Search results for: Signal Processing
4826 Investigation of the EEG Signal Parameters during Epileptic Seizure Phases in Consequence to the Application of External Healing Therapy on Subjects
Authors: Karan Sharma, Ajay Kumar
Abstract:
Epileptic seizure is a type of disease due to which electrical charge in the brain flows abruptly resulting in abnormal activity by the subject. One percent of total world population gets epileptic seizure attacks.Due to abrupt flow of charge, EEG (Electroencephalogram) waveforms change. On the display appear a lot of spikes and sharp waves in the EEG signals. Detection of epileptic seizure by using conventional methods is time-consuming. Many methods have been evolved that detect it automatically. The initial part of this paper provides the review of techniques used to detect epileptic seizure automatically. The automatic detection is based on the feature extraction and classification patterns. For better accuracy decomposition of the signal is required before feature extraction. A number of parameters are calculated by the researchers using different techniques e.g. approximate entropy, sample entropy, Fuzzy approximate entropy, intrinsic mode function, cross-correlation etc. to discriminate between a normal signal & an epileptic seizure signal.The main objective of this review paper is to present the variations in the EEG signals at both stages (i) Interictal (recording between the epileptic seizure attacks). (ii) Ictal (recording during the epileptic seizure), using most appropriate methods of analysis to provide better healthcare diagnosis. This research paper then investigates the effects of a noninvasive healing therapy on the subjects by studying the EEG signals using latest signal processing techniques. The study has been conducted with Reiki as a healing technique, beneficial for restoring balance in cases of body mind alterations associated with an epileptic seizure. Reiki is practiced around the world and is recommended for different health services as a treatment approach. Reiki is an energy medicine, specifically a biofield therapy developed in Japan in the early 20th century. It is a system involving the laying on of hands, to stimulate the body’s natural energetic system. Earlier studies have shown an apparent connection between Reiki and the autonomous nervous system. The Reiki sessions are applied by an experienced therapist. EEG signals are measured at baseline, during session and post intervention to bring about effective epileptic seizure control or its elimination altogether.Keywords: EEG signal, Reiki, time consuming, epileptic seizure
Procedia PDF Downloads 4064825 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems
Authors: Messaoud Eljamai, Sami Hidouri
Abstract:
Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency
Procedia PDF Downloads 1474824 Differences in the Processing of Sentences with Lexical Ambiguity and Structural Ambiguity: An Experimental Study
Authors: Mariana T. Teixeira, Joana P. Luz
Abstract:
This paper is based on assumptions of psycholinguistics and investigates the processing of ambiguous sentences in Brazilian Portuguese. Specifically, it aims to verify if there is a difference in processing time between sentences with lexical ambiguity and sentences with structural (or syntactic) ambiguity. We hypothesize, based on the Garden Path Theory, that the two types of ambiguity entail different cognitive efforts, since sentences with structural ambiguity require that two structures be processed, whereas ambiguous phrases whose root of ambiguity is in a word require the processing of a single structure, which admits a variation of punctual meaning, within the scope of only one lexical item. In order to test this hypothesis, 25 undergraduate students, whose average age was 27.66 years, native speakers of Brazilian Portuguese, performed a self-monitoring reading task of ambiguous sentences, which had lexical and structural ambiguity. The results suggest that unambiguous sentence processing is faster than ambiguous sentence processing, whether it has lexical or structural ambiguity. In addition, participants presented a mean reading time greater for sentences with syntactic ambiguity than for sentences with lexical ambiguity, evidencing a greater cognitive effort in sentence processing with structural ambiguity.Keywords: Brazilian portuguese, lexical ambiguity, sentence processing, syntactic ambiguity
Procedia PDF Downloads 2284823 An Event-Related Potentials Study on the Processing of English Subjunctive Mood by Chinese ESL Learners
Authors: Yan Huang
Abstract:
