Search results for: beta stabilized element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3712

Search results for: beta stabilized element

3532 Design of a Vehicle Door Structure Based on Finite Element Method

Authors: Tawanda Mushiri, Charles Mbohwa

Abstract:

The performance of door assembly is very significant for the vehicle design. In the present paper, the finite element method is used in the development processes of the door assembly. The stiffness, strength, modal characteristic, and anti-extrusion of a newly developed passenger vehicle door assembly are calculated and evaluated by several finite element analysis commercial software. The structural problems discovered by FE analysis have been modified and finally achieved the expected door structure performance target of this new vehicle. The issue in focus is to predict the performance of the door assembly by powerful finite element analysis software, and optimize the structure to meet the design targets. It is observed that this method can be used to forecast the performance of vehicle door efficiently when it’s designed. In order to reduce lead time and cost in the product development of vehicles more development will be made virtually.

Keywords: vehicle door, structure, strength, stiffness, modal characteristic, anti-extrusion, Finite Element Method

Procedia PDF Downloads 402
3531 Cellular Automata Modelling of Titanium Alloy

Authors: Jyoti Jha, Asim Tewari, Sushil Mishra

Abstract:

The alpha-beta Titanium alloy (Ti-6Al-4V) is the most common alloy in the aerospace industry. The hot workability of Ti–6Al–4V has been investigated by means of hot compression tests carried out in the 750–950 °C temperature range and 0.001–10s-1 strain rate range. Stress-strain plot obtained from the Gleeble 3800 test results show the dynamic recrystallization at temperature 950 °C. The effect of microstructural characteristics of the deformed specimens have been studied and correlated with the test temperature, total strain and strain rate. Finite element analysis in DEFORM 2D has been carried out to see the effect of flow stress parameters in different zones of deformed sample. Dynamic recrystallization simulation based on Cellular automata has been done in DEFORM 2D to simulate the effect of hardening and recovery during DRX. Simulated results well predict the grain growth and DRX in the deformed sample.

Keywords: compression test, Cellular automata, DEFORM , DRX

Procedia PDF Downloads 287
3530 Effect of Cantilever Sheet Pile Wall to Adjacent Buildings

Authors: Ahmed A. Mohamed Aly

Abstract:

Ground movements induced from excavations is a major cause of deformation and damage to the adjacent buildings and utilities. With the increasing rate of construction work in urban area, this problem is growing more significant and has become the cause of numerous legal disputes. This problem is investigated numerically in the present study using finite element method. Five-story reinforced concrete building rests on raft foundation is idealized as two dimensional model. The building is considered to be constructed adjacent to excavation affected by an adjacent excavation in medium sand. Excavation is supported using sheet pile wall. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with Mohr-Coulomb model. Five nodes isoperimetric beam element is used to idealize sheet pile and building. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the building distance from the excavation. Nodal displacements and elements straining actions were obtained and studied from the analyzed finite element model results.

Keywords: excavation, relative distance, effective stresses, lateral deformation, relative depth

Procedia PDF Downloads 123
3529 Effects of Novel Protease Enzyme From Bacillus subtilis on Low Protein and Low Energy Guar Meal (Cyamopsis tetragonoloba) Meal Based Diets on Performance and Nutrients Digestibility in Broilers

Authors: Aqeel Ahmed Shad, Tanveer Ahmad, Muhammad Farooq Iqbal, Muhammad Javaid Asad

Abstract:

The supplemental effects of novel protease produced from Bacillus subtilis K-5 and beta-mannanase were evaluated on growth performance, carcass characteristics, nutrients digestibility, blood profile and intestinal morphometry of broilers fed guar meal (Cyamopsis tetragonoloba) based diets with reduced Crude Protein (CP), Essential Amino Acids (EAAs), and Metabolizable energy (ME) contents. One-day old Ross 308 broiler chicks (n=360) were randomly allotted to thirty six experimental units in a way that each of the nine dietary treatments received four replicates with ten birds per replicate. A control diet without guar meal (0GM) was formulated with standard nutrient specifications of Ross 308 for the starter and finisher phases. Two negative control diets, one with 5% (5GM) and second with 10% (10GM) guar meal, were formulated with reduction of 5% CP, 5% EAAs and 80 Kcal/kg ME. These three basal diets (no enzyme) were supplemented with novel protease enzyme (PROT) and commercial beta-mannanase (Beta-M) enzyme. The birds were reared up to 35d of age. The data on weekly body weight gain (BWG) and feed intake were recorded to compute feed:gain for the starter (0-21d) and finisher (22-35d) phases. At the end of 35d of experimental period, four birds per experimental unit were randomly selected for blood samples collection and later slaughtered for ileal digesta, intestinal tract and carcass trait sampling. The data on overall performance (1-35d) indicated improved (P<0.05) BWG and feed:gain in birds supplemented with PROT (1.41% and 1.67) and Beta-M (2.79% and 1.64) than non-supplemented groups. Improved (P<0.05) carcass yield, breast meat yield and thigh meat yield were noted with the supplementation of Beta-M. However, non-significant (P>0.05) effect on carcass traits was noted in broiler fed guar meal based PROT supplemented diets. Crude protein digestibility, nitrogen retention (Nret) and apparent digestibility coefficient for nitrogen (ADCN) were improved (P<0.05) only with PROT. The improvement in apparent metabolizable energy (AME) and apparent metabolizable energy corrected for nitrogen (AMEn) was noted (P<0.05) with both supplemented enzymes. However, no effect (P>0.05) of enzyme addition was noted on blood glucose, total protein and cholesterol. Improved villus height of duodenum, jejunum and ileum was noted (P<0.05) with the addition of both enzymes. The EAAs digestibility was improved (P<0.05) only with PROT. In conclusion, beta-mannanase and protease supplementation better improved the overall bird performance in low nutrient profile guar meal based diets than non-supplemented diets.

