensive agriculture, industrial activities and public road services, but the compound was detected at areas under organic (ecological) farming or natural grasslands, indicating environmental mobility. Increased toxicity of the formulated herbicide product Roundup, compared to that of glyphosate was observed on the indicator aquatic organism Daphnia magna Straus. Acute LC50 values of Roundup and its formulating adjuvant Polyethoxylated Tallowamine (POEA) exceeded 20 and 3.1 mg/ml, respectively, while that of glyphosate (as isopropyl salt) was found to be substantially lower (690-900 mg/ml) showing good agreement with literature data. Cytotoxicity of Roundup, POEA and glyphosate has been determined on the neuroectodermal cell line, NE-4C measured both by cell viability test and holographic microscopy. Acute toxicity (LC50) of Roundup, POEA and glyphosate on NE-4C cells was found to be 0.013±0.002%, 0.017±0.009% and 6.46±2.25%, respectively (in equivalents of diluted Roundup solution), corresponding to 0.022±0.003 and 53.1±18.5 mg/ml for POEA and glyphosate, respectively, indicating no statistical difference between Roundup and POEA and 2.5 orders of magnitude difference between these and glyphosate. The same order of cellular toxicity seen in average cell area has been indicated under quantitative cell visualization. The results indicate that toxicity of the formulated herbicide is caused by the formulating agent, but in some parameters toxicological synergy occurs between POEA and glyphosate.

Keywords: glyphosate, polyethoxylated tallowamine, Roundup, combined aquatic and cellular toxicity, synergy

Procedia PDF Downloads 318
603 Comparative Assessment of Geocell and Geogrid Reinforcement for Flexible Pavement: Numerical Parametric Study

Authors: Anjana R. Menon, Anjana Bhasi

Abstract:

Development of highways and railways play crucial role in a nation’s economic growth. While rigid concrete pavements are durable with high load bearing characteristics, growing economies mostly rely on flexible pavements which are easier in construction and more economical. The strength of flexible pavement is based on the strength of subgrade and load distribution characteristics of intermediate granular layers. In this scenario, to simultaneously meet economy and strength criteria, it is imperative to strengthen and stabilize the load transferring layers, namely subbase and base. Geosynthetic reinforcement in planar and cellular forms have been proven effective in improving soil stiffness and providing a stable load transfer platform. Studies have proven the relative superiority of cellular form-geocells over planar geosynthetic forms like geogrid, owing to the additional confinement of infill material and pocket effect arising from vertical deformation. Hence, the present study investigates the efficiency of geocells over single/multiple layer geogrid reinforcements by a series of three-dimensional model analyses of a flexible pavement section under a standard repetitive wheel load. The stress transfer mechanism and deformation profiles under various reinforcement configurations are also studied. Geocell reinforcement is observed to take up a higher proportion of stress caused by the traffic loads compared to single and double-layer geogrid reinforcements. The efficiency of single geogrid reinforcement reduces with an increase in embedment depth. The contribution of lower geogrid is insignificant in the case of the double-geogrid reinforced system.

Keywords: Geocell, Geogrid, Flexible Pavement, Repetitive Wheel Load, Numerical Analysis

Procedia PDF Downloads 75
602 Toward Understanding the Glucocorticoid Receptor Network in Cancer

Authors: Swati Srivastava, Mattia Lauriola, Yuval Gilad, Adi Kimchi, Yosef Yarden

Abstract:

The glucocorticoid receptor (GR) has been proposed to play important, but incompletely understood roles in cancer. Glucocorticoids (GCs) are widely used as co-medication of various carcinomas, due to their ability to reduce the toxicity of chemotherapy. Furthermore, GR antagonism has proven to be a strategy to treat triple negative breast cancer and castration-resistant prostate cancer. These observations suggest differential GR involvement in cancer subtypes. The goal of our study has been to elaborate the current understanding of GR signaling in tumor progression and metastasis. Our study involves two cellular models, non-tumorigenic breast epithelial cells (MCF10A) and Ewing sarcoma cells (CHLA9). In our breast cell model, the results indicated that the GR agonist dexamethasone inhibits EGF-induced mammary cell migration, and this effect was blocked when cells were stimulated with a GR antagonist, namely RU486. Microarray analysis for gene expression revealed that the mechanism underlying inhibition involves dexamenthasone-mediated repression of well-known activators of EGFR signaling, alongside with enhancement of several EGFR’s negative feedback loops. Because GR mainly acts primarily through composite response elements (GREs), or via a tethering mechanism, our next aim has been to find the transcription factors (TFs) which can interact with GR in MCF10A cells.The TF-binding motif overrepresented at the promoter of dexamethasone-regulated genes was predicted by using bioinformatics. To validate the prediction, we performed high-throughput Protein Complementation Assays (PCA). For this, we utilized the Gaussia Luciferase PCA strategy, which enabled analysis of protein-protein interactions between GR and predicted TFs of mammary cells. A library comprising both nuclear receptors (estrogen receptor, mineralocorticoid receptor, GR) and TFs was fused to fragments of GLuc, namely GLuc(1)-X, X-GLuc(1), and X-GLuc(2), where GLuc(1) and GLuc(2) correspond to the N-terminal and C-terminal fragments of the luciferase gene.The resulting library was screened, in human embryonic kidney 293T (HEK293T) cells, for all possible interactions between nuclear receptors and TFs. By screening all of the combinations between TFs and nuclear receptors, we identified several positive interactions, which were strengthened in response to dexamethasone and abolished in response to RU486. Furthermore, the interactions between GR and the candidate TFs were validated by co-immunoprecipitation in MCF10A and in CHLA9 cells. Currently, the roles played by the uncovered interactions are being evaluated in various cellular processes, such as cellular proliferation, migration, and invasion. In conclusion, our assay provides an unbiased network analysis between nuclear receptors and other TFs, which can lead to important insights into transcriptional regulation by nuclear receptors in various diseases, in this case of cancer.

Keywords: epidermal growth factor, glucocorticoid receptor, protein complementation assay, transcription factor

Procedia PDF Downloads 227
601 Real Time PCR Analysis of microRNA Expression in Oral Cancer

Authors: Karl Kingsley

Abstract:

Many mechanisms are involved in the control of cellular differentiation and growth, which are often dysregulated in many cancers. Many distinct pathways are involved in these mechanisms of control, including deoxyribonuclease (DNA) methyltransferase and histone deacetylase (HDAC) activation that controls both genetic and epigenetic modifications and micro ribonucleic acid (RNA) expression. Less is known about the expression of DNA methyltransferase (DNMT) and HDAC in oral cancers and the effect on microRNA expression. The primary objective of this study was to evaluate the expression of DNMT and HDAC family members in oral cancer and the concomitant expression of cancer-associated microRNAs. Using commercially available oral cancers, including squamous cell carcinoma (SCC)-4, SCC-9, SCC-15, and SCC-25, RNA was extracted and screened for DNMT, HDAC, and microRNA expression using highly-specific primers and quantitative polymerase chain reaction (qPCR). These data revealed low or absent expression of DNMT-1, which is associated with cellular differentiation but increased expression of DNMT-3a and DNMT-3b in all SCC cell lines compared with normal non-cancerous cell controls. In addition, no expression of HDAC1 and HDAC2 expression was found among the normal, non-cancerous cells but was highly expressed in each of the SCC cell lines examined. Differential expression of oncogenic and cancer-associated microRNAs was also observed among the SCC cell lines, including miR-21, miR-133, miR-149, miR-155, miR-365, and miR-720. These findings also appeared to vary according to observed growth rates among these cells. These data may be the first to demonstrate the expression and association between HDAC and DNMT3 family members among oral cancers. In addition, the differential expression of these epigenetic modifiers may be associated with the expression of specific microRNAs in these cancers, which have not previously been observed to the best of the author's knowledge. In addition, some associations and relationships may exist between the expression of these biomarkers and the rates of growth and proliferation, which may suggest that these expression patterns might represent potentially useful biomarkers to determine tumor aggressiveness and other phenotypic behaviors among oral cancers.