Event-related potentials (ERPs) technique helps researchers to make continuous measures on the whole process of language comprehension, with an excellent temporal resolution at the level of milliseconds. The research on sentence processing has developed from the behavioral level to the neuropsychological level, which brings about a variety of sentence processing theories and models. However, the applicability of these models to L2 learners is still under debate. Therefore, the present study aims to investigate the neural mechanisms underlying English subjunctive mood processing by Chinese ESL learners. To this end, English subject clauses with subjunctive moods are used as the stimuli, all of which follow the same syntactic structure, “It is + adjective + that … + (should) do + …” Besides, in order to examine the role that language proficiency plays on L2 processing, this research deals with two groups of Chinese ESL learners (18 males and 22 females, mean age=21.68), namely, high proficiency group (Group H) and low proficiency group (Group L). Finally, the behavioral and neurophysiological data analysis reveals the following findings: 1) Syntax and semantics interact with each other on the SECOND phase (300-500ms) of sentence processing, which is partially in line with the Three-phase Sentence Model; 2) Language proficiency does affect L2 processing. Specifically, for Group H, it is the syntactic processing that plays the dominant role in sentence processing while for Group L, semantic processing also affects the syntactic parsing during the THIRD phase of sentence processing (500-700ms). Besides, Group H, compared to Group L, demonstrates a richer native-like ERPs pattern, which further demonstrates the role of language proficiency in L2 processing. Based on the research findings, this paper also provides some enlightenment for the L2 pedagogy as well as the L2 proficiency assessment.Keywords: Chinese ESL learners, English subjunctive mood, ERPs, L2 processing
Procedia PDF Downloads 1314822 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI
Authors: James Rigor Camacho, Wansu Lim
Abstract:
Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors
Procedia PDF Downloads 1054821 3D Virtualization through Data Collected from Measurements of Mobile Signal Reception Power Levels (LTE) Band at Escuela Superior Politécnica de Chimborazo in Riobamba-Ecuador
Authors: Sandra Cuenca, Steven Chango, Fabian Chamba, Alexandra Vaca
Abstract:
This project addresses a representation of a virtual environment based on the analysis of the RSRP (Reference Signal Received Power) obtained by the Network Cell Info Lite application at the Escuela Superior Politécnica de Chimborazo (ESPOCH) considering the open areas of the Business Administration Department in the 4G LTE Frequency (band 2) of Claro Telephony at a frequency of 1967. 5 MHz, where measurements were performed from 17:00 UTC-05:00. The indicators required for the simulation of the environment designed in sketchup were focused especially on the power levels obtained where it was possible to represent the scenario with real power values obtained in each concentric radius of a total of 3 campaigns of 200 samples each, where the values vary between 84.6 dBm to 115.5 dBm having average power values for each of the 23 radiuses which are introduced in a virtual environment, allowing users to immerse themselves in it, where they can explore 3D virtual environments, generating a color scale from 0 to 10 with red being the weakest signal and green the signal with the best intensity.Keywords: virtualization, LTE, radios, power intensity levels colors, mobile signal reception power
Procedia PDF Downloads 894820 Low Cost Real Time Robust Identification of Impulsive Signals
Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman
Abstract:
This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.Keywords: sound detection, impulsive signal, background noise, neural network
Procedia PDF Downloads 3194819 Investigating the Relationship and Interaction between Auditory Processing Disorder and Auditory Attention
Authors: Amirreza Razzaghipour Sorkhab
Abstract:
The exploration of the connection between cognition and Auditory Processing Disorder (APD) holds significant value. Individuals with APD experience challenges in processing auditory information through the central auditory nervous system's varied pathways. Understanding the importance of auditory attention in individuals with APD, as well as the primary diagnostic tools such as language and auditory attention tests, highlights the critical need for assessing their auditory attention abilities. While not all children with Auditory Processing Disorder (APD) show deficits in auditory attention, there are often deficiencies in cognitive and attentional performance. The link between various types of attention deficits and APD suggests impairments in sustained and divided auditory attention. Research into the origins of APD should also encompass higher-level processes, such as auditory attention. It is evident that investigating the interaction between APD and auditory and cognitive functions holds significant value. Furthermore, it was demonstrated that APD tests may be influenced by cognitive factors, but despite signs of auditory attention interaction with auditory processing skills and the influence of cognitive factors on tests for this disorder, auditory attention measures are not typically included in APD diagnostic protocols. Therefore, incorporating attention assessment tests into the battery of tests for individuals with auditory processing disorder will be beneficial for obtaining useful insights into their attentional abilities.Keywords: auditory processing disorder, auditory attention, central auditory processing disorder, top-down pathway
Procedia PDF Downloads 664818 Electrocardiogram Signal Denoising Using a Hybrid Technique
Authors: R. Latif, W. Jenkal, A. Toumanari, A. Hatim
Abstract:
This paper presents an efficient method of electrocardiogram signal denoising based on a hybrid approach. Two techniques are brought together to create an efficient denoising process. The first is an Adaptive Dual Threshold Filter (ADTF) and the second is the Discrete Wavelet Transform (DWT). The presented approach is based on three steps of denoising, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents some application of the approach on some electrocardiogram signals of the MIT-BIH database. The results of these applications are promising compared to other recently published techniques.Keywords: hybrid technique, ADTF, DWT, thresholding, ECG signal
Procedia PDF Downloads 3224817 An Efficient Strategy for Relay Selection in Multi-Hop Communication
Authors: Jung-In Baik, Seung-Jun Yu, Young-Min Ko, Hyoung-Kyu Song
Abstract:
This paper proposes an efficient relaying algorithm to obtain diversity for improving the reliability of a signal. The algorithm achieves time or space diversity gain by multiple versions of the same signal through two routes. Relays are separated between a source and destination. The routes between the source and destination are set adaptive in order to deal with different channels and noises. The routes consist of one or more relays and the source transmits its signal to the destination through the routes. The signals from the relays are combined and detected at the destination. The proposed algorithm provides a better performance than the conventional algorithms in bit error rate (BER).Keywords: multi-hop, OFDM, relay, relaying selection
Procedia PDF Downloads 4454816 Noise Source Identification on Urban Construction Sites Using Signal Time Delay Analysis
Authors: Balgaisha G. Mukanova, Yelbek B. Utepov, Aida G. Nazarova, Alisher Z. Imanov
Abstract:
The problem of identifying local noise sources on a construction site using a sensor system is considered. Mathematical modeling of detected signals on sensors was carried out, considering signal decay and signal delay time between the source and detector. Recordings of noises produced by construction tools were used as a dependence of noise on time. Synthetic sensor data was constructed based on these data, and a model of the propagation of acoustic waves from a point source in the three-dimensional space was applied. All sensors and sources are assumed to be located in the same plane. A source localization method is checked based on the signal time delay between two adjacent detectors and plotting the direction of the source. Based on the two direct lines' crossline, the noise source's position is determined. Cases of one dominant source and the case of two sources in the presence of several other sources of lower intensity are considered. The number of detectors varies from three to eight detectors. The intensity of the noise field in the assessed area is plotted. The signal of a two-second duration is considered. The source is located for subsequent parts of the signal with a duration above 0.04 sec; the final result is obtained by computing the average value.Keywords: acoustic model, direction of arrival, inverse source problem, sound localization, urban noises
Procedia PDF Downloads 624815 Influence of Processing Regime and Contaminants on the Properties of Postconsumer Thermoplastics
Authors: Fares Alsewailem
Abstract:
Material recycling of thermoplastic waste offers practical solution for municipal solid waste reduction. Post-consumer plastics such as polyethylene (PE), polyethyleneterephtalate (PET), and polystyrene (PS) may be separated from each other by physical methods such as density difference and hence processed as single plastic, however one should be cautious about the contaminants presence in the waste stream inform of paper, glue, etc. since these articles even in trace amount may deteriorate properties of the recycled plastics especially the mechanical properties. furthermore, melt processing methods used to recycle thermoplastics such as extrusion and compression molding may induce degradation of some of the recycled plastics such as PET and PS. In this research, it is shown that care should be taken when processing recycled plastics by melt processing means in two directions, first contaminants should be extremely minimized, and secondly melt processing steps should also be minimum.Keywords: Recycling, PET, PS, HDPE, mechanical
Procedia PDF Downloads 2834814 Automatic Diagnosis of Electrical Equipment Using Infrared Thermography
Authors: Y. Laib Dit Leksir, S. Bouhouche
Abstract:
Analysis and processing of data bases resulting from infrared thermal measurements made on the electrical installation requires the development of new tools in order to obtain correct and additional information to the visual inspections. Consequently, the methods based on the capture of infrared digital images show a great potential and are employed increasingly in various fields. Although, there is an enormous need for the development of effective techniques to analyse these data base in order to extract relevant information relating to the state of the equipments. Our goal consists in introducing recent techniques of modeling based on new methods, image and signal processing to develop mathematical models in this field. The aim of this work is to capture the anomalies existing in electrical equipments during an inspection of some machines using A40 Flir camera. After, we use binarisation techniques in order to select the region of interest and we make comparison between these methods of thermal images obtained to choose the best one.Keywords: infrared thermography, defect detection, troubleshooting, electrical equipment