Keywords: novel protease, guar meal, broilers, low protein diets, low metabolizable energy diets, nutrients digestibility

Procedia PDF Downloads 40
3528 Utilization of a Composite of Oil Ash, Scoria, and Expanded Perlite with Polyethylene Glycol for Energy Storage Systems

Authors: Khaled Own Mohaisen, Md. Hasan Zahir, Salah U. Al-Dulaijan, Shamsad Ahmad, Mohammed Maslehuddin

Abstract:

Shape-stabilized phase change materials (ss-PCMs) for energy storage systems were developed using perlite, scoria, and oil ash as a carrier, with polyethylene glycol (PEG) with a molecular weight of 6000 as phase change material (PCM). Physical mixing using simple impregnation of ethanol evaporation technique method was carried out to fabricate the form stabilized PCM. The fabricated PCMs prevent leakage, reduce the supercooling effect and minimize recalescence problems of the PCM. The differential scanning calorimetry (DSC) results show that perlite composite (ExPP) has the highest latent heat of melting and freezing values of (141.6 J/g and 143.7 J/g) respectively, compared with oil ash (OAP) and scoria (SCP) composites. Moreover, ExPP has the highest impregnation ratio, energy storage efficiency, and energy storage capacity compared with OAP and SCP. However, OAP and SCP have higher thermal conductivity values compared to ExPP composites which accelerate the thermal storage response in the composite. These results were confirmed with DSC, and the characteristic of the PCMs was investigated by using XRD and FE-SEM techniques.

Keywords: expanded perlite, oil ash, scoria, energy storage material

Procedia PDF Downloads 59
3527 A New Binder Mineral for Cement Stabilized Road Pavements Soils

Authors: Aydın Kavak, Özkan Coruk, Adnan Aydıner

Abstract:

Long-term performance of pavement structures is significantly impacted by the stability of the underlying soils. In situ subgrades often do not provide enough support required to achieve acceptable performance under traffic loading and environmental demands. NovoCrete® is a powder binder-mineral for cement stabilized road pavements soils. NovoCrete® combined with Portland cement at optimum water content increases the crystallize formations during the hydration process, resulting in higher strengths, neutralizes pH levels, and provides water impermeability. These changes in soil properties may lead to transforming existing unsuitable in-situ materials into suitable fill materials. The main features of NovoCrete® are: They are applicable to all types of soil, reduce premature cracking and improve soil properties, creating base and subbase course layers with high bearing capacity by reducing hazardous materials. It can be used also for stabilization of recyclable aggregates and old asphalt pavement aggregate, etc. There are many applications in Germany, Turkey, India etc. In this paper, a few field application in Turkey will be discussed. In the road construction works, this binder material is used for cement stabilization works. In the applications 120-180 kg cement is used for 1 m3 of soil with a 2 % of binder NovoCrete® material for the stabilization. The results of a plate loading test in a road construction site show 1 mm deformation which is very small under 7 kg/cm2 loading. The modulus of subgrade reaction increase from 611 MN/m3 to 3673 MN/m3.The soaked CBR values for stabilized soils increase from 10-20 % to 150-200 %. According to these data weak subgrade soil can be used as a base or sub base after the modification. The potential reduction in the need for quarried materials will help conserve natural resources. The use of on-site or nearby materials in fills, will significantly reduce transportation costs and provide both economic and environmental benefits.

Keywords: soil, stabilization, cement, binder, Novocrete, additive

Procedia PDF Downloads 203
3526 The BETA Module in Action: An Empirical Study on Enhancing Entrepreneurial Skills through Kearney's and Bloom's Guiding Principles

Authors: Yen Yen Tan, Lynn Lam, Cynthia Lam, Angela Koh, Edwin Seng

Abstract:

Entrepreneurial education plays a crucial role in nurturing future innovators and change-makers. Over time, significant progress has been made in refining instructional approaches to develop the necessary skills among learners effectively. Two highly valuable frameworks, Kearney's "4 Principles of Entrepreneurial Pedagogy" and Bloom's "Three Domains of Learning," serve as guiding principles in entrepreneurial education. Kearney's principles align with experiential and student-centric learning, which are crucial for cultivating an entrepreneurial mindset. The potential synergies between these frameworks hold great promise for enhancing entrepreneurial acumen among students. However, despite this potential, their integration remains largely unexplored. This study aims to bridge this gap by building upon the Business Essentials through Action (BETA) module and investigating its contributions to nurturing the entrepreneurial mindset. This study employs a quasi-experimental mixed-methods approach, combining quantitative and qualitative elements to ensure comprehensive and insightful data. A cohort of 235 students participated, with 118 enrolled in the BETA module and 117 in a traditional curriculum. Their Personal Entrepreneurial Competencies (PECs) were assessed before admission (pre-Y1) and one year into the course (post-Y1) using a comprehensive 55-item PEC questionnaire, enabling measurement of critical traits such as opportunity-seeking, persistence, and risk-taking. Rigorous computations of individual entrepreneurial competencies and overall PEC scores were performed, including a correction factor to mitigate potential self-assessment bias. The orchestration of Kearney's principles and Bloom's domains within the BETA module necessitates a granular examination. Here, qualitative revelations surface, courtesy of structured interviews aligned with contemporary research methodologies. These interviews act as a portal, ushering us into the transformative journey undertaken by students. Meanwhile, the study pivots to explore the BETA module's influence on students' entrepreneurial competencies from the vantage point of faculty members. A symphony of insights emanates from intimate focus group discussions featuring six dedicated lecturers, who share their perceptions, experiences, and reflective narratives, illuminating the profound impact of pedagogical practices embedded within the BETA module. Preliminary findings from ongoing data analysis indicate promising results, showcasing a substantial improvement in entrepreneurial skills among students participating in the BETA module. This study promises not only to elevate students' entrepreneurial competencies but also to illuminate the broader canvas of applicability for Kearney's principles and Bloom's domains. The dynamic interplay of quantitative analyses, proffering precise competency metrics, and qualitative revelations, delving into the nuanced narratives of transformative journeys, engenders a holistic understanding of this educational endeavour. Through a rigorous quasi-experimental mixed-methods approach, this research aims to establish the BETA module's effectiveness in fostering entrepreneurial acumen among students at Singapore Polytechnic, thereby contributing valuable insights to the broader discourse on educational methodologies.