Keywords: oral cancer, DNA methyltransferase, histone deacetylase, microRNA

Procedia PDF Downloads 140
600 Fused Deposition Modeling Printing of Bioinspired Triply Periodic Minimal Surfaces Based Polyvinylidene Fluoride Materials for Scaffold Development in Biomedical Application

Authors: Farusil Najeeb Mullaveettil, Rolanas Dauksevicius

Abstract:

Cellular structures produced by additive manufacturing have earned wide research attention due to their unique specific strength and energy absorption potentiality. The literature review concludes that pattern type and density are vital parameters that affect the mechanical properties of parts formed by additive manufacturing techniques and have an influence on printing time and material consumption. Fused deposition modeling technique (FDM) is used here to produce Polyvinylidene fluoride (PVDF) parts. In this work, patterns are based on triply periodic minimal surfaces (TPMS) produced by PVDF-based filaments using the FDM technique. PVDF homopolymer filament Fluorinar-H™ and PVDF copolymer filament Fluorinar-C™ are printed with three types of TPMS patterns. The patterns printed are Gyroid, Schwartz diamond, and Schwartz primitive. Tensile, flexural, and compression tests under quasi-static loading conditions are performed in compliance with ISO standards. The investigation elucidates the deformation mechanisms and a study that establishes a relationship between the printed and nominal specimens' dimensional accuracy. In comparison to the examined TPMS pattern, Schwartz diamond showed a higher relative elastic modulus and strength than the other patterns in tensile loading, and the Gyroid pattern showed the highest mechanical characteristics in flexural loading. The concluded results could be utilized to produce informed cellular designs for biomedical and mechanical applications.

Keywords: additive manufacturing, FDM, PVDF, gyroid, schwartz primitive, schwartz diamond, TPMS, tensile, flexural

Procedia PDF Downloads 142
599 The Cleavage of DNA by the Anti-Tumor Drug Bleomycin at the Transcription Start Sites of Human Genes Using Genome-Wide Techniques

Authors: Vincent Murray

Abstract:

The glycopeptide bleomycin is used in the treatment of testicular cancer, Hodgkin's lymphoma, and squamous cell carcinoma. Bleomycin damages and cleaves DNA in human cells, and this is considered to be the main mode of action for bleomycin's anti-tumor activity. In particular, double-strand breaks are thought to be the main mechanism for the cellular toxicity of bleomycin. Using Illumina next-generation DNA sequencing techniques, the genome-wide sequence specificity of bleomycin-induced double-strand breaks was determined in human cells. The degree of bleomycin cleavage was also assessed at the transcription start sites (TSSs) of actively transcribed genes and compared with non-transcribed genes. It was observed that bleomycin preferentially cleaved at the TSSs of actively transcribed human genes. There was a correlation between the degree of this enhanced cleavage at TSSs and the level of transcriptional activity. Bleomycin cleavage is also affected by chromatin structure and at TSSs, the peaks of bleomycin cleavage were approximately 200 bp apart. This indicated that bleomycin was able to detect phased nucleosomes at the TSSs of actively transcribed human genes. The genome-wide cleavage pattern of the bleomycin analogues 6′-deoxy-BLM Z and zorbamycin was also investigated in human cells. As found for bleomycin, these bleomycin analogues also preferentially cleaved at the TSSs of actively transcribed human genes. The cytotoxicity (IC₅₀ values) of these bleomycin analogues was determined. It was found that the degree of enhanced cleavage at TSSs was inversely correlated with the IC₅₀ values of the bleomycin analogues. This suggested that the level of cleavage at the TSSs of actively transcribed human genes was important for the cytotoxicity of bleomycin and analogues. Hence this study provided a deeper understanding of the cellular processes involved in the cancer chemotherapeutic activity of bleomycin.

Keywords: anti-tumour activity, bleomycin analogues, chromatin structure, genome-wide study, Illumina DNA sequencing

Procedia PDF Downloads 120
598 Inhibition of Influenza Replication through the Restrictive Factors Modulation by CCR5 and CXCR4 Receptor Ligands

Authors: Thauane Silva, Gabrielle do Vale, Andre Ferreira, Marilda Siqueira, Thiago Moreno L. Souza, Milene D. Miranda

Abstract:

The exposure of A(H1N1)pdm09-infected epithelial cells (HeLa) to HIV-1 viral particles, or its gp120, enhanced interferon-induced transmembrane protein (IFITM3) content, a viral restriction factor (RF), resulting in a decrease in influenza replication. The gp120 binds to CCR5 (R5) or CXCR4 (X4) cell receptors during HIV-1 infection. Then, it is possible that the endogenous ligands of these receptors also modulate the expression of IFITM3 and other cellular factors that restrict influenza virus replication. Thus, the aim of this study is to analyze the role of cellular receptors R5 and X4 in modulating RFs in order to inhibit the replication of the influenza virus. A549 cells were treated with 2x effective dose (ED50) of endogenous R5 or X4 receptor agonists, CCL3 (20 ng/ml), CCL4 (10 ng/ml), CCL5 (10 ng/ml) and CXCL12 (100 ng/mL) or exogenous agonists, gp120 Bal-R5, gp120 IIIB-X4 and its mutants (5 µg/mL). The interferon α (10 ng/mL) and oseltamivir (60 nM) were used as a control. After 24 h post agonists exposure, the cells were infected with virus influenza A(H3N2) at 2 MOI (multiplicity of infection) for 1 h. Then, 24 h post infection, the supernatant was harvested and, the viral titre was evaluated by qRT-PCR. To evaluate IFITM3 and SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) protein levels, A549 were exposed to agonists for 24 h, and the monolayer was lysed with Laemmli buffer for western blot (WB) assay or fixed for indirect immunofluorescence (IFI) assay. In addition to this, we analyzed other RFs modulation in A549, after 24 h post agonists exposure by customized RT² Profiler Polymerase Chain Reaction Array. We also performed a functional assay in which SAMHD1-knocked-down, by single-stranded RNA (siRNA), A549 cells were infected with A(H3N2). In addition, the cells were treated with guanosine to assess the regulatory role of dNTPs by SAMHD1. We found that R5 and X4 agonists inhibited influenza replication in 54 ± 9%. We observed a four-fold increase in SAMHD1 transcripts by RFs mRNA quantification panel. After 24 h post agonists exposure, we did not observe an increase in IFITM3 protein levels through WB or IFI assays, but we observed an upregulation up to three-fold in the protein content of SAMHD1, in A549 exposed to agonists. Besides this, influenza replication enhanced in 20% in cell cultures that SAMDH1 was knockdown. Guanosine treatment in cells exposed to R5 ligands further inhibited influenza virus replication, suggesting that the inhibitory mechanism may involve the activation of the SAMHD1 deoxynucleotide triphosphohydrolase activity. Thus, our data show for the first time a direct relationship of SAMHD1 and inhibition of influenza replication, and provides perspectives for new studies on the signaling modulation, through cellular receptors, to induce proteins of great importance in the control of relevant infections for public health.

