Search results for: accidents predictions
966 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra
Authors: Armin Rahimi
Abstract:
The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.Keywords: undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution
Procedia PDF Downloads 355965 Some Accuracy Related Aspects in Two-Fluid Hydrodynamic Sub-Grid Modeling of Gas-Solid Riser Flows
Authors: Joseph Mouallem, Seyed Reza Amini Niaki, Norman Chavez-Cussy, Christian Costa Milioli, Fernando Eduardo Milioli
Abstract:
Sub-grid closures for filtered two-fluid models (fTFM) useful in large scale simulations (LSS) of riser flows can be derived from highly resolved simulations (HRS) with microscopic two-fluid modeling (mTFM). Accurate sub-grid closures require accurate mTFM formulations as well as accurate correlation of relevant filtered parameters to suitable independent variables. This article deals with both of those issues. The accuracy of mTFM is touched by assessing the impact of gas sub-grid turbulence over HRS filtered predictions. A gas turbulence alike effect is artificially inserted by means of a stochastic forcing procedure implemented in the physical space over the momentum conservation equation of the gas phase. The correlation issue is touched by introducing a three-filtered variable correlation analysis (three-marker analysis) performed under a variety of different macro-scale conditions typical or risers. While the more elaborated correlation procedure clearly improved accuracy, accounting for gas sub-grid turbulence had no significant impact over predictions.Keywords: fluidization, gas-particle flow, two-fluid model, sub-grid models, filtered closures
Procedia PDF Downloads 123964 A Predictive Analytics Approach to Project Management: Reducing Project Failures in Web and Software Development Projects
Authors: Tazeen Fatima
Abstract:
Use of project management in web & software development projects is very significant. It has been observed that even with the application of effective project management, projects usually do not complete their lifecycle and fail. To minimize these failures, key performance indicators have been introduced in previous studies to counter project failures. However, there are always gaps and problems in the KPIs identified. Despite of incessant efforts at technical and managerial levels, projects still fail. There is no substantial approach to identify and avoid these failures in the very beginning of the project lifecycle. In this study, we aim to answer these research problems by analyzing the concept of predictive analytics which is a specialized technology and is very easy to use in this era of computation. Project organizations can use data gathering, compute power, and modern tools to render efficient Predictions. The research aims to identify such a predictive analytics approach. The core objective of the study was to reduce failures and introduce effective implementation of project management principles. Existing predictive analytics methodologies, tools and solution providers were also analyzed. Relevant data was gathered from projects and was analyzed via predictive techniques to make predictions well advance in time to render effective project management in web & software development industry.Keywords: project management, predictive analytics, predictive analytics methodology, project failures
Procedia PDF Downloads 347963 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 111962 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting
Procedia PDF Downloads 384961 Modeling of Ductile Fracture Using Stress-Modified Critical Strain Criterion for Typical Pressure Vessel Steel
Authors: Carlos Cuenca, Diego Sarzosa
Abstract:
Ductile fracture occurs by the mechanism of void nucleation, void growth and coalescence. Potential sites for initiation are second phase particles or non-metallic inclusions. Modelling of ductile damage at the microscopic level is very difficult and complex task for engineers. Therefore, conservative predictions of ductile failure using simple models are necessary during the design and optimization of critical structures like pressure vessels and pipelines. Nowadays, it is well known that the initiation phase is strongly influenced by the stress triaxiality and plastic deformation at the microscopic level. Thus, a simple model used to study the ductile failure under multiaxial stress condition is the Stress Modified Critical Strain (SMCS) approach. Ductile rupture has been study for a structural steel under different stress triaxiality conditions using the SMCS method. Experimental tests are carried out to characterize the relation between stress triaxiality and equivalent plastic strain by notched round bars. After calibration of the plasticity and damage properties, predictions are made for low constraint bending specimens with and without side grooves. Stress/strain fields evolution are compared between the different geometries. Advantages and disadvantages of the SMCS methodology are discussed.Keywords: damage, SMSC, SEB, steel, failure
Procedia PDF Downloads 297960 Mobility Management for Pedestrian Accident Predictability and Mitigation Strategies Using Multiple
Authors: Oscar Norman Nekesa, Yoshitaka Kajita
Abstract:
Tom Mboya Street is a vital urban corridor within the spectrum of Nairobi city, it experiences high volumes of pedestrian and vehicular traffic. Despite past intervention measures to lessen this catastrophe, rates have remained high. This highlights significant safety concerns that need urgent attention. This study investigates the correlation and pedestrian accident predictability with significant independent variables using multiple linear regression to model to develop effective mobility management strategies for accident mitigation. The methodology involves collecting and analyzing data on pedestrian accidents and various related independent variables. Data sources include the National Transport and Safety Authority (NTSA), Kenya National Bureau of Statistics, and Nairobi City County records, covering five years. This study aims to investigate that traffic volumes (pedestrian and vehicle), Vehicular speed, human factors, illegal parking, policy issues, urban-land use, built environment, traffic signals conditions, inadequate lighting, and insufficient traffic control measures significantly have predictability with the rate of pedestrian accidents. Explanatory variables related to road design and geometry are significant in predictor models for the Tom Mboya Road link but less influential in junction along the 5 km stretch road models. The most impactful variable across all models was vehicular traffic flow. The study recommends infrastructural improvements, enhanced enforcement, and public awareness campaigns to reduce accidents and improve urban mobility. These insights can inform policy-making and urban planning to enhance pedestrian safety along the dense packed Tom Mboya Street and similar urban settings. The findings will inform evidence-based interventions to enhance pedestrian safety and improve urban mobility.Keywords: multiple linear regression, urban mobility, traffic management, Nairobi, Tom Mboya street, infrastructure conditions., pedestrian safety, correlation and prediction
Procedia PDF Downloads 24959 Public Behavior When Encountered with a Road Traffic Accident
Authors: H. N. S. Silva, S. N. Silva
Abstract:
Introduction: The latest WHO data published in 2014 states that Sri Lanka has reached 2,773 of total deaths and over 14000 individuals’ sustained injuries due to RTAs each year. It was noticed in previous studies that policemen, three wheel drivers and also pedestrians were the first to respond to RTAs but the victim’s condition was aggravated due to unskilled attempts made by the responders while management of the victim’s wounds, moving and positioning of the victims and also mainly while transportation of the victims. Objective: To observe the practices of the urban public in Sri Lanka who are encountered with RTAs. Methods: A qualitative study was done to analyze public behavior seen on video recordings of scenes of accidents purposefully selected from social media, news websites, YouTube and Google. Results: The results showed that all individuals who tried to help during the RTA were middle aged men, who were mainly pedestrians, motorcyclists and policemen during that moment. Vast majority were very keen to actively help the victims to get to hospital as soon as possible and actively participated in providing 'aid'. But main problem was the first aid attempts were disorganized and uncoordinated. Even though all individuals knew how to control external bleeding, none of them was aware of spinal prevention techniques or management of limb injuries. Most of the transportation methods and transfer techniques used were inappropriate and more injury prone. Conclusions: The public actively engages in providing aid despite their inappropriate practices in giving first aid.Keywords: encountered, pedestrians, road traffic accidents, urban public
Procedia PDF Downloads 286958 Compression Index Estimation by Water Content and Liquid Limit and Void Ratio Using Statistics Method
Authors: Lizhou Chen, Abdelhamid Belgaid, Assem Elsayed, Xiaoming Yang
Abstract:
Compression index is essential in foundation settlement calculation. The traditional method for determining compression index is consolidation test which is expensive and time consuming. Many researchers have used regression methods to develop empirical equations for predicting compression index from soil properties. Based on a large number of compression index data collected from consolidation tests, the accuracy of some popularly empirical equations were assessed. It was found that primary compression index is significantly overestimated in some equations while it is underestimated in others. The sensitivity analyses of soil parameters including water content, liquid limit and void ratio were performed. The results indicate that the compression index obtained from void ratio is most accurate. The ANOVA (analysis of variance) demonstrates that the equations with multiple soil parameters cannot provide better predictions than the equations with single soil parameter. In other words, it is not necessary to develop the relationships between compression index and multiple soil parameters. Meanwhile, it was noted that secondary compression index is approximately 0.7-5.0% of primary compression index with an average of 2.0%. In the end, the proposed prediction equations using power regression technique were provided that can provide more accurate predictions than those from existing equations.Keywords: compression index, clay, settlement, consolidation, secondary compression index, soil parameter
Procedia PDF Downloads 162957 Contributing Factors Affecting the Safety in Construction Sites of Bangladesh
Authors: Farzana Rahman, Mohammed Hossain Ezaz, Dipak Halder, Proshanta Mondal
Abstract:
Site safety is an important function regardless of project size. A key goal, which must be met for a successful project, is to finish the project with a good safety record. Construction safety is an important issue in all over the world. Today, developed countries strictly follow the safety procedure to avoid any hazard, accident or fatality. However, for a least developed country like Bangladesh, still accidents and fatalities are quite high due to lack of safety management. With the increased volume of construction work in Bangladesh, the need for proper attention in safety issues has become essential for human, economic and other consideration. Recently lots of accidents are taking place in construction sites of Bangladesh causing severe injury to death to the workers and pedestrians. There are a number of reasons/factors that these high numbers are widespread to the construction industry that are not found in most other businesses. The objective of this research work is to identify and explore the various factor that affect the construction site safety in Bangladesh. A questionnaire surveys was conducted to the reputed construction companies of Bangladesh to examine the present safety situation in construction sites. Nine factors were selected for the survey. The finding shows that 78% of organizations’ from the respondents are conscious about the safety procedure and they usually provide safety measures for the workers. Promotion of safety measures at the working site results in a better working environment, higher productivity and greater contentment among the workers.Keywords: construction sites, fatalities, safety issues, safety situation
Procedia PDF Downloads 569956 Scoring Approach to Identify High-Risk Corridors for Winter Safety Measures in the Iranian Roads Network
Authors: M. Mokhber, J. Hedayati
Abstract:
From the managerial perspective, it is important to devise an operational plan based on top priorities due to limited resources, diversity of measures and high costs needed to improve safety in infrastructure. Dealing with the high-risk corridors across Iran, this study prioritized the corridors according to statistical data on accidents involving fatalities, injury or damage over three consecutive years. In collaboration with the Iranian Police Department, data were collected and modified. Then, the prioritization criteria were specified based on the expertise opinions and international standards. In this study, the prioritization criteria included accident severity and accident density. Finally, the criteria were standardized and weighted (equal weights) to score each high-risk corridor. The prioritization phase involved the scoring and weighting procedure. The high-risk corridors were divided into twelve groups out of 50. The results of data analysis for a three-year span suggested that the first three groups (150 corridors) along with a quarter of Iranian road network length account for nearly 60% of traffic accidents. In the next step, according to variables including weather conditions particular roads for the purpose of winter safety measures were extracted from the abovementioned categories. According to the results ranking, 9 roads with the overall length of about 1000 Km of high-risk corridors are considered as preferences of safety measures.Keywords: high-risk corridors, HRCs, road safety rating, road scoring, winter safety measures
Procedia PDF Downloads 178955 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation
Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke
Abstract:
Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform
Procedia PDF Downloads 307954 Association of Extremity Injuries with Safety Gear and Clothing of Hospitalized Motorcycle Riders: A Prospective Study
Authors: Sanjaya N. Munasinghe, R. Gnanasekeram, Dimuthu Tennakoon
Abstract:
During the last few years there has been a dramatic increase in the number of motorcyclists in Sri Lankan roads and thus an increase of motorcycle accidents (MCAs) with a heavy death and casualty toll. Extremity injuries due to MCAs cause a heavy burden on government hospitals. However, data on MCA injuries are limited. This study tries to determine the relationship between extremity injuries with protective gears and clothing motorcycle riders were wearing at the time of the accident. Data were collected from 410 motorcycle riders and passengers involved with MCAs and admitted to orthopedic and emergency observation wards in Teaching Hospital Kurunegala with extremity injuries between 1st February 2015 and 31st July 2015 using an interviewer administered questioner. Data were analyzed using SPSS version 17.0. Distal radial fracture is the most common upper extremity injury (12%), and Tibial fracture is the most common and severe lower extremity injury (23%). Very few participants were wearing safety gloves (2%) and jackets (10%). Most of the participants were wearing slippers (66%), short sleeved upper clothing (96%) and light cloth trousers (49%). According to Chi-square test associations were found between footwear and foot injuries (p-value - 0.001, Cramer's v-value - 0.203) and safety jacket and upper extremity injuries (p-value - 0.002, Cramer's v-value - 0.177). The results indicate that using safety gear can minimize the number of injuries in MCA victims. Thus it is necessary to ensure that motorcycle riders and pillion riders use proper safety gear.Keywords: extremity injuries, fractures, motorcycle accidents, safety gear
Procedia PDF Downloads 294953 Safety Climate Assessment and Its Impact on the Productivity of Construction Enterprises
Authors: Krzysztof J. Czarnocki, F. Silveira, E. Czarnocka, K. Szaniawska
Abstract:
Research background: Problems related to the occupational health and decreasing level of safety occur commonly in the construction industry. Important factor in the occupational safety in construction industry is scaffold use. All scaffolds used in construction, renovation, and demolition shall be erected, dismantled and maintained in accordance with safety procedure. Increasing demand for new construction projects unfortunately still is linked to high level of occupational accidents. Therefore, it is crucial to implement concrete actions while dealing with scaffolds and risk assessment in construction industry, the way on doing assessment and liability of assessment is critical for both construction workers and regulatory framework. Unfortunately, professionals, who tend to rely heavily on their own experience and knowledge when taking decisions regarding risk assessment, may show lack of reliability in checking the