Keywords: entrepreneurial education, experiential learning, pedagogical frameworks, innovative competencies

Procedia PDF Downloads 37
3525 Investigation of Stabilized Turbulent Diffusion Flames Using Synthesis Fuel with Different Burner Configurations

Authors: Moataz Medhat, Essam Khalil, Hatem Haridy

Abstract:

The present study investigates the flame structure of turbulent diffusion flame of synthesis fuel in a 300 KW swirl-stabilized burner. The three-dimensional model adopts a realizable k-ε turbulent scheme interacting with two-dimensional PDF combustion scheme by applying flamelet concept. The study reveals more characteristics on turbulent diffusion flame of synthesis fuel when changing the inlet air swirl number and the burner quarl angle. Moreover, it concerns with studying the effect of flue gas recirculation and staging with taking radiation effect into consideration. The comparison with natural gas was investigated. The study showed two zones of recirculation, the primary one is at the center of the furnace, and the location of the secondary one varies by changing the quarl angle of the burner. The results revealed an increase in temperature in the external recirculation zone as a result of increasing the swirl number of the inlet air stream. Also, it was found that recirculating part of the combustion products decreases pollutants formation especially nitrogen monoxide. The predicted results showed a great agreement when compared with the experiments.

Keywords: gas turbine, syngas, analysis, recirculation

Procedia PDF Downloads 255
3524 A New Computational Package for Using in CFD and Other Problems (Third Edition)

Authors: Mohammad Reza Akhavan Khaleghi

Abstract:

This paper shows changes done to the Reduced Finite Element Method (RFEM) that its result will be the most powerful numerical method that has been proposed so far (some forms of this method are so powerful that they can approximate the most complex equations simply Laplace equation!). Finite Element Method (FEM) is a powerful numerical method that has been used successfully for the solution of the existing problems in various scientific and engineering fields such as its application in CFD. Many algorithms have been expressed based on FEM, but none have been used in popular CFD software. In this section, full monopoly is according to Finite Volume Method (FVM) due to better efficiency and adaptability with the physics of problems in comparison with FEM. It doesn't seem that FEM could compete with FVM unless it was fundamentally changed. This paper shows those changes and its result will be a powerful method that has much better performance in all subjects in comparison with FVM and another computational method. This method is not to compete with the finite volume method but to replace it.

Keywords: reduced finite element method, new computational package, new finite element formulation, new higher-order form, new isogeometric analysis

Procedia PDF Downloads 93
3523 Structural Performance of Prefabricated Concrete and Reinforced Concrete Structural Walls under Blast Loads

Authors: S. Kamil Akin, Turgut Acikara

Abstract:

In recent years the world and our country has experienced several explosion events occurred due to terrorist attacks and accidents. In these explosion events many people have lost their lives and many buildings have been damaged. If structures were designed taking the blast loads into account, these results may not have happened or the casualties would have been less. In this thesis analysis of the protection walls have been conducted to prevent the building damage from blast loads. These analyzes was carried out for two different types of wall, concrete and reinforced concrete. Analyses were carried out on four different thicknesses of each wall element. In each wall element the stresses and displacements of the exposed surface due to the detonation charge has been calculated. The limit shear stress and displacement of the wall element according to their material properties has been taken into account. As the result of the analyses the standoff distances and TNT equivalent amount has been determined. According to equivalent TNT amounts and standoff distances the structural response of the protective wall elements has been observed. These structural responses have been observed by ABAQUS finite element package. Explosion loads were brought into effect to the protective wall element models by using the ABAQUS / CONWEP.

Keywords: blast loading, blast wave, TNT equivalent method, CONWEP, finite element analysis, detonation

Procedia PDF Downloads 416
3522 Reliability Estimation of Bridge Structures with Updated Finite Element Models

Authors: Ekin Ozer

Abstract:

Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity.