Keywords: chemokine receptors, gp120, influenza, virus restriction factors

Procedia PDF Downloads 141
597 Systematic Identification and Quantification of Substrate Specificity Determinants in Human Protein Kinases

Authors: Manuel A. Alonso-Tarajano, Roberto Mosca, Patrick Aloy

Abstract:

Protein kinases participate in a myriad of cellular processes of major biomedical interest. The in vivo substrate specificity of these enzymes is a process determined by several factors, and despite several years of research on the topic, is still far from being totally understood. In the present work, we have quantified the contributions to the kinase substrate specificity of i) the phosphorylation sites and their surrounding residues in the sequence and of ii) the association of kinases to adaptor or scaffold proteins. We have used position-specific scoring matrices (PSSMs), to represent the stretches of sequences phosphorylated by 93 families of kinases. We have found negative correlations between the number of sequences from which a PSSM is generated and the statistical significance and the performance of that PSSM. Using a subset of 22 statistically significant PSSMs, we have identified specificity determinant residues (SDRs) for 86% of the corresponding kinase families. Our results suggest that different SDRs can function as positive or negative elements of substrate recognition by the different families of kinases. Additionally, we have found that human proteins with known function as adaptors or scaffolds (kAS) tend to interact with a significantly large fraction of the substrates of the kinases to which they associate. Based on this characteristic we have identified a set of 279 potential adaptors/scaffolds (pAS) for human kinases, which is enriched in Pfam domains and functional terms tightly related to the proposed function. Moreover, our results show that for 74.6% of the kinase– pAS association found, the pAS colocalize with the substrates of the kinases they are associated to. Finally, we have found evidence suggesting that the association of kinases to adaptors and scaffolds, may contribute significantly to diminish the in vivo substrate crossed- specificity of protein kinases. In general, our results indicate the relevance of several SDRs for both the positive and negative selection of phosphorylation sites by kinase families and also suggest that the association of kinases to pAS proteins may be an important factor for the localization of the enzymes with their set of substrates.

Keywords: kinase, phosphorylation, substrate specificity, adaptors, scaffolds, cellular colocalization

Procedia PDF Downloads 343
596 Wound Healing Process Studied on DC Non-Homogeneous Electric Fields

Authors: Marisa Rio, Sharanya Bola, Richard H. W. Funk, Gerald Gerlach

Abstract:

Cell migration, wound healing and regeneration are some of the physiological phenomena in which electric fields (EFs) have proven to have an important function. Physiologically, cells experience electrical signals in the form of transmembrane potentials, ion fluxes through protein channels as well as electric fields at their surface. As soon as a wound is created, the disruption of the epithelial layers generates an electric field of ca. 40-200 mV/mm, directing cell migration towards the wound site, starting the healing process. In vitro electrotaxis, experiments have shown cells respond to DC EFs polarizing and migrating towards one of the poles (cathode or anode). A standard electrotaxis experiment consists of an electrotaxis chamber where cells are cultured, a DC power source and agar salt bridges that help delaying toxic products from the electrodes to attain the cell surface. The electric field strengths used in such an experiment are uniform and homogeneous. In contrast, the endogenous electric field strength around a wound tend to be multi-field and non-homogeneous. In this study, we present a custom device that enables electrotaxis experiments in non-homogeneous DC electric fields. Its main feature involves the replacement of conventional metallic electrodes, separated from the electrotaxis channel by agarose gel bridges, through electrolyte-filled microchannels. The connection to the DC source is made by Ag/AgCl electrodes, incased in agarose gel and placed at the end of each microfluidic channel. An SU-8 membrane closes the fluidic channels and simultaneously serves as the single connection from each of them to the central electrotaxis chamber. The electric field distribution and current density were numerically simulated with the steady-state electric conduction module from ANSYS 16.0. Simulation data confirms the application of nonhomogeneous EF of physiological strength. To validate the biocompatibility of the device cellular viability of the photoreceptor-derived 661W cell line was accessed. The cells have not shown any signs of apoptosis, damage or detachment during stimulation. Furthermore, immunofluorescence staining, namely by vinculin and actin labelling, allowed the assessment of adhesion efficiency and orientation of the cytoskeleton, respectively. Cellular motility in the presence and absence of applied DC EFs was verified. The movement of individual cells was tracked for the duration of the experiments, confirming the EF-induced, cathodal-directed motility of the studied cell line. The in vitro monolayer wound assay, or “scratch assay” is a standard protocol to quantitatively access cell migration in vitro. It encompasses the growth of a confluent cell monolayer followed by the mechanic creation of a scratch, representing a wound. Hence, wound dynamics was monitored over time and compared for control and applied the electric field to quantify cellular population motility.

Keywords: DC non-homogeneous electric fields, electrotaxis, microfluidic biochip, wound healing

Procedia PDF Downloads 270
595 Effect of Serine/Threonine Kinases on Autophagy Mechanism

Authors: Ozlem Oral, Seval Kilic, Ozlem Yedier, Serap Dokmeci, Devrim Gozuacik

Abstract:

Autophagy is a degradation pathway, activating under stress conditions. It digests macromolecules, such as abnormal proteins and long-lived organelles by engulfing them and by subsequent delivery of the cargo to lysosomes. The members of the phospholipid-dependent serine/threonine kinases, involved in many signaling pathways, which are necessary for the regulation of cellular metabolic activation. Previous studies implicate that, serine/threonine kinases have crucial roles in the mechanism of many diseases depend on the activated and/or inactivated signaling pathway. Data indicates, the signaling pathways activated by serine/threonine kinases are also involved in activation of autophagy mechanism. However, the information about the effect of serine/threonine kinases on autophagy mechanism and the roles of these effects in disease formation is limited. In this study, we investigated the effect of activated serine/threonine kinases on autophagic pathway. We performed a commonly used autophagy technique, GFP-LC3 dot formation and by using microscopy analyses, we evaluated promotion and/or inhibition of autophagy in serine/threonine kinase-overexpressed fibroblasts as well as cancer cells. In addition, we carried out confocal microscopy analyses and examined autophagic flux by utilizing the differential pH sensitivities of RFP and GFP in mRFP-GFP-LC3 probe. Based on the shRNA-library based screening, we identified autophagy-related proteins affected by serine/threonine kinases. We further studied the involvement of serine/threonine kinases on the molecular mechanism of newly identified autophagy proteins and found that, autophagic pathway is indirectly controlled by serine/threonine kinases via specific autophagic proteins. Our data indicate the molecular connection between two critical cellular mechanisms, which have important roles in the formation of many disease pathologies, particularly cancer. This project is supported by TUBITAK-1001-Scientific and Technological Research Projects Funding Program, Project No: 114Z836.