results of decisions taken. Purpose of the article: The aim was to indicate crucial parameters that could be modeling with Risk Assessment Model (RAM) use for improving both building enterprise productivity and/or developing potential and safety climate. The developed RAM could be a benefit for predicting high-risk construction activities and thus preventing accidents occurred based on a set of historical accident data. Methodology/Methods: A RAM has been developed for assessing risk levels as various construction process stages with various work trades impacting different spheres of enterprise activity. This project includes research carried out by teams of researchers on over 60 construction sites in Poland and Portugal, under which over 450 individual research cycles were carried out. The conducted research trials included variable conditions of employee exposure to harmful physical and chemical factors, variable levels of stress of employees and differences in behaviors and habits of staff. Genetic modeling tool has been used for developing the RAM. Findings and value added: Common types of trades, accidents, and accident causes have been explored, in addition to suitable risk assessment methods and criteria. We have found that the initial worker stress level is more direct predictor for developing the unsafe chain leading to the accident rather than the workload, or concentration of harmful factors at the workplace or even training frequency and management involvement.Keywords: safety climate, occupational health, civil engineering, productivity
Procedia PDF Downloads 318952 Automated Monitoring System to Support Investigation of Contributing Factors of Work-Related Disorders and Accidents
Authors: Erika R. Chambriard, Sandro C. Izidoro, Davidson P. Mendes, Douglas E. V. Pires
Abstract:
Work-related illnesses and disorders have been a constant aspect of work. Although their nature has changed over time, from musculoskeletal disorders to illnesses related to psychosocial aspects of work, its impact on the life of workers remains significant. Despite significant efforts worldwide to protect workers, the disparity between changes in work legislation and actual benefit for workers’ health has been creating a significant economic burden for social security and health systems around the world. In this context, this study aims to propose, test and validate a modular prototype that allows for work environmental aspects to be assessed, monitored and better controlled. The main focus is also to provide a historical record of working conditions and the means for workers to obtain comprehensible and useful information regarding their work environment and legal limits of occupational exposure to different types of environmental variables, as means to improve prevention of work-related accidents and disorders. We show the developed prototype provides useful and accurate information regarding the work environmental conditions, validating them with standard occupational hygiene equipment. We believe the proposed prototype is a cost-effective and adequate approach to work environment monitoring that could help elucidate the links between work and occupational illnesses, and that different industry sectors, as well as developing countries, could benefit from its capabilities.Keywords: Arduino prototyping, occupational health and hygiene, work environment, work-related disorders prevention
Procedia PDF Downloads 126951 Methodology: A Review in Modelling and Predictability of Embankment in Soft Ground
Authors: Bhim Kumar Dahal
Abstract:
Transportation network development in the developing country is in rapid pace. The majority of the network belongs to railway and expressway which passes through diverse topography, landform and geological conditions despite the avoidance principle during route selection. Construction of such networks demand many low to high embankment which required improvement in the foundation soil. This paper is mainly focused on the various advanced ground improvement techniques used to improve the soft soil, modelling approach and its predictability for embankments construction. The ground improvement techniques can be broadly classified in to three groups i.e. densification group, drainage and consolidation group and reinforcement group which are discussed with some case studies. Various methods were used in modelling of the embankments from simple 1-dimensional to complex 3-dimensional model using variety of constitutive models. However, the reliability of the predictions is not found systematically improved with the level of sophistication. And sometimes the predictions are deviated more than 60% to the monitored value besides using same level of erudition. This deviation is found mainly due to the selection of constitutive model, assumptions made during different stages, deviation in the selection of model parameters and simplification during physical modelling of the ground condition. This deviation can be reduced by using optimization process, optimization tools and sensitivity analysis of the model parameters which will guide to select the appropriate model parameters.Keywords: cement, improvement, physical properties, strength
Procedia PDF Downloads 174950 An Integrated Approach for Risk Management of Transportation of HAZMAT: Use of Quality Function Deployment and Risk Assessment
Authors: Guldana Zhigerbayeva, Ming Yang
Abstract:
Transportation of hazardous materials (HAZMAT) is inevitable in the process industries. The statistics show a significant number of accidents has occurred during the transportation of HAZMAT. This makes risk management of HAZMAT transportation an important topic. The tree-based methods including fault-trees, event-trees and cause-consequence analysis, and Bayesian network, have been applied to risk management of HAZMAT transportation. However, there is limited work on the development of a systematic approach. The existing approaches fail to build up the linkages between the regulatory requirements and the safety measures development. The analysis of historical data from the past accidents’ report databases would limit our focus on the specific incidents and their specific causes. Thus, we may overlook some essential elements in risk management, including regulatory compliance, field expert opinions, and suggestions. A systematic approach is needed to translate the regulatory requirements of HAZMAT transportation into specified safety measures (both technical and administrative) to support the risk management process. This study aims to first adapt the House of Quality (HoQ) to House of Safety (HoS) and proposes a new approach- Safety Function Deployment (SFD). The results of SFD will be used in a multi-criteria decision-support system to develop find an optimal route for HazMats transportation. The proposed approach will be demonstrated through a hypothetical transportation case in Kazakhstan.Keywords: hazardous materials, risk assessment, risk management, quality function deployment
Procedia PDF Downloads 141949 Competitivity in Procurement Multi-Unit Discrete Clock Auctions: An Experimental Investigation
Authors: Despina Yiakoumi, Agathe Rouaix
Abstract:
Laboratory experiments were run to investigate the impact of different design characteristics of the auctions, which have been implemented to procure capacity in the UK’s reformed electricity markets. The experiment studies competition among bidders in procurement multi-unit discrete descending clock auctions under different feedback policies and pricing rules. Theory indicates that feedback policy in combination with the two common pricing rules; last-accepted bid (LAB) and first-rejected bid (FRB), could affect significantly the auction outcome. Two information feedback policies regarding the bidding prices of the participants are considered; with feedback and without feedback. With feedback, after each round participants are informed of the number of items still in the auction and without feedback, after each round participants have no information about the aggregate supply. Under LAB, winning bidders receive the amount of the highest successful bid and under the FRB the winning bidders receive the lowest unsuccessful bid. Based on the theoretical predictions of the alternative auction designs, it was decided to run three treatments. First treatment considers LAB with feedback; second treatment studies LAB without feedback; third treatment investigates FRB without feedback. Theoretical predictions of the game showed that under FRB, the alternative feedback policies are indifferent to the auction outcome. Preliminary results indicate that LAB with feedback and FRB without feedback achieve on average higher clearing prices in comparison to the LAB treatment without feedback. However, the clearing prices under LAB with feedback and FRB without feedback are on average lower compared to the theoretical predictions. Although under LAB without feedback theory predicts the clearing price will drop to the competitive equilibrium, experimental results indicate that participants could still engage in cooperative behavior and drive up the price of the auction. It is showed, both theoretically and experimentally, that the pricing rules and the feedback policy, affect the bidding competitiveness of the auction by providing opportunities to participants to engage in cooperative behavior and exercise market power. LAB without feedback seems to be less vulnerable to market power opportunities compared to the alternative auction designs. This could be an argument for the use of LAB pricing rule in combination with limited feedback in the UK capacity market in an attempt to improve affordability for consumers.Keywords: descending clock auctions, experiments, feedback policy, market design, multi-unit auctions, pricing rules, procurement auctions
Procedia PDF Downloads 298948 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia
Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany
Abstract:
In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities
Procedia PDF Downloads 73947 Modelling Fluidization by Data-Based Recurrence Computational Fluid Dynamics
Authors: Varun Dongre, Stefan Pirker, Stefan Heinrich
Abstract:
Over the last decades, the numerical modelling of fluidized bed processes has become feasible even for industrial processes. Commonly, continuous two-fluid models are applied to describe large-scale fluidization. In order to allow for coarse grids novel two-fluid models account for unresolved sub-grid heterogeneities. However, computational efforts remain high – in the order of several hours of compute-time for a few seconds of real-time – thus preventing the representation of long-term phenomena such as heating or particle conversion processes. In order to overcome this limitation, data-based recurrence computational fluid dynamics (rCFD) has been put forward in recent years. rCFD can be regarded as a data-based method that relies on the numerical predictions of a conventional short-term simulation. This data is stored in a database and then used by rCFD to efficiently time-extrapolate the flow behavior in high spatial resolution. This study will compare the numerical predictions of rCFD simulations with those of corresponding full CFD reference simulations for lab-scale and pilot-scale fluidized beds. In assessing the predictive capabilities of rCFD simulations, we focus on solid mixing and secondary gas holdup. We observed that predictions made by rCFD simulations are highly sensitive to numerical parameters such as diffusivity associated with face swaps. We achieved a computational speed-up of four orders of magnitude (10,000 time faster than classical TFM simulation) eventually allowing for real-time simulations of fluidized beds. In the next step, we apply the checkerboarding technique by introducing gas tracers subjected to convection and diffusion. We then analyze the concentration profiles by observing mixing, transport of gas tracers, insights about the convective and diffusive pattern of the gas tracers, and further towards heat and mass transfer methods. Finally, we run rCFD simulations and calibrate them with numerical and physical parameters compared with convectional Two-fluid model (full CFD) simulation. As a result, this study gives a clear indication of the applicability, predictive capabilities, and existing limitations of rCFD in the realm of fluidization modelling.Keywords: multiphase flow, recurrence CFD, two-fluid model, industrial processes