Keywords: earthquake engineering, engineering vibrations, reliability estimation, structural health monitoring

Procedia PDF Downloads 195
3521 Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy

Authors: Lina Paola Orozco Marin, Yuliet Montoya Osorio, John Bustamante Osorno

Abstract:

Ischemic events can culminate in acute myocardial infarction by irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Cell therapy seeks to replace these injured or necrotic cells by transplanting healthy and functional cells. The therapeutic alternatives proposed by tissue engineering and cardiovascular regenerative medicine are the use of biomaterials to mimic the native extracellular medium, which is full of proteins, proteoglycans, and glycoproteins. The selected biomaterials must provide structural support to the encapsulated cells to avoid their migration and death in the host tissue. In this context, the present research work focused on developing a natural thermosensitive hydrogel, its physical and chemical characterization, and the determination of its biocompatibility in vitro. The hydrogel was developed by mixing hydrolyzed bovine and porcine collagen at 2% w/v, chitosan at 2.5% w/v, and beta-glycerolphosphate at 8.5% w/w and 10.5% w/w in magnetic stirring at 4°C. Once obtained, the thermosensitivity and gelation time were determined, incubating the samples at 37°C and evaluating them through the inverted tube method. The morphological characterization of the hydrogels was carried out through scanning electron microscopy. Chemical characterization was carried out employing infrared spectroscopy. The biocompatibility was determined using the MTT cytotoxicity test according to the ISO 10993-5 standard for the hydrogel’s precursors using the fetal human ventricular cardiomyocytes cell line RL-14. The RL-14 cells were also seeded on the top of the hydrogels, and the supernatants were subculture at different periods to their observation under a bright field microscope. Four types of thermosensitive hydrogels were obtained, which differ in their composition and concentration, called A1 (chitosan/bovine collagen/beta-glycerolphosphate 8.5%w/w), A2 (chitosan/porcine collagen/beta-glycerolphosphate 8.5%), B1 (chitosan/bovine collagen/beta-glycerolphosphate 10.5%) and B2 (chitosan/porcine collagen/beta-glycerolphosphate 10.5%). A1 and A2 had a gelation time of 40 minutes, and B1 and B2 had a gelation time of 30 minutes at 37°C. Electron micrographs revealed a three-dimensional internal structure with interconnected pores for the four types of hydrogels. This facilitates the exchange of nutrients, oxygen, and the exit of metabolites, allowing to preserve a microenvironment suitable for cell proliferation. In the infrared spectra, it was possible to observe the interaction that occurs between the amides of polymeric compounds with the phosphate groups of beta-glycerolphosphate. Finally, the biocompatibility tests indicated that cells in contact with the hydrogel or with each of its precursors are not affected in their proliferation capacity for a period of 16 days. These results show the potential of the hydrogel to increase the cell survival rate in the cardiac cell therapies under investigation. Moreover, the results lay the foundations for its characterization and biological evaluation in both in vitro and in vivo models.

Keywords: cardiac cell therapy, cardiac ischemia, natural polymers, thermosensitive hydrogel

Procedia PDF Downloads 169
3520 An Implementation of Meshless Method for Modeling an Elastoplasticity Coupled to Damage

Authors: Sendi Zohra, Belhadjsalah Hedi, Labergere Carl, Saanouni Khemais

Abstract:

The modeling of mechanical problems including both material and geometric nonlinearities with Finite Element Method (FEM) remains challenging. Meshless methods offer special properties to get rid of well-known drawbacks of the FEM. The main objective of Meshless Methods is to eliminate the difficulty of meshing and remeshing the entire structure by simply insertion or deletion of nodes, and alleviate other problems associated with the FEM, such as element distortion, locking and others. In this study, a robust numerical implementation of an Element Free Galerkin Method for an elastoplastic coupled to damage problem is presented. Several results issued from the numerical simulations by a DynamicExplicit resolution scheme are analyzed and critically compared with Element Finite Method results. Finally, different numerical examples are carried out to demonstrate the efficiency of this method.

Keywords: damage, dynamic explicit, elastoplasticity, isotropic hardening, meshless

Procedia PDF Downloads 269
3519 Comparative Study Between Oral and Intralesional Injection of Beta Blocker in the Treatment of Infantile Capillary Hemangioma

Authors: Nadeen Eltoukhy, Sahar S. Sheta, Walaa Elnaggar, Karim Bakr

Abstract:

Purpose: The aim of this study is to compare the clinical efficacy and side effects of oral versus intralesional propranolol treatment of infantile capillary hemangiomas in infants. Methods: The study enrolled 40 infants diagnosed with infantile capillary hemangiomas. Patients were divided into 2 groups: Group A (Non-invasive group) included 20 infants who received oral propranolol hydrochloride starting at a dose of 1 mg/kg/day BID, then increased to a max of 2 mg/kg/day BID gradually over 2 weeks for 3 months. Group B (Invasive group) included 20 infants who received intralesional propranolol injection at a dose of 1 mg/mL; the volume of the injected drug depended on the size of the lesion (0.2 mL injected per cm of lesion diameter), with a maximum volume of 1 mL for a lesion of 5 cm diameter under complete aseptic conditions in the operating theater. Results: At three months after initiating treatment, the circumferential size of the hemangioma showed a statistically significant decrease in both groups; in Group A from 3.66±2.89 cm to 1.56±1.26 cm with p-value <0.05 and in Group B from 2.99±2.73 cm to 1.32±1.18 cm with p-value <0.05. There is no statistically significant comparative difference between the two groups (p-value = 0.538 = insignificant). Regarding the complications of oral propranolol, one patient (5%) had bradycardia, and one patient (5%) had diarrhea. In the injection group, 20 patients (100%) had local edema, and one patient (5%) had a local infection. Conclusions: Both oral non-invasive and intralesional invasive propranolol are safely used to successfully treat and decrease the size of infantile hemangioma while showing no statistically comparative difference between both treatment techniques.