Keywords: autophagy, GFP-LC3 dot formation assay, serine/threonine kinases, shRNA-library screening

Procedia PDF Downloads 292
594 Analysis of Cell Cycle Status in Radiation Non-Targeted Hepatoma Cells Using Flow Cytometry: Evidence of Dose Dependent Response

Authors: Sharmi Mukherjee, Anindita Chakraborty

Abstract:

Cellular irradiation incites complex responses including arrest of cell cycle progression. This article accentuates the effects of radiation on cell cycle status of radiation non-targeted cells. Human Hepatoma HepG2 cells were exposed to increasing doses of γ radiations (1, 2, 4, 6 Gy) and their cell culture media was transferred to non-targeted HepG2 cells cultured in other Petri plates. These radiation non-targeted cells cultured in the ICCM (Irradiated cell conditioned media) were the bystander cells on which cell cycle analysis was performed using flow cytometry. An apparent decrease in the distribution of bystander cells at G0/G1 phase was observed with increased radiation doses upto 4 Gy representing a linear relationship. This was accompanied by a gradual increase in cellular distribution at G2/M phase. Interestingly the number of cells in G2/M phase at 1 and 2 Gy irradiation was not significantly different from each other. However, the percentage of G2 phase cells at 4 and 6 Gy doses were significantly higher than 2 Gy dose indicating the IC50 dose to be between 2 and 4 Gy. Cell cycle arrest is an indirect indicator of genotoxic damage in cells. In this study, bystander stress signals through the cell culture media of irradiated cells disseminated the radiation induced DNA damages in the non-targeted cells which resulted in arrest of the cell cycle progression at G2/M phase checkpoint. This implies that actual radiation biological effects represent a penumbra with effects encompassing a larger area than the actual beam. This article highlights the existence of genotoxic damages as bystander effects of γ rays in human Hepatoma cells by cell cycle analysis and opens up avenues for appraisal of bystander stress communications between tumor cells. Contemplation of underlying signaling mechanisms can be manipulated to maximize damaging effects of radiation with minimum dose and thus has therapeutic applications.

Keywords: bystander effect, cell cycle, genotoxic damage, hepatoma

Procedia PDF Downloads 184
593 Solid Lipid Nanoparticles of Levamisole Hydrochloride

Authors: Surendra Agrawal, Pravina Gurjar, Supriya Bhide, Ram Gaud

Abstract:

Levamisole hydrochloride is a prominent anticancer drug in the treatment of colon cancer but resulted in toxic effects due poor bioavailability and poor cellular uptake by tumor cells. Levamisole is an unstable drug. Incorporation of this molecule in solid lipids may minimize their exposure to the aqueous environment and partly immobilize the drug molecules within the lipid matrix-both of which may protect the encapsulated drugs against degradation. The objectives of the study were to enhance bioavailability by sustaining drug release and to reduce the toxicities associated with the therapy. Solubility of the drug was determined in different lipids to select the components of Solid Lipid Nanoparticles (SLN). Pseudoternary phase diagrams were created using aqueous titration method. Formulations were subjected to particle size and stability evaluation to select the final test formulations which were characterized for average particle size, zeta potential, and in-vitro drug release and percentage transmittance to optimize the final formulation. SLN of Levamisole hydrochloride was prepared by Nanoprecipitation method. Glyceryl behenate (Compritol 888 ATO) was used as core comprising of Tween 80 as surfactant and Lecithin as co-surfactant in (1:1) ratio. Entrapment efficiency (EE) was found to be 45.89%. Particle size was found in the range of 100-600 nm. Zeta potential of the formulation was -17.0 mV revealing the stability of the product. In-vitro release study showed that 66 % drug released in 24 hours in pH 7.2 which represent that formulation can give controlled action at the intestinal environment. In pH 5.0 it showed 64% release indicating that it can even release drug in acidic environment of tumor cells. In conclusion, results revealed SLN to be a promising approach to sustain the drug release so as to increase bioavailability and cellular uptake of the drug with reduction in toxic effects as dose has been reduced with controlled delivery.

Keywords: SLN, nanoparticulate delivery of levamisole, pharmacy, pharmaceutical sciences

Procedia PDF Downloads 431
592 Effects of Cellular Insulin Receptor Stimulators with Alkaline Water on Performance, some Blood Parameters and Hatchability in Breeding Japanese Quail

Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat

Abstract:

In this study, in the breeding Japanese quails (coturnix coturnix japonica), it was aimed to study the effects of cellular insulin receptor stimulation on the performance, some blood parameters, and hatchability features. In the study, a total of 84 breeding quails were used, which are in 6 weeks age, and whose 24 are male and 60 female. In the trial, rations which contain 2900 kcal/kg metabolic energy; crude protein of 20%, and water whose pH is calibrated to 7.45 were administered as ad-libitum, to the animals, as metformin source, metformin-HCl was used and as chrome resource, Chromium Picolinate. Trial groups were formed as control group (basal ration), metformin group (basal ration, added metformin at the level of fodder of 20 mg/kg), and chromium picolinate group (basal ration, added fodder of 1500 ppb Cr. When regarded to the results of performance at the end of trial, it is seen that live weight gain, fodder consumption, egg weight, fodder evaluation coefficient, and egg production were affected at the significant level (p < 0.05). When the results are evaluated in terms of incubation features at the end of trial, it was identified that incubation yield and hatchability are not affected by the treatments but in the groups, in which metformin and chromium picolinate are added to ration, that fertility rose at the significant level compared to control group (p < 0,05). According to the results of blood parameters and hormone at the end of the trial, while the level of plasma glucose level was not affected by treatments (p > 0.05), with the addition of metformin and chromium picolinate to ration, plasma, total control, cholesterol, HDL, LDL, and triglyceride levels were significantly affected from insulin receptor stimulators added to ration (p<0,05). Hormone level of Plasma T3 and T4 were also affected at the significant level from insulin receptor stimulators added to ration (p < 0,05).