Procedia PDF Downloads 75946 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging
Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason
Abstract:
Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia
Procedia PDF Downloads 274945 Management of Fitness-For-Duty for Human Error Prevention in Nuclear Power Plants
Authors: Hyeon-Kyo Lim, Tong-Il Jang, Yong-Hee Lee
Abstract:
For the past several decades, not a few researchers have warned that even a trivial human error may result in unexpected accidents, especially in Nuclear Power Plants. To prevent accidents in Nuclear Power Plants, it is quite indispensable to make any factors under the effective control that may raise the possibility of human errors for accident prevention. This study aimed to develop a risk management program, especially in the sense that guaranteeing Fitness-for-Duty (FFD) of human beings working in Nuclear Power Plants. Throughout a literal survey, it was found that work stress and fatigue are major psychophysical factors requiring sophisticated management. A set of major management factors related to work stress and fatigue was through repetitive literal surveys and classified into several categories. To maintain the fitness of human workers, a 4-level – individual worker, team, staff within plants, and external professional - approach was adopted for FFD management program. Moreover, the program was arranged to envelop the whole employment cycle from selection and screening of workers, job allocation, and job rotation. Also, a managerial care program was introduced for employee assistance based on the concept of Employee Assistance Program (EAP). The developed program was reviewed with repetition by ex-operators in nuclear power plants, and assessed in the affirmative. As a whole, responses implied additional treatment to guarantee high performance of human workers not only in normal operations but also in emergency situations. Consequently, the program is under administrative modification for practical application.Keywords: fitness-for-duty (FFD), human error, work stress, fatigue, Employee-Assistance-Program (EAP)
Procedia PDF Downloads 302944 An Improvement of ComiR Algorithm for MicroRNA Target Prediction by Exploiting Coding Region Sequences of mRNAs
Authors: Giorgio Bertolazzi, Panayiotis Benos, Michele Tumminello, Claudia Coronnello
Abstract:
MicroRNAs are small non-coding RNAs that post-transcriptionally regulate the expression levels of messenger RNAs. MicroRNA regulation activity depends on the recognition of binding sites located on mRNA molecules. ComiR (Combinatorial miRNA targeting) is a user friendly web tool realized to predict the targets of a set of microRNAs, starting from their expression profile. ComiR incorporates miRNA expression in a thermodynamic binding model, and it associates each gene with the probability of being a target of a set of miRNAs. ComiR algorithms were trained with the information regarding binding sites in the 3’UTR region, by using a reliable dataset containing the targets of endogenously expressed microRNA in D. melanogaster S2 cells. This dataset was obtained by comparing the results from two different experimental approaches, i.e., inhibition, and immunoprecipitation of the AGO1 protein; this protein is a component of the microRNA induced silencing complex. In this work, we tested whether including coding region binding sites in the ComiR algorithm improves the performance of the tool in predicting microRNA targets. We focused the analysis on the D. melanogaster species and updated the ComiR underlying database with the currently available releases of mRNA and microRNA sequences. As a result, we find that the ComiR algorithm trained with the information related to the coding regions is more efficient in predicting the microRNA targets, with respect to the algorithm trained with 3’utr information. On the other hand, we show that 3’utr based predictions can be seen as complementary to the coding region based predictions, which suggests that both predictions, from 3'UTR and coding regions, should be considered in a comprehensive analysis. Furthermore, we observed that the lists of targets obtained by analyzing data from one experimental approach only, that is, inhibition or immunoprecipitation of AGO1, are not reliable enough to test the performance of our microRNA target prediction algorithm. Further analysis will be conducted to investigate the effectiveness of the tool with data from other species, provided that validated datasets, as obtained from the comparison of RISC proteins inhibition and immunoprecipitation experiments, will be available for the same samples. Finally, we propose to upgrade the existing ComiR web-tool by including the coding region based trained model, available together with the 3’UTR based one.Keywords: AGO1, coding region, Drosophila melanogaster, microRNA target prediction
Procedia PDF Downloads 451943 Rank-Based Chain-Mode Ensemble for Binary Classification
Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu
Abstract:
In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble
Procedia PDF Downloads 137942 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables
Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner
Abstract:
High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line
Procedia PDF Downloads 173941 The Human Process of Trust in Automated Decisions and Algorithmic Explainability as a Fundamental Right in the Exercise of Brazilian Citizenship
Authors: Paloma Mendes Saldanha
Abstract:
Access to information is a prerequisite for democracy while also guiding the material construction of fundamental rights. The exercise of citizenship requires knowing, understanding, questioning, advocating for, and securing rights and responsibilities. In other words, it goes beyond mere active electoral participation and materializes through awareness and the struggle for rights and responsibilities in the various spaces occupied by the population in their daily lives. In times of hyper-cultural connectivity, active citizenship is shaped through ethical trust processes, most often established between humans and algorithms. Automated decisions, so prevalent in various everyday situations, such as purchase preference predictions, virtual voice assistants, reduction of accidents in autonomous vehicles, content removal, resume selection, etc., have already found their place as a normalized discourse that sometimes does not reveal or make clear what violations of fundamental rights may occur when algorithmic explainability is lacking. In other words, technological and market development promotes a normalization for the use of automated decisions while silencing possible restrictions and/or breaches of rights through a culturally modeled, unethical, and unexplained trust process, which hinders the possibility of the right to a healthy, transparent, and complete exercise of citizenship. In this context, the article aims to identify the violations caused by the absence of algorithmic explainability in the exercise of citizenship through the construction of an unethical and silent trust process between humans and algorithms in automated decisions. As a result, it is expected to find violations of constitutionally protected rights such as privacy, data protection, and transparency, as well as the stipulation of algorithmic explainability as a fundamental right in the exercise of Brazilian citizenship in the era of virtualization, facing a threefold foundation called trust: culture, rules, and systems. To do so, the author will use a bibliographic review in the legal and information technology fields, as well as the analysis of legal and official documents, including national documents such as the Brazilian Federal Constitution, as well as international guidelines and resolutions that address the topic in a specific and necessary manner for appropriate regulation based on a sustainable trust process for a hyperconnected world.Keywords: artificial intelligence, ethics, citizenship, trust
Procedia PDF Downloads 64940 Physicochemical Characterization of Coastal Aerosols over the Mediterranean Comparison with Weather Research and Forecasting-Chem Simulations
Authors: Stephane Laussac, Jacques Piazzola, Gilles Tedeschi
Abstract:
Estimation of the impact of atmospheric aerosols on the climate evolution is an important scientific challenge. One of a major source of particles is constituted by the oceans through the generation of sea-spray aerosols. In coastal areas, marine aerosols can affect air quality through their ability to interact chemically and physically with other aerosol species and gases. The integration of accurate sea-spray emission terms in modeling studies is then required. However, it was found that sea-spray concentrations are not represented with the necessary accuracy in some situations, more particularly at short fetch. In this study, the WRF-Chem model was implemented on a North-Western Mediterranean coastal region. WRF-Chem is the Weather Research and Forecasting (WRF) model online-coupled with chemistry for investigation of regional-scale air quality which simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. One of the objectives was to test the ability of the WRF-Chem model to represent the fine details of the coastal geography to provide accurate predictions of sea spray evolution for different fetches and the anthropogenic aerosols. To assess the performance of the model, a comparison between the model predictions using a local emission inventory and the physicochemical analysis of aerosol concentrations measured for different wind direction on the island of Porquerolles located 10 km south of the French Riviera is proposed.Keywords: sea-spray aerosols, coastal areas, sea-spray concentrations, short fetch, WRF-Chem model
Procedia PDF Downloads 195939 Improving the Safety Performance of Workers by Assessing the Impact of Safety Culture on Workers’ Safety Behaviour in Nigeria Oil and Gas Industry: A Pilot Study in the Niger Delta Region
Authors: Efua Ehiaguina, Haruna Moda
Abstract:
Interest in the development of appropriate safety culture in the oil and gas industry has taken centre stage among stakeholders in the industry. Human behaviour has been identified as a major contributor to occupational accidents, where abnormal activities associated with safety management are taken as normal behaviour. Poor safety culture is one of the major factors that influence employee’s safety behaviour at work, which may consequently result in injuries and accidents and strengthening such a culture can improve workers safety performance. Nigeria oil and gas industry has contributed to the growth and development of the country in diverse ways. However, in terms of safety and health of workers, this industry is a dangerous place to work as workers are often exposed to occupational safety and health hazard. To ascertain the impact of employees’ safety and how it impacts health and safety compliance within the local industry, online safety culture survey targeting frontline workers within the industry was administered covering major subjects that include; perception of management commitment and style of leadership; safety communication method and its resultant impact on employees’ behaviour; employee safety commitment and training needs. The preliminary result revealed that 54% of the participants feel that there is a lack of motivation from the management to work safely. In addition, 55% of participants revealed that employers place more emphasis on work delivery over employee’s safety on the installation. It is expected that the study outcome will provide measures aimed at strengthening and sustaining safety culture in the Nigerian oil and gas industry.Keywords: oil and gas safety, safety behaviour, safety culture, safety compliance
Procedia PDF Downloads 143938 Rear Seat Belt Use in Developing Countries: A Case Study from the United Arab Emirates
Authors: Salaheddine Bendak, Sara S. Alnaqbi
Abstract:
The seat belt is a vital tool in improving traffic safety conditions and minimising injuries due to traffic accidents. Most developing countries are facing a big problems associated with the human and financial losses due to traffic accidents. One way to minimise these losses is the use of seat belts by passengers both in the front and rear seats of a vehicle; however, at the same time, close to nothing is known about the rates of seat belt utilisation among rear seat passengers in many developing countries. Therefore, there is a need to estimate these rates in order to know the extent of this problem and how people interact with traffic safety measures like seat belts and find demographic characteristics that contribute to wearing or non-wearing of seat belts with the aim of finding solutions to improve wearing rates. In this paper, an observational study was done to gather data on restraints use in motor vehicle rear seats in eight observational stations in a rapidly developing country, the United Arab Emirates (UAE), and estimate a use rate for the whole country. Also, a questionnaire was used in order to study demographic characteristics affecting the wearing of seatbelts in rear seats. Results of the observational study showed that the overall wearing/usage rate was 12.3%, which is considered very low when compared to other countries. Survey results show that single, male, less educated passengers from Arab and South Asian backgrounds use seat belts reportedly less than others. Finally, solutions are put forward to improve this wearing rate based on the results of this study.Keywords: Seat belts, traffic crashes, United Arab Emirates, rear seats
Procedia PDF Downloads 250937 Reducing Road Traffic Accident: Rapid Evidence Synthesis for Low and Middle Income Countries
Authors: Tesfaye Dagne, Dagmawit Solomon, Firmaye Bogale, Yosef Gebreyohannes, Samson Mideksa, Mamuye Hadis, Desalegn Ararso, Ermias Woldie, Tsegaye Getachew, Sabit Ababor, Zelalem Kebede
Abstract:
Globally, road traffic accident (RTA) is causing millions of deaths and injuries every year. It is one of the leading causes of death among people of all age groups and the problem is worse among young reproductive age group. Moreover the problem is increasing with an increasing number of vehicles. The majority of the problem happen in low and middle income countries (LMIC), even if the number of vehicles in these countries is low compared to their population. So, the objective of this paper is to summarize the best available evidence on interventions that can reduce road traffic accidents in low and middle income countries (LMIC). Method: A rapid evidence synthesis approach adapted from the SURE Rapid Response Service was applied to search, appraise and summarize the best available evidence on effective intervention in reducing road traffic injury. To answer the question under review, we searched for relevant studies from databases including PubMed, the Cochrane Library, TRANSPORT, Health system evidence, Epistemonikos, and SUPPORT summary. The following key terms were used for searching: Road traffic accident, RTA, Injury, Reduc*, Prevent*, Minimiz*, “Low and middle-income country”, LMIC. We found 18 articles through a search of different databases mentioned above. After screening for the titles and abstracts of the articles, four of them which satisfy the inclusion criteria were included in the final review. Then we appraised and graded the methodological quality of systematic reviews that are deemed to be highly relevant using AMSTAR. Finding: The identified interventions to reduce road traffic accidents were legislation and enforcement, public awareness/education, speed control/ rumble strips, road improvement, mandatory motorcycle helmet, graduated driver license, street lighting. Legislation and Enforcement: Legislation focusing on mandatory motorcycle helmet usage, banning cellular phone usage when driving, seat belt laws, decreasing the legal blood alcohol content (BAC) level from 0.06 g/L to 0.02 g/L bring the best result where enforcement is there. Public Awareness/Education: focusing on seat belt use, child restraint use, educational training in health centers and schools/universities, and public awareness with media through the distribution of videos, posters/souvenirs, and pamphlets are effective in the short run. Speed Control: through traffic calming bumps, or speed bumps, rumbled strips are effective in reducing accidents and fatality. Mandatory Motorcycle Helmet: is associated with reduction in mortality. Graduated driver’s license (GDL): reduce road traffic injury by 19%. Street lighting: is a low-cost intervention which may reduce road traffic accidents.Keywords: evidence synthesis, injury, rapid review, reducing, road traffic accident
Procedia PDF Downloads 164