Keywords: hemangioma, oral beta blocker, intralesional beta blocker, infants

Procedia PDF Downloads 34
3518 B Spline Finite Element Method for Drifted Space Fractional Tempered Diffusion Equation

Authors: Ayan Chakraborty, BV. Rathish Kumar

Abstract:

Off-late many models in viscoelasticity, signal processing or anomalous diffusion equations are formulated in fractional calculus. Tempered fractional calculus is the generalization of fractional calculus and in the last few years several important partial differential equations occurring in the different field of science have been reconsidered in this term like diffusion wave equations, Schr$\ddot{o}$dinger equation and so on. In the present paper, a time-dependent tempered fractional diffusion equation of order $\gamma \in (0,1)$ with forcing function is considered. Existence, uniqueness, stability, and regularity of the solution has been proved. Crank-Nicolson discretization is used in the time direction. B spline finite element approximation is implemented. Generally, B-splines basis are useful for representing the geometry of a finite element model, interfacing a finite element analysis program. By utilizing this technique a priori space-time estimate in finite element analysis has been derived and we proved that the convergent order is $\mathcal{O}(h²+T²)$ where $h$ is the space step size and $T$ is the time. A couple of numerical examples have been presented to confirm the accuracy of theoretical results. Finally, we conclude that the studied method is useful for solving tempered fractional diffusion equations.

Keywords: B-spline finite element, error estimates, Gronwall's lemma, stability, tempered fractional

Procedia PDF Downloads 166
3517 Parenting Styles and Their Relation to Videogame Addiction

Authors: Petr Květon, Martin Jelínek

Abstract:

We try to identify the role of various aspects of parenting style in the phenomenon of videogame playing addiction. Relevant self-report questionnaires were part of a wider set of methods focused on the constructs related to videogame playing. The battery of methods was administered in school settings in paper and pencil form. The research sample consisted of 333 (166 males, 167 females) elementary and high school students at the age between 10 and 19 years (m=14.98, sd=1.77). Using stepwise regression analysis, we assessed the influence of demographic variables (gender and age) and parenting styles. Age and gender together explained 26.3% of game addiction variance (F(2,330)=58.81, p<.01). By adding four aspect of parenting styles (inconsistency, involvement, control, and warmth) another 10.2% of variance was explained (∆F(4,326)=13.09, p<.01). The significant predictor was gender of the respondent, where males scored higher on game addiction scale (B=0.70, p<.01), age (β=-0.18, p<.01), where younger children showed higher level of addiction, and parental inconsistency (β=0.30, p<.01), where the higher the inconsistency in upbringing, the more developed game playing addiction.

Keywords: gender, parenting styles, video games, addiction

Procedia PDF Downloads 334
3516 Element Content in Some Wild Agaricus and Agrocybe Taxa from Marmara Region (Turkey)

Authors: Murad Aydin Şanda, Hasan Hüseyi̇n Doğan

Abstract:

Twenty-two element contents were analyzed in five wild Agaricus and Agrocybe taxa [Agaricus bresadolanus Bohus, Agaricus essettei Bon, Agaricus xanthoderma Genev. Agrocybe paludosa (J.E. Lange) Kühner & Romagn. Ex Bon and Agrocybe praecox (Pers.) Fayod] from Marmara region of Turkey by ICP-AES equipment. The element uptake levels were observed at different amounts in each Agaricus and Agrocybe species. The highest Pb and P concentrations were determined as 16.74 and 1.501 mg.kg-1 in A. essettei and A.bresadolanus respectively. Ag, P, and Hg concentrations were determined as 30685, 1,501, and 5978 mg.kg-1 in A. bresadolanus respectively. A. essettei has highest Ni, Cu, and Mn concentrations as 37.1, 43.63 and 1476 mg.kg-1 respectively, whereas A. praecox has highest Mo, Ni and P as 0.54, 10.20 and 27.9 mg.kg-1 respectively. A. paludosa has highest Zn, Cd, and Ba concentration as 336.8, 2.26 and 571.5 mg.kg-1 respectively. The highest K concentration was found in A. xanthoderma with 5.31 mg.kg-1. According to Who and FAO critters, identified metals in Agaricus and Agrocybe genera are not harmful to People if they would be consumed.

Keywords: agaricus, element, macrofungi, Turkey

Procedia PDF Downloads 236
3515 Thermophysical Properties and Kinetic Study of Dioscorea bulbifera

Authors: Emmanuel Chinagorom Nwadike, Joseph Tagbo Nwabanne, Matthew Ndubuisi Abonyi, Onyemazu Andrew Azaka

Abstract:

This research focused on the modeling of the convective drying of aerial yam using finite element methods. The thermo-gravimetric analyzer was used to determine the thermal stability of the sample. An aerial yam sample of size 30 x 20 x 4 mm was cut with a mold designed for the purpose and dried in a convective dryer set at 4m/s fan speed and temperatures of 68.58 and 60.56°C. The volume shrinkage of the resultant dried sample was determined by immersing the sample in a toluene solution. The finite element analysis was done with PDE tools in Matlab 2015. Seven kinetic models were employed to model the drying process. The result obtained revealed three regions in the thermogravimetric analysis (TGA) profile of aerial yam. The maximum thermal degradation rates of the sample occurred at 432.7°C. The effective thermal diffusivity of the sample increased as the temperature increased from 60.56°C to 68.58°C. The finite element prediction of moisture content of aerial yam at an air temperature of 68.58°C and 60.56°C shows R² of 0.9663 and 0.9155, respectively. There was a good agreement between the finite element predicted moisture content and the measured moisture content, which is indicative of a highly reliable finite element model developed. The result also shows that the best kinetic model for the aerial yam under the given drying conditions was the Logarithmic model with a correlation coefficient of 0.9991.