Keywords: cholesterol, chromium picolinate, hormone, metformin, performance, quail

Procedia PDF Downloads 206
591 Increased Seedling Vigor Through Phytohomeopathy

Authors: Jasper Jose Zanco

Abstract:

Plants are affected by substances diluted below certain limits. In seeds subjected to ultra-high dilutions (UHD), according to phytohomeopathic methods, it is possible to reduce the concentrations to infinitesimal levels and the effects persist. This research aimed to test different potencies of UHD to modify the vigor of Eruca versicaria (L) Cav. seedlings. The research was carried out at the Plant Production Laboratory of UNISUL University in Santa Catarina, Brazil. Eight UHD treatments were tested, four drops for every 30 mL of distilled water: Control (70% alcohol - A70); Sulphur (S9), Acidum fluoridricum (A30), Calcarea carbonica (C200), Graphies naturalis (G200), Kali carbonicum (K100) Belladonna (B12), diluted and succussed in Hahnemannian centesimal standards. Succussion is a standard pharmaceutical method found in worldwide pharmaceuticals. The statistical design consisted of 50 seeds every 4 replicates per treatment, completely randomized, followed by ANOVA and Tukey's test. Succussion may integrate the high dilution of water treatments, even after successive dilutions, and the product of this process acts through physical-chemical and bioelectric stimuli, causing physiological responses at the cellular level, such as the activation of antioxidant systems, increased resistance to environmental stress or growth modulation. According to some researchers, these responses could be mediated by genetic expression changes or the plants' cellular signaling systems. The results showed significant differences between the control (A70) and the other treatments. Conductivity measurements were made in the seed germination water and impedance; the seedlings were measured for dry weight and total area. The highest conductivity occurred in the control treatment (27.8 μS/cm) and the lowest in K100 (21.3 μS/cm). After germination, on germitest paper, A70 was significantly different from G200 (<1%) and S9 (5%). Both homeopathies differed from the other treatments, with S9 obtaining the best germination (87.1%) and vigor index (IV=7.98) in relation to the other treatments. The control, A70, presented the lowest germination (63.9%) and vigor (IV=4.93).

Keywords: ultra high dilution, impedance, condutivity, eruca versicaria

Procedia PDF Downloads 18
590 Upconversion Nanoparticle-Mediated Carbon Monoxide Prodrug Delivery System for Cancer Therapy

Authors: Yaw Opoku-Damoah, Run Zhang, Hang Thu Ta, Zhi Ping Xu

Abstract:

Gas therapy is still at an early stage of research and development. Even though most gasotransmitters have proven their therapeutic potential, their handling, delivery, and controlled release have been extremely challenging. This research work employs a versatile nanosystem that is capable of delivering a gasotransmitter in the form of a photo-responsive carbon monoxide-releasing molecule (CORM) for targeted cancer therapy. The therapeutic action was mediated by upconversion nanoparticles (UCNPs) designed to transfer bio-friendly low energy near-infrared (NIR) light to ultraviolet (UV) light capable of triggering carbon monoxide (CO) from a water-soluble amphiphilic manganese carbonyl complex CORM incorporated into a carefully designed lipid drug delivery system. Herein, gaseous CO that plays a role as a gasotransmitter with cytotoxic and homeostatic properties was investigated to instigate cellular apoptosis. After successfully synthesizing the drug delivery system, the ability of the system to encapsulate and mediate the sustained release of CO after light excitation was demonstrated. CO fluorescence probe (COFP) was successfully employed to determine the in vitro drug release profile upon NIR light irradiation. The uptake of nanoparticles enhanced by folates and its receptor interaction was also studied for cellular uptake purposes. The anticancer potential of the final lipid nanoparticle Lipid/UCNPs/CORM/FA (LUCF) was also determined by cell viability assay. Intracellular CO release and a subsequent therapeutic action involving ROS production, mitochondrial damage, and CO production was also evaluated. In all, this current project aims to use in vitro studies to determine the potency and efficiency of a NIR-mediated CORM prodrug delivery system.

Keywords: carbon monoxide-releasing molecule, upconversion nanoparticles, site-specific delivery, amphiphilic manganese carbonyl complex, prodrug delivery system.

Procedia PDF Downloads 112
589 Microfluidic Device for Real-Time Electrical Impedance Measurements of Biological Cells

Authors: Anil Koklu, Amin Mansoorifar, Ali Beskok

Abstract:

Dielectric spectroscopy (DS) is a noninvasive, label free technique for a long term real-time measurements of the impedance spectra of biological cells. DS enables characterization of cellular dielectric properties such as membrane capacitance and cytoplasmic conductivity. We have developed a lab-on-a-chip device that uses an electro-activated microwells array for loading, DS measurements, and unloading of biological cells. We utilized from dielectrophoresis (DEP) to capture target cells inside the wells and release them after DS measurement. DEP is a label-free technique that exploits differences among dielectric properties of the particles. In detail, DEP is the motion of polarizable particles suspended in an ionic solution and subjected to a spatially non-uniform external electric field. To the best of our knowledge, this is the first microfluidic chip that combines DEP and DS to analyze biological cells using electro-activated wells. Device performance is tested using two different cell lines of prostate cancer cells (RV122, PC-3). Impedance measurements were conducted at 0.2 V in the 10 kHz to 40 MHz range with 6 s time resolution. An equivalent circuit model was developed to extract the cell membrane capacitance and cell cytoplasmic conductivity from the impedance spectra. We report the time course of the variations in dielectric properties of PC-3 and RV122 cells suspended in low conductivity medium (LCB), which enhances dielectrophoretic and impedance responses, and their response to sudden pH change from a pH of 7.3 to a pH of 5.8. It is shown that microfluidic chip allowed online measurements of dielectric properties of prostate cancer cells and the assessment of the cellular level variations under external stimuli such as different buffer conductivity and pH. Based on these data, we intend to deploy the current device for single cell measurements by fabricating separately addressable N × N electrode platforms. Such a device will allow time-dependent dielectric response measurements for individual cells with the ability of selectively releasing them using negative-DEP and pressure driven flow.

Keywords: microfluidic, microfabrication, lab on a chip, AC electrokinetics, dielectric spectroscopy

Procedia PDF Downloads 151
588 Rooibos Extract Antioxidants: In vitro Models to Assess Their Bioavailability

Authors: Ntokozo Dambuza, Maryna Van De Venter, Trevor Koekemoer

Abstract:

Oxidative stress contributes to the pathogenesis of many diseases and consequently antioxidant therapy has attracted much attention as a potential therapeutic strategy. Regardless of the quantities ingested, antioxidants need to reach the diseased tissues at concentrations sufficient to combat oxidative stress. Bioavailability is thus a defining criterion for the therapeutic efficacy of antioxidants. In addition, therapeutic antioxidants must possess biologically relevant characteristics which can target the specific molecular mechanisms responsible for disease related oxidative stress. While many chemical antioxidant assays are available to quantify antioxidant capacity, they relate poorly to the biological environment and provide no information as to the bioavailability. The present comparative study thus aims to characterise green and fermented rooibos extracts, well recognized for their exceptional antioxidant capacity, in terms of antioxidant bioavailability and efficacy in a disease relevant cellular setting. Chinese green tea antioxidant activity was also evaluated. Chemical antioxidant assays (FRAP, DPPH and ORAC) confirmed the potent antioxidant capacity of both green and fermented rooibos, with green rooibos possessing antioxidant activity superior to that of fermented rooibos and Chinese green tea. Bioavailability was assessed using the PAMPA assay and the results indicate that green and fermented rooibos have a permeation coefficient of 5.7 x 10-6 and 6.9 x 10-6 cm/s, respectively. Chinese green tea permeability coefficient was 8.5 x 10-6 cm/s. These values were comparable to those of rifampicin, which is known to have a high permeability across intestinal epithelium with a permeability coefficient of 5 x 10 -6 cm/s. To assess the antioxidant efficacy in a cellular context, U937 and red blood cells were pre-treated with rooibos and Chinese green tea extracts in the presence of a dye DCFH-DA and then exposed to oxidative stress. Green rooibos exhibited highest activity with an IC50 value of 29 μg/ml and 70 μg/ml, when U937 and red blood cells were exposed oxidative stress, respectively. Fermented rooibos and Chinese green tea had IC50 values of 61 μg/ml and 57 μg/ml for U937, respectively, and 221 μg/ml and 405 μg/ml for red blood cells, respectively. These results indicate that fermented and green rooibos extracts were able to permeate the U937 cells and red blood cell membrane and inhibited oxidation of DCFH-DA to a fluorescent DCF within the cells.