Procedia PDF Downloads 4764813 Indoor Robot Positioning with Precise Correlation Computations over Walsh-Coded Lightwave Signal Sequences
Authors: Jen-Fa Huang, Yu-Wei Chiu, Jhe-Ren Cheng
Abstract:
Visible light communication (VLC) technique has become useful method via LED light blinking. Several issues on indoor mobile robot positioning with LED blinking are examined in the paper. In the transmitter, we control the transceivers blinking message. Orthogonal Walsh codes are adopted for such purpose on auto-correlation function (ACF) to detect signal sequences. In the robot receiver, we set the frame of time by 1 ns passing signal from the transceiver to the mobile robot. After going through many periods of time detecting the peak value of ACF in the mobile robot. Moreover, the transceiver transmits signal again immediately. By capturing three times of peak value, we can know the time difference of arrival (TDOA) between two peak value intervals and finally analyze the accuracy of the robot position.Keywords: Visible Light Communication, Auto-Correlation Function (ACF), peak value of ACF, Time difference of Arrival (TDOA)
Procedia PDF Downloads 3264812 Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities
Authors: Khaled M. Alhawiti
Abstract:
This paper aims to analyze the role of natural language processing (NLP). The paper will discuss the role in the context of automated data retrieval, automated question answer, and text structuring. NLP techniques are gaining wider acceptance in real life applications and industrial concerns. There are various complexities involved in processing the text of natural language that could satisfy the need of decision makers. This paper begins with the description of the qualities of NLP practices. The paper then focuses on the challenges in natural language processing. The paper also discusses major techniques of NLP. The last section describes opportunities and challenges for future research.Keywords: data retrieval, information retrieval, natural language processing, text structuring
Procedia PDF Downloads 3404811 Signal Processing of the Blood Pressure and Characterization
Authors: Hadj Abd El Kader Benghenia, Fethi Bereksi Reguig
Abstract:
In clinical medicine, blood pressure, raised blood hemodynamic monitoring is rich pathophysiological information of cardiovascular system, of course described through factors such as: blood volume, arterial compliance and peripheral resistance. In this work, we are interested in analyzing these signals to propose a detection algorithm to delineate the different sequences and especially systolic blood pressure (SBP), diastolic blood pressure (DBP), and the wave and dicrotic to do their analysis in order to extract the cardiovascular parameters.Keywords: blood pressure, SBP, DBP, detection algorithm
Procedia PDF Downloads 4394810 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent
Authors: Hiroyuki Aoki
Abstract:
The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging
Procedia PDF Downloads 1304809 Enhanced Constraint-Based Optical Network (ECON) for Enhancing OSNR
Authors: G. R. Kavitha, T. S. Indumathi
Abstract:
With the constantly rising demands of the multimedia services, the requirements of long haul transport network are constantly changing in the area of optical network. Maximum data transmission using optimization of the communication channel poses the biggest challenge. Although there has been a constant focus on this area from the past decade, there was no evidence of a significant result that has been accomplished. Hence, after reviewing some potential design of optical network from literatures, it was understood that optical signal to noise ratio was one of the elementary attributes that can define the performance of the optical network. In this paper, we propose a framework termed as ECON (Enhanced Constraint-based Optical Network) that primarily optimize the optical signal to noise ratio using ROADM. The simulation is performed in Matlab and optical signal to noise ratio is extracted considering the system matrix. The outcome of the proposed study shows that optimized OSNR as compared to the existing studies.Keywords: component, optical network, reconfigurable optical add-drop multiplexer, optical signal-to-noise ratio
Procedia PDF Downloads 4884808 Advances in Food Processing Using Extrusion Technology
Authors: Javeed Akhtar, R. K. Pandey, Z. R. Azaz Ahmad Azad
Abstract:
For the purpose of making different uses of food material for the development of extruded foods are produced using single and twin extruders. Extrusion cooking is a useful and economical tool for processing of novel food. This high temperature, short time processing technology causes chemical and physical changes that alter the nutritional and physical quality of the product. Extrusion processing of food ingredients characteristically depends on associating process conditions that influence the product qualities. The process parameters are optimized for extrusion of food material in order to obtain the maximum nutritive value by inactivating the anti-nutritional factors. The processing conditions such as moisture content, temperature and time are controlled to avoid over heating or under heating which otherwise would result in a product of lower nutritional quality.Keywords: extrusion processing, single and twin extruder, operating condition of extruders and extruded novel foods, food and agricultural engineering