Keywords: aerial yam, finite element, convective, effective, diffusivity

Procedia PDF Downloads 127
3514 The Effect of Jet Grouting on the Behavior of Strip Footing Adjacent to Slope Crest

Authors: Ahmed M. El-Tuhami, Ahmed A. Mohamed

Abstract:

This paper studies the behavior of strip footing adjacent to slope crest and the effect of jet grouting under the footing. This problem is investigated numerically in the present study. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with hardening soil model. Five nodes isoperimetric beam element is used to idealize stripe footing. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the Stripe footing distance from the slope crest. Settlement and horizontal displacement of strip footing were obtained and studied from the analyzed finite element model results. The reduction influence of jet grouting on footing displacement were studied and investigated. The results indicate that the inclusion of jet grouting under strip footing adjacent to slope crest has significant effect in improving the response of the strip footing and the slope.

Keywords: strip footing, jet grouting, slope, PLAXIS, relative distance

Procedia PDF Downloads 455
3513 A Composite Beam Element Based on Global-Local Superposition Theory for Prediction of Delamination in Composite Laminates

Authors: Charles Mota Possatti Júnior, André Schwanz de Lima, Maurício Vicente Donadon, Alfredo Rocha de Faria

Abstract:

An interlaminar damage model is combined with a beam element formulation based on global-local superposition to assess delamination in composite laminates. The variations in the mechanical properties in the laminate, generated by the presence of delamination, are calculated as a function of the displacements in the interface layers. The global-local superposition of displacement fields ensures the zig-zag behaviour of stresses and displacement, and the number of degrees of freedom (DOFs) is independent of the number of layers. The displacements and stresses are calculated as a function of DOFs commonly used in traditional beam elements. Finally, the finite element(FE) formulation is extended to handle cases of different thicknesses, and then the FE model predictions are compared with results obtained from analytical solutions and commercial finite element codes.

Keywords: delamination, global-local superposition theory, single beam element, zig-zag, interlaminar damage model

Procedia PDF Downloads 96
3512 Determination of Optimal Stress Locations in 2D–9 Noded Element in Finite Element Technique

Authors: Nishant Shrivastava, D. K. Sehgal

Abstract:

In Finite Element Technique nodal stresses are calculated through displacement as nodes. In this process, the displacement calculated at nodes is sufficiently good enough but stresses calculated at nodes are not sufficiently accurate. Therefore, the accuracy in the stress computation in FEM models based on the displacement technique is obviously matter of concern for computational time in shape optimization of engineering problems. In the present work same is focused to find out unique points within the element as well as the boundary of the element so, that good accuracy in stress computation can be achieved. Generally, major optimal stress points are located in domain of the element some points have been also located at boundary of the element where stresses are fairly accurate as compared to nodal values. Then, it is subsequently concluded that there is an existence of unique points within the element, where stresses have higher accuracy than other points in the elements. Therefore, it is main aim is to evolve a generalized procedure for the determination of the optimal stress location inside the element as well as at the boundaries of the element and verify the same with results from numerical experimentation. The results of quadratic 9 noded serendipity elements are presented and the location of distinct optimal stress points is determined inside the element, as well as at the boundaries. The theoretical results indicate various optimal stress locations are in local coordinates at origin and at a distance of 0.577 in both directions from origin. Also, at the boundaries optimal stress locations are at the midpoints of the element boundary and the locations are at a distance of 0.577 from the origin in both directions. The above findings were verified through experimentation and findings were authenticated. For numerical experimentation five engineering problems were identified and the numerical results of 9-noded element were compared to those obtained by using the same order of 25-noded quadratic Lagrangian elements, which are considered as standard. Then root mean square errors are plotted with respect to various locations within the elements as well as the boundaries and conclusions were drawn. After numerical verification it is noted that in a 9-noded element, origin and locations at a distance of 0.577 from origin in both directions are the best sampling points for the stresses. It was also noted that stresses calculated within line at boundary enclosed by 0.577 midpoints are also very good and the error found is very less. When sampling points move away from these points, then it causes line zone error to increase rapidly. Thus, it is established that there are unique points at boundary of element where stresses are accurate, which can be utilized in solving various engineering problems and are also useful in shape optimizations.

Keywords: finite elements, Lagrangian, optimal stress location, serendipity

Procedia PDF Downloads 91
3511 Prediction and Reduction of Cracking Issue in Precision Forging of Engine Valves Using Finite Element Method

Authors: Xi Yang, Bulent Chavdar, Alan Vonseggern, Taylan Altan

Abstract:

Fracture in hot precision forging of engine valves was investigated in this paper. The entire valve forging procedure was described and the possible cause of the fracture was proposed. Finite Element simulation was conducted for the forging process, with commercial Finite Element code DEFORMTM. The effects of material properties, the effect of strain rate and temperature were considered in the FE simulation. Two fracture criteria were discussed and compared, based on the accuracy and reliability of the FE simulation results. The selected criterion predicted the fracture location and shows the trend of damage increasing with good accuracy, which matches the experimental observation. Additional modification of the punch shapes was proposed to further reduce the tendency of fracture in forging. Finite Element comparison shows a great potential of such application in the mass production.