Keywords: rooibos, antioxidants, permeability, bioavailability

Procedia PDF Downloads 317
587 Neural Network Mechanisms Underlying the Combination Sensitivity Property in the HVC of Songbirds

Authors: Zeina Merabi, Arij Dao

Abstract:

The temporal order of information processing in the brain is an important code in many acoustic signals, including speech, music, and animal vocalizations. Despite its significance, surprisingly little is known about its underlying cellular mechanisms and network manifestations. In the songbird telencephalic nucleus HVC, a subset of neurons shows temporal combination sensitivity (TCS). These neurons show a high temporal specificity, responding differently to distinct patterns of spectral elements and their combinations. HVC neuron types include basal-ganglia-projecting HVCX, forebrain-projecting HVCRA, and interneurons (HVC¬INT), each exhibiting distinct cellular, electrophysiological and functional properties. In this work, we develop conductance-based neural network models connecting the different classes of HVC neurons via different wiring scenarios, aiming to explore possible neural mechanisms that orchestrate the combination sensitivity property exhibited by HVCX, as well as replicating in vivo firing patterns observed when TCS neurons are presented with various auditory stimuli. The ionic and synaptic currents for each class of neurons that are presented in our networks and are based on pharmacological studies, rendering our networks biologically plausible. We present for the first time several realistic scenarios in which the different types of HVC neurons can interact to produce this behavior. The different networks highlight neural mechanisms that could potentially help to explain some aspects of combination sensitivity, including 1) interplay between inhibitory interneurons’ activity and the post inhibitory firing of the HVCX neurons enabled by T-type Ca2+ and H currents, 2) temporal summation of synaptic inputs at the TCS site of opposing signals that are time-and frequency- dependent, and 3) reciprocal inhibitory and excitatory loops as a potent mechanism to encode information over many milliseconds. The result is a plausible network model characterizing auditory processing in HVC. Our next step is to test the predictions of the model.

Keywords: combination sensitivity, songbirds, neural networks, spatiotemporal integration

Procedia PDF Downloads 65
586 Application of Gold Nanorods in Cancer Photothermaltherapy

Authors: Mehrnaz Mostafavi

Abstract:

Lung cancer is one of the most harmful forms of cancer. The long-term survival rate of lung cancer patients treated by conventional modalities such as surgical resection, radiation, and chemotherapy remains far from satisfactory. Systemic drug delivery is rarely successful because only a limited amount of the chemotherapeutic drug targets lung tumor sites, even when administered at a high dose. Targeted delivery of drug molecules to organs or special sites is one of the most challenging research areas in pharmaceutical sciences. By developing colloidal delivery systems such as liposomes, micelles and nanoparticles a new frontier was opened for improving drug delivery. Nanoparticles with their special characteristics such as small particle size, large surface area and the capability of changing their surface properties have numerous advantages compared with other delivery systems. Targeted nanoparticle delivery to the lungs is an emerging area of interest.Multimodal or combination therapy represents a promising new method to fight disease. Therefore, a combination of different therapeutic strategies may be the best alternative to improve treatment outcomes for lung cancer. Photothermal therapy was proposed as a novel approach to treatment. In this work, photothermal therapy with gold nanoparticles and near infrared laser (NIR) irradiation was investigated.Four types of small (<100nm), NIR absorbing gold nanoparticles (nanospheres, nanorods) were synthesized using wet chemical methods and characterized by transmission electron microscopy, dynamic light scattering and UV-vis spectroscopy. Their synthesis and properties were evaluated, to determine their feasibility as a photothermal agent for clinical applications. In vitro cellular uptake studies of the nanoparticles into lung cancer cell lines was measured using light scattering microscopy.Small gold nanorods had good photothermal properties and the greatest cellular uptake, and were used in photothermal studies. Under 4W laser irradiation, an increase in temperature of 10°C and decrease in cell viability of up to 80% were obtained.

Keywords: photothermal, therapy, cancer, gold nanorods

Procedia PDF Downloads 244
585 Targeting the EphA2 Receptor Tyrosine Kinases in Melanoma Cancer, both in Humans and Dogs

Authors: Shabnam Abdi, Behzad Toosi

Abstract:

Background: Melanoma is the most lethal type of malignant skin cancer in humans and dogs since it spreads rapidly throughout the body. Despite significant advances in treatment, cancer at an advanced stage has a poor prognosis. Hence, more effective treatments are needed to enhance outcomes with fewer side effects. Erythropoietin-producing hepatocellular receptors are the largest family of receptor tyrosine kinases and are divided into two subfamilies, EphA and EphB, both of which play a significant role in disease, especially cancer. Due to their association with proliferation and invasion in many aggressive types of cancer, Eph receptor tyrosine kinases (Eph RTKs) are promising cancer therapy molecules. Because these receptors have not been studied in canine melanoma, we investigated how EphA2 influences survival and tumorigenicity of melanoma cells. Methods: Expression of EphA2 protein in canine melanoma cell lines and human melanoma cell line was evaluated by Western blot. Melanoma cells were transduced with lentiviral particles encoding Eph-targeting shRNAs or non-silencing shRNAs (control) for silencing the expression of EphA2 receptor, and silencing was confirmed by Western blotting and immunofluorescence. The effect of siRNA treatment on cellular proliferation, colony formation, tumorsphere assay, invasion was analyzed by Resazurin assay Matrigel invasion assay, respectively. Results: Expression of EphA2 was detected in canine and human melanoma cell lines. Moreover, stably silencing EphA2 by specific shRNAs significantly and consistently decreased the expression of EphA2 protein in both human and canine melanoma cells. Proliferation, colony formation, tumorsphere and invasion of melanoma cells were significantly decreased in EphA2 siRNA-treated cells compared to control. Conclusion: Our data provide the first functional evidence that the EphA2 receptor plays a critical role in the malignant cellular behavior of melanoma in both human and dogs.