Keywords: hotforging, engine valve, fracture, tooling

Procedia PDF Downloads 256
3510 Finite Element Analysis of Reinforced Structural Walls

Authors: Mintesinot Teshome Mengsha

Abstract:

Reinforced concrete structural walls are provided in structures to decrease horizontal displacements under seismic loads. The cyclic lateral load resistance capacity of a structural wall is controlled by two parameters, the strength and the ductility; it is better to have the shear strength somewhat greater than the compression to prevent shear failure, which is brittle, sudden and of serious consequence. Due to architectural and functional reasons, small openings are provided in this important structural part. The main objective of this study is to investigate the finite element of RC structural walls with small openings subjected to cyclic load using the finite element approach. The experimental results in terms of load capacity, failure mode, crack pattern, flexural strength, shear strength, and deformation capacity.

Keywords: ABAQUS, finite element method, small openings, reinforced concrete structural walls

Procedia PDF Downloads 26
3509 Thermal-Fluid Characteristics of Heating Element in Rotary Heat Exchanger in Accordance with Fouling Phenomena

Authors: Young Mun Lee, Seon Ho Kim, Seok Min Choi, JeongJu Kim, Seungyeong Choi, Hyung Hee Cho

Abstract:

To decrease sulfur oxide in the flue gas from coal power plant, a flue gas de-sulfurization facility is operated. In the reactor, a chemical reaction occurs with a temperature change of the gas so that sulfur oxide is removed and cleaned air is emitted. In this process, temperature change induces a serious problem which is a cold erosion of stack. To solve this problem, the rotary heat exchanger is managed before the stack. In the heat exchanger, a heating element is equipped to increase a heat transfer area. Heat transfer and pressure loss is a big issue to improve a performance. In this research, thermal-fluid characteristics of the heating element are analyzed by computational fluid dynamics. Fouling simulation is also conducted to calculate a performance of heating element. Numerical analysis is performed on the situation where plugging phenomenon has already occurred and existed in the inlet region of the heating element. As the pressure of the rear part of the plugging decreases suddenly and the flow velocity becomes slower, it is found that the flow is gathered from both sides as it develops in the flow direction, and it is confirmed that the pressure difference due to plugging is increased.

Keywords: heating element, plugging, rotary heat exchanger, thermal fluid characteristics

Procedia PDF Downloads 466
3508 Stress Analysis of Hexagonal Element for Precast Concrete Pavements

Authors: J. Novak, A. Kohoutkova, V. Kristek, J. Vodicka, M. Sramek

Abstract:

While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.

Keywords: imperfection, numerical simulation, pavement, precast concrete element, reinforcement design, stress analysis

Procedia PDF Downloads 148
3507 Establishment of Reference Interval for Serum Protein Electrophoresis of Apparently Healthy Adults in Addis Ababa, Ethiopia

Authors: Demiraw Bikila, Tadesse Lejisa, Yosef Tolcha, Chala Bashea, Mehari Meles Tigist Getahun Genet Ashebir, Wossene Habtu, Feyissa Challa, Ousman Mohammed, Melkitu Kassaw, Adisu Kebede, Letebrhan G. Egzeabher, Endalkachew Befekadu, Mistire Wolde, Aster Tsegaye

Abstract:

Background: Even though several factors affect reference intervals (RIs), the company-derived values are currently in use in many laboratories worldwide. However, little or no data is available regarding serum protein RIs, mainly in resource-limited setting countries like Ethiopia. Objective: To establish a reference interval for serum protein electrophoresis of apparently healthy adults in Addis Ababa, Ethiopia. Method: A cross-sectional study was conducted on a total of 297 apparently healthy adults from April-October 2019 in four selected sub-cities (Akaki, Kirkos, Arada, Yeka) of Addis Ababa, Ethiopia. Laboratory analysis of collected samples was performed using Capillarys 2 Flex Piercing analyzer, while statistical analysis was done using SPSS version 23 and med-cal software. Mann-Whitney test was used to check Partitions. Non-parametric method of reference range establishment was performed as per CLSI guideline EP28A3C. Result: The established RIs were: Albumin 53.83-64.59%, 52.24-63.55%; Alpha-1 globulin 3.04-5.40%, 3.44-5.60%; Alpha-2 globulin 8.0-12.67%, 8.44-12.87%; and Beta-1 globulin 5.01-7.38%, 5.14-7.86%. Moreover, Albumin to globulin ratio was 1.16-1.8, 1.09-1.74 for males and females, respectively. The combined RIs for Beta-2 globulin and Gamma globulin were 2.54-4.90% and 12.40-21.66%, respectively. Conclusion: The established reference interval for serum protein fractions revealed gender-specific differences except for Beta-2 globulin and Gamma globulin.

Keywords: serum protein electrophoresis, reference interval, Addis Ababa, Ethiopia

Procedia PDF Downloads 208
3506 Effect of Mineral Additives on Improving the Geotechnical Properties of Soils in Chlef

Authors: Messaoudi Mohammed Amin

Abstract:

The reduction of available land resources and the increased cout associated with the use of hight quality materials have led to the need for local soils to be used in geotecgnical construction however, poor engineering properties of these soils pose difficulties for constructions project and need to be stabilized to improve their properties in oyher works unsuitable soils with low bearing capacity, high plasticity coupled with high insatbility are frequently encountered hense, there is a need to improve the physical and mechanical charateristics of these soils to make theme more suitable for construction this can be done by using different mechanical and chemical methods clayey soil stabilization has been practiced for quite sometime bu mixing additives, such us cement, lime and fly ash to the soil to increase its strength. The aim of this project is to study the effect of using lime, natural pozzolana or combination of both on the geotecgnical cherateristics of clayey soil. Test specimen were subjected to atterberg limits test, compaction test, box shear test and uncomfined compression test Lime or natural pozzolana was added to clayey soil at rangs of 0-8% and 0-20% respectively. In addition combinations of lime –natural pozzolana were added to clayey soil at the same ranges specimen were cured for 1-7, and 28 days after which they were tested for uncofined compression tests. Based on the experimental results, it was concluded that an important decrease of plasticity index was observed for thr samples stabilized with the combinition lime-natural pozzolana in addition, the use of the combination lime-natural pozzolana modifies the clayey soil classification according to casagrand plasiticity chart. Moreover, based on the favourable results of shear and compression strength obtained, it can be concluded that clayey soil can be successfuly stabilized by combined action of lime and natural pozzolana also this combination showed an appreciable improvement of the shear parameters. Finally, since natural pozzolana is much cheaper than lime ,the addition of natural pozzolana in lime soil mix may particulary become attractive and can result in cost reduction of construction.

Keywords: clay, soil stabilization, natural pozzolana, atterberg limits, compaction, compressive strength shear strength, curing

Procedia PDF Downloads 290
3505 Design and Creation of a BCI Videogame for Training and Measure of Sustained Attention in Children with ADHD

Authors: John E. Muñoz, Jose F. Lopez, David S. Lopez

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is a disorder that affects 1 out of 5 Colombian children, converting into a real public health problem in the country. Conventional treatments such as medication and neuropsychological therapy have been proved to be insufficient in order to decrease high incidence levels of ADHD in the principal Colombian cities. This work demonstrates a design and development of a videogame that uses a brain computer interface not only to serve as an input device but also as a tool to monitor neurophysiologic signal. The video game named “The Harvest Challenge” puts a cultural scene of a Colombian coffee grower in its context, where a player can use his/her avatar in three mini games created in order to reinforce four fundamental aspects: i) waiting ability, ii) planning ability, iii) ability to follow instructions and iv) ability to achieve objectives. The details of this collaborative designing process of the multimedia tool according to the exact clinic necessities and the description of interaction proposals are presented through the mental stages of attention and relaxation. The final videogame is presented as a tool for sustained attention training in children with ADHD using as an action mechanism the neuromodulation of Beta and Theta waves through an electrode located in the central part of the front lobe of the brain. The processing of an electroencephalographic signal is produced automatically inside the videogame allowing to generate a report of the theta/beta ratio evolution - a biological marker, which has been demonstrated to be a sufficient measure to discriminate of children with deficit and without.

Keywords: BCI, neuromodulation, ADHD, videogame, neurofeedback, theta/beta ratio

Procedia PDF Downloads 349
3504 Characterization of Stabilized Earth in the Construction Field

Authors: Sihem Chaibeddra, Fatoum Kharchi

Abstract:

This study deals with the characterization of stabilized earth in the field of construction from the behavior under changes in conservation conditions that may occur during the lifetime of the material, namely, the exposure to high humidity and temperature variations. These two parameters are involved increasingly, because of climate changes that are confronting earth-based constructions to conditions for which they were not originally designed. These exposure conditions may affect the long-term behavior of the material and the entire structure. A cement treatment was adopted for stabilizing the earth with dosages ranging from 4, 6, 8 to 10%. The influence of addition percentage was analyzed in this context based on laboratory tests measuring the evolution of compressive strength, rate of absorption and shrinkage, and finally thermal conductivity. It was shown that the behaviour was dependent on the ambient conditions which influence the action of the binder. Temperate cure has proved beneficial for the material as the cement content increased. Moisture has less affected the compressive strength with increasing the cement content. The absorption was reduced with the increase of cement dosage. Regarding the variation of shrinkage, cement assays have presented an optimum value beyond which the addition of further quantities was less advantageous. The thermal conductivity on the other hand, increased with increasing cement content, which decreased the insulating properties of the material.

Keywords: behavior, characterization, construction, earth, stabilization

Procedia PDF Downloads 225
3503 Nickel Catalyst Promoted with Lanthanum- Alumina for Dry Reforming of Methane

Authors: Radia Imane Fertout

Abstract:

In recent years, the reaction of dry reforming of methane (DRM) has attracted much attention due to its environmental and industrial importance. Various catalysts, including Ni-based catalysts, have been investigated for the DRM. Doping Ni/Al₂O₃ by lanthanum and alkaline earth element may strongly influence solid-state reaction and increases the stability of catalysts due to the lower density and high basicity of these oxides. The effect of SrO on the activity and stability of Ni/Al₂O₃-La₂O₃ in dry reforming of methane was investigated. These catalysts have been prepared with the impregnation method, calcined in air at 450 and 650°C, then characterized by BET surface area, X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques and tested in DRM. The results showed that the addition of strontium to Ni/Al2O₃-La₂O₃ decreased the specific surface area. XRD results revealed the presence of different phases of Al₂O₃, La(OH)₃, La₂O₂CO₃, and SrCO₃. The catalytic evaluation results showed that adding SrO increased the catalytic activity and stability, that explained by the strong basicity of strontium. SEM analysis after the reaction indicates the formation of carbon over the spent catalyst and that the addition of strontium stabilized the surface of the catalyst.

Keywords: dry reforming of methane, Ni/Al₂O₃-La₂O₃ catalyst, strontium, nickel

Procedia PDF Downloads 60