Keywords: ephA2, targeting, melanoma, human, canine

Procedia PDF Downloads 60
584 Micromechanical Compatibility Between Cells and Scaffold Mediates the Efficacy of Regenerative Medicine

Authors: Li Yang, Yang Song, Martin Y. M. Chiang

Abstract:

Objective: To experimentally substantiate the micromechanical compatibility between cell and scaffold, in the regenerative medicine approach for restoring bone volume, is essential for phenotypic transitions Methods: Through nanotechnology and electrospinning process, nanofibrous scaffolds were fabricated to host dental follicle stem cells (DFSCs). Blends (50:50) of polycaprolactone (PCL) and silk fibroin (SF), mixed with various content of cellulose nanocrystals (CNC, up to 5% in weight), were electrospun to prepare nanofibrous scaffolds with heterogeneous microstructure in terms of fiber size. Colloidal probe atomic force microscopy (AFM) and conventional uniaxial tensile tests measured the scaffold stiffness at the micro-and macro-scale, respectively. The cell elastic modulus and cell-scaffold adhesive interaction (i.e., a chemical function) were examined through single-cell force spectroscopy using AFM. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to determine if the mechanotransduction signal (i.e., Yap1, Wwr2, Rac1, MAPK8, Ptk2 and Wnt5a) is upregulated by the scaffold stiffness at the micro-scale (cellular scale). Results: The presence of CNC produces fibrous scaffolds with a bimodal distribution of fiber diameter. This structural heterogeneity, which is CNC-composition dependent, remarkably modulates the mechanical functionality of scaffolds at microscale and macroscale simultaneously, but not the chemical functionality (i.e., only a single material property is varied). In in vitro tests, the osteogenic differentiation and gene expression associated with mechano-sensitive cell markers correlate to the degree of micromechanical compatibility between DFSCs and the scaffold. Conclusion: Cells require compliant scaffolds to encourage energetically favorable interactions for mechanotransduction, which are converted into changes in cellular biochemistry to direct the phenotypic evolution. The micromechanical compatibility is indeed important to the efficacy of regenerative medicine.

Keywords: phenotype transition, scaffold stiffness, electrospinning, cellulose nanocrystals, single-cell force spectroscopy

Procedia PDF Downloads 189
583 Photobiomodulation Activates WNT/β-catenin Signaling for Wound Healing in an in Vitro Diabetic Wound Model

Authors: Dimakatso B. Gumede, Nicolette N. Houreld

Abstract:

Diabetic foot ulcers (DFUs) are a complication of diabetes mellitus (DM), a metabolic disease caused by insulin resistance or insufficiency, resulting in hyperglycaemia and low-grade chronic inflammation. Current therapies for treating DFUs include wound debridement, glycaemic control, and wound dressing. However, these therapies are moderately effective as there is a recurrence of these ulcers and an increased risk of lower limb amputations. Photobiomodulation (PBM), which is the application of non-invasive low-level light for wound healing at the spectrum of 660-1000 nm, has shown great promise in accelerating the healing of chronic wounds. However, its underlying mechanisms are not clearly defined. Studies have indicated that PBM induces wound healing via the activation of signaling pathways that are involved in tissue repair, such as the transforming growth factor-β (TGF-β). However, other signaling pathways, such as the WNT/β-catenin pathway, which is also critical for wound repair, have not been investigated. This study aimed to elucidate if PBM at 660 nm and a fluence of 5 J/cm² activates the WNT/β-catenin signaling pathway for wound healing in a diabetic cellular model. Human dermal fibroblasts (WS1) were continuously cultured high-glucose (26.5 mM D-glucose) environment to create a diabetic cellular model. A central scratch was created in the diabetic model to ‘wound’ the cells. The diabetic wounded (DW) cells were thereafter irradiated at 660 nm and a fluence of 5 J/cm². Cell migration, gene expression and protein assays were conducted at 24- and 48-h post-PBM. The results showed that PBM at 660 nm and a fluence of 5 J/cm² significantly increased cell migration in diabetic wounded cells at 24-h post-PBM. The expression of CTNNB1, ACTA2, COL1A1 and COL3A1 genes was also increased in DW cells post-PBM. Furthermore, there was increased cytoplasmic accumulation and nuclear localization of β-catenin at 24 h post-PBM. The findings in this study demonstrate that PBM activates the WNT/β-catenin signaling pathway by inducing the accumulation of β-catenin in diabetic wounded cells, leading to increased cell migration and expression of wound repair markers. These results thus indicate that PBM has the potential to improve wound healing in diabetic ulcers via activation of the WNT/β-catenin signaling pathway.

Keywords: wound healing, diabetic ulcers, photobiomodulation, WNT/β-catenin, signalling pathway

Procedia PDF Downloads 40
582 An Investigation of Peptide Functionalized Gold Nanoparticles On Colon Cancer Cells For Biomedical Application

Authors: Rolivhuwa Bishop Ramagoma1*, Lynn Cairncross1, , Saartjie Roux1

Abstract:

According to the world health organisation, colon cancer is among the most common cancers diagnosed in both men and women. Specifically, it is the second leading cause of cancer related deaths accounting for over 860 000 deaths worldwide in 2018. Currently, chemotherapy has become an essential component of most cancer treatments. Despite progress in cancer drug development over the previous years, traditional chemotherapeutic drugs still have low selectivity for targeting tumour tissues and are frequently constrained by dose-limiting toxicity. The creation of nanoscale delivery vehicles capable of directly directing treatment into cancer cells has recently caught the interest of researchers. Herein, the development of peptide-functionalized polyethylene glycol gold nanoparticles (Peptide-PEG-AuNPs) as a cellular probe and delivery agent is described, with the higher aim to develop a specific diagnostic prototype and assess their specificity not only against cell lines but primary human cells as well. Gold nanoparticles (AuNPs) were synthesized and stabilized through chemical conjugation. The synthesized AuNPs were characterized, stability in physiological solutions was assessed, their cytotoxicity against colon carcinoma and non-carcinoma skin fibroblasts was also studied. Furthermore, genetic effect through real-time polymerase chain reaction (RT-PCR), localization and uptake, peptide specificity were also determined. In this study, different peptide-AuNPs were found to have preferential toxicity at higher concentrations, as revealed by cell viability assays, however, all AuNPs presented immaculate stability for over 3 months following the method of synthesis. The final obtained peptide-PEG-AuNP conjugates showed good biocompatibility in the presence of high ionic solutions and biological media and good cellular uptake. Formulation of colon cancer specific targeting peptide was successful, additionally, the genes/pathways affected by the treatments were determined through RT-PCR. Primary cells study is still on going with promising results thus far.

Keywords: nanotechnology, cancer, diagnosis, therapeutics, gold nanoparticles.

Procedia PDF Downloads 94
581 Canthin-6-One Alkaloid Inhibits NF-κB and AP-1 Activity: An Inhibitory Action At Transcriptional Level

Authors: Fadia Gafri, Kathryn Mckintosh, Louise Young, Alan Harvey, Simon Mackay, Andrew Paul, Robin Plevin

Abstract:

Nuclear factor-kappa B (NF-κB) is a ubiquitous transcription factor found originally to play a key role in regulating inflammation. However considerable evidence links this pathway to the suppression of apoptosis, cellular transformation, proliferation and invasion (Aggarwal et al., 2006). Moreover, recent studies have also linked inflammation to cancer progression making NF-κB overall a promising therapeutic target for drug discovery (Dobrovolskaia & Kozlov, 2005). In this study we examined the effect of the natural product canthin-6-one (SU182) as part of a CRUK small molecule drug discovery programme for effects upon the NF-κB pathway. Initial studies demonstrated that SU182 was found to have good potency against the inhibitory kappa B kinases (IKKs) at 30M in vitro. However, at concentrations up to 30M, SU182 had no effect upon TNFα stimulated loss in cellular IκBα or p65 phosphorylation in the keratinocyte cell line NCTC2544. Nevertheless, 30M SU182 reduced TNF-α / PMA-induced NF-κB-linked luciferase reporter activity to (22.9 ± 5%) and (34.6± 3 %, P<0.001) respectively, suggesting an action downstream of IKK signalling. Indeed, SU182 neither decreased NF-κB-DNA binding as assayed by EMSA nor prevented the translocation of p65 (NF-κB) to the nucleus assessed by immunofluorescence and subcellular fractionation. In addition to the inhibition of transcriptional activity of TNFα-induced NF-κB reporter activity SU182 significantly reduced PMA-induced AP-1-linked luciferase reporter activity to about (48± 9% at 30M, P<0.001) . This mode of inhibition was not sufficient to prevent the activation of NF-κB dependent induction of other proteins such as COX-2 and iNOS, or activated MAP kinases (p38, JNK and ERK1/2) in LPS stimulated RAW 264.7 macrophages. Taken together these data indicate the potential for SU182 to interfere with the transcription factors NF-κB and AP-1 at transcriptional level. However, no potential anti-inflammatory effect was indicated, further investigation for other NF-κB dependent proteins linked to survival are also required to identify the exact mechanism of action.

Keywords: Canthin-6-one, NF-κB, AP-1, phosphorylation, Nuclear translocation, DNA-binding activity, inflammatory proteins.

Procedia PDF Downloads 458
580 Improved Approach to the Treatment of Resistant Breast Cancer

Authors: Lola T. Alimkhodjaeva, Lola T. Zakirova, Soniya S. Ziyavidenova

Abstract:

Background: Breast cancer (BC) is still one of the urgent oncology problems. The essential obstacle to the full anti-tumor therapy implementation is drug resistance development. Taking into account the fact that chemotherapy is main antitumor treatment in BC patients, the important task is to improve treatment results. Certain success in overcoming this situation has been associated with the use of methods of extracorporeal blood treatment (ECBT), plasmapheresis. Materials and Methods: We examined 129 women with resistant BC stages 3-4, aged between 56 to 62 years who had previously received 2 courses of CAF chemotherapy. All patients additionally underwent 2 courses of CAF chemotherapy but against the background ECBT with ultrasonic exposure. We studied the following parameters: 1. The highlights of peripheral blood before and after therapy. 2. The state of cellular immunity and identification of activation markers CD23 +, CD25 +, CD38 +, CD95 + on lymphocytes was performed using monoclonal antibodies. Evaluation of humoral immunity was determined by the level of main classes of immunoglobulins IgG, IgA, IgM in serum. 3. The degree of tumor regression was assessed by WHO recommended 4 gradations. (complete - 100%, partial - more than 50% of initial size, process stabilization–regression is less than 50% of initial size and tumor advance progressing). 4. Medical pathomorphism in the tumor was determined by Lavnikova. 5. The study of immediate and remote results, up to 3 years and more. Results and Discussion: After performing extracorporeal blood treatment anemia occurred in 38.9%, leukopenia in 36.8%, thrombocytopenia in 34.6%, hypolymphemia in 26.8%. Studies of immunoglobulin fractions in blood serum were able to establish a certain relationship between the classes of immunoglobulin A, G, M and their functions. The results showed that after treatment the values of main immunoglobulins in patients’ serum approximated to normal. Analysis of expression of activation markers CD25 + cells bearing receptors for IL-2 (IL-2Rα chain) and CD95 + lymphocytes that were mediated physiological apoptosis showed the tendency to increase, which apparently was due to activation of cellular immunity cytokines allocated by ultrasonic treatment. To carry out ECBT on the background of ultrasonic treatment improved the parameters of the immune system, which were expressed in stimulation of cellular immunity and correcting imbalances in humoral immunity. The key indicator of conducted treatment efficiency is the immediate result measured by the degree of tumor regression. After ECBT performance the complete regression was 10.3%, partial response - 55.5%, process stabilization - 34.5%, tumor advance progressing no observed. Morphological investigations of tumor determined therapeutic pathomorphism grade 2 in 15%, in 25% - grade 3 and therapeutic pathomorphism grade 4 in 60% of patients. One of the main criteria for the effect of conducted treatment is to study the remission terms in the postoperative period (up to 3 years or more). The remission terms up to 3 years with ECBT was 34.5%, 5-year survival was 54%. Carried out research suggests that a comprehensive study of immunological and clinical course of breast cancer allows the differentiated approach to the choice of methods for effective treatment.

Keywords: breast cancer, immunoglobulins, extracorporeal blood treatment, chemotherapy

Procedia PDF Downloads 274
579 Therapeutic Effects of Guar Gum Nanoparticles in Oxazolone-Induced Atopic Dermatitis

Authors: Nandita Ghosh, Shinjini Mitra, Ena Ray Banerjee

Abstract:

Atopic dermatitis (AD) is a chronic disease of the skin, involving itchy, reddish, and scaly lesions. It mainly affects children and has a high prevalence in developing countries. The AD may occur due to environmental or genetic factors. There is no permanent cure for the AD. Currently, all therapeutic strategies involve methods to simply alleviate the symptoms, and include lotions and corticosteroids, which have adverse effects. Use of phytochemicals and natural products has not yet been exploited fully. The particle used in this study is derived from Cyamopsis tetragonoloba, an edible polysaccharide with a galactomannan component. The mannose component mainly increases its specificity towards cellular uptake by mannose receptors, highly expressed by the macrophage. The aim of this study was to determine the therapeutic effect of guar gum nanoparticles (GN) in vitro and in vivo in the AD. To assess the wound healing capacity of the guar gum nanoparticle (GN), we first treated adherent NIH3T3 cells, with a scratch injury, with GN. GN successfully healed the wound caused by the scratch. In the in vivo experiment, Balb/c mice ear were topically treated with oxazolone (oxa) to induce AD and then were topically treated with GN. The ear thickness was increased significantly till day 28 on the treatment of Oxa. The GN application showed a significant decrease in the thickness as assessed on day 28. The total cell count of skin cells showed fold increase when treated with oxa, was again decreased on topical application of GN on the affected skin. The eosinophil count, as assessed by Giemsa staining was also increased when treated with oxa, GN application led to a significant decrease. The IgE level was assessed in the serum samples which showed that GN helped in restoring the alleviated IgE level. The T helper cells and the macrophage population showed increased percentage when treated with oxa, the GN application. This was examined by flow cytometry. The H&E staining of the ear tissue showed epidermal thickness in the oxa treated mice, GN application showed reduced cellular filtration followed by epidermal thickness. Thus our assays showed that GN was successful in alleviating the disease caused by Oxa when administered topically.

Keywords: allergen, inflammation, nanodrug, wound

Procedia PDF Downloads 243