Procedia PDF Downloads 3824807 Rural Women’s Skill Acquisition in the Processing of Locust Bean in Ipokia Local Government Area of Ogun State, Nigeria
Authors: A. A. Adekunle, A. M. Omoare, W. O. Oyediran
Abstract:
This study was carried out to assess rural women’s skill acquisition in the processing of locust bean in Ipokia Local Government Area of Ogun State, Nigeria. Simple random sampling technique was used to select 90 women locust bean processors for this study. Data were analyzed with descriptive statistics and Pearson Product Moment Correlation. The result showed that the mean age of respondents was 40.72 years. Most (70.00%) of the respondents were married. The mean processing experience was 8.63 years. 93.30% of the respondents relied on information from fellow locust beans processors and friends. All (100%) the respondents did not acquire improved processing skill through trainings and workshops. It can be concluded that the rural women’s skill acquisition on modernized processing techniques was generally low. It is hereby recommend that the rural women processors should be trained by extension service providers through series of workshops and seminars on improved processing techniques.Keywords: locust bean, processing, skill acquisition, rural women
Procedia PDF Downloads 4614806 A New Approach of Preprocessing with SVM Optimization Based on PSO for Bearing Fault Diagnosis
Authors: Tawfik Thelaidjia, Salah Chenikher
Abstract:
Bearing fault diagnosis has attracted significant attention over the past few decades. It consists of two major parts: vibration signal feature extraction and condition classification for the extracted features. In this paper, feature extraction from faulty bearing vibration signals is performed by a combination of the signal’s Kurtosis and features obtained through the preprocessing of the vibration signal samples using Db2 discrete wavelet transform at the fifth level of decomposition. In this way, a 7-dimensional vector of the vibration signal feature is obtained. After feature extraction from vibration signal, the support vector machine (SVM) was applied to automate the fault diagnosis procedure. To improve the classification accuracy for bearing fault prediction, particle swarm optimization (PSO) is employed to simultaneously optimize the SVM kernel function parameter and the penalty parameter. The results have shown feasibility and effectiveness of the proposed approachKeywords: condition monitoring, discrete wavelet transform, fault diagnosis, kurtosis, machine learning, particle swarm optimization, roller bearing, rotating machines, support vector machine, vibration measurement
Procedia PDF Downloads 4374805 Microfabrication of Three-Dimensional SU-8 Structures Using Positive SPR Photoresist as a Sacrificial Layer for Integration of Microfluidic Components on Biosensors
Authors: Su Yin Chiam, Qing Xin Zhang, Jaehoon Chung
Abstract:
Complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) have obtained increased attention in the biosensor community because CMOS technology provides cost-effective and high-performance signal processing at a mass-production level. In order to supply biological samples and reagents effectively to the sensing elements, there are increasing demands for seamless integration of microfluidic components on the fabricated CMOS wafers by post-processing. Although the PDMS microfluidic channels replicated from separately prepared silicon mold can be typically aligned and bonded onto the CMOS wafers, it remains challenging owing the inherently limited aligning accuracy ( > ± 10 μm) between the two layers. Here we present a new post-processing method to create three-dimensional microfluidic components using two different polarities of photoresists, an epoxy-based negative SU-8 photoresist and positive SPR220-7 photoresist. The positive photoresist serves as a sacrificial layer and the negative photoresist was utilized as a structural material to generate three-dimensional structures. Because both photoresists are patterned using a standard photolithography technology, the dimensions of the structures can be effectively controlled as well as the alignment accuracy, moreover, is dramatically improved (< ± 2 μm) and appropriately can be adopted as an alternative post-processing method. To validate the proposed processing method, we applied this technique to build cell-trapping structures. The SU8 photoresist was mainly used to generate structures and the SPR photoresist was used as a sacrificial layer to generate sub-channel in the SU8, allowing fluid to pass through. The sub-channel generated by etching the sacrificial layer works as a cell-capturing site. The well-controlled dimensions enabled single-cell capturing on each site and high-accuracy alignment made cells trapped exactly on the sensing units of CMOS biosensors.Keywords: SU-8, microfluidic, MEMS, microfabrication
Procedia PDF Downloads 5224804 Automatic Algorithm for Processing and Analysis of Images from the Comet Assay
Authors: Yeimy L. Quintana, Juan G. Zuluaga, Sandra S. Arango
Abstract:
The comet assay is a method based on electrophoresis that is used to measure DNA damage in cells and has shown important results in the identification of substances with a potential risk to the human population as innumerable physical, chemical and biological agents. With this technique is possible to obtain images like a comet, in which the tail of these refers to damaged fragments of the DNA. One of the main problems is that the image has unequal luminosity caused by the fluorescence microscope and requires different processing to condition it as well as to know how many optimal comets there are per sample and finally to perform the measurements and determine the percentage of DNA damage. In this paper, we propose the design and implementation of software using Image Processing Toolbox-MATLAB that allows the automation of image processing. The software chooses the optimum comets and measuring the necessary parameters to detect the damage.Keywords: artificial vision, comet assay, DNA damage, image processing
Procedia PDF Downloads 3104803 Musical Tesla Coil with Faraday Box Controlled by a GNU Radio
Authors: Jairo Vega, Fabian Chamba, Jordy Urgiles
Abstract:
In this work, the implementation of a Matlabcontrolled Musical Tesla Coil and external audio signals was presented. First, the audio signal was obtained from a mobile device and processed in Matlab to modify it, adding noise or other desired effects. Then, the processed signal was passed through a preamplifier to increase its amplitude to a level suitable for further amplification through a power amplifier, which was part of the current driver circuit of the Tesla coil. To get the Tesla coil to generate music, a circuit capable of modulating and generating the audio signal by manipulating electrical discharges was used. To visualize and listen to these discharges, a small Faraday cage was built to attenuate the external electric fields. Finally, the implementation of the musical Tesla coil was concluded. However, it was observed that the audio signal volume was very low, and the components used heated up quickly. Due to these limitations, it was determined that the project could not be connected to power for long periods of time.Keywords: Tesla coil, plasma, electrical signals, GNU Radio
Procedia PDF Downloads 974802 Design of Labview Based DAQ System
Authors: Omar A. A. Shaebi, Matouk M. Elamari, Salaheddin Allid
Abstract:
The Information Computing System of Monitoring (ICSM) for the Research Reactor of Tajoura Nuclear Research Centre (TNRC) stopped working since early 1991. According to the regulations, the computer is necessary to operate the reactor up to its maximum power (10 MW). The fund is secured via IAEA to develop a modern computer based data acquisition system to replace the old computer. This paper presents the development of the Labview based data acquisition system to allow automated measurements using National Instruments Hardware and its labview software. The developed system consists of SCXI 1001 chassis, the chassis house four SCXI 1100 modules each can maintain 32 variables. The chassis is interfaced with the PC using NI PCI-6023 DAQ Card. Labview, developed by National Instruments, is used to run and operate the DAQ System. Labview is graphical programming environment suited for high level design. It allows integrating different signal processing components or subsystems within a graphical framework. The results showed system capabilities in monitoring variables, acquiring and saving data. Plus the capability of the labview to control the DAQ.Keywords: data acquisition, labview, signal conditioning, national instruments
Procedia PDF Downloads 4944801 Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –
Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz
Abstract:
In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.Keywords: Mössbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, trans-impedance amplifier, extended Lyapunov method
Procedia PDF Downloads 994800 Adaptive Multipath Mitigation Acquisition Approach for Global Positioning System Software Receivers
Authors: Animut Meseret Simachew
Abstract:
Parallel Code Phase Search Acquisition (PCSA) Algorithm has been considered as a promising method in GPS software receivers for detection and estimation of the accurate correlation peak between the received Global Positioning System (GPS) signal and locally generated replicas. GPS signal acquisition in highly dense multipath environments is the main research challenge. In this work, we proposed a robust variable step-size (RVSS) PCSA algorithm based on fast frequency transform (FFT) filtering technique to mitigate short time delay multipath signals. Simulation results reveal the effectiveness of the proposed algorithm over the conventional PCSA algorithm. The proposed RVSS-PCSA algorithm equalizes the received carrier wiped-off signal with locally generated C/A code.Keywords: adaptive PCSA, detection and estimation, GPS signal acquisition, GPS software receiver
Procedia PDF Downloads 1174799 Fluctuations of Transfer Factor of the Mixer Based on Schottky Diode
Authors: Alexey V. Klyuev, Arkady V. Yakimov, Mikhail I. Ryzhkin, Andrey V. Klyuev
Abstract:
Fluctuations of Schottky diode parameters in a structure of the mixer are investigated. These fluctuations are manifested in two ways. At the first, they lead to fluctuations in the transfer factor that is lead to the amplitude fluctuations in the signal of intermediate frequency. On the basis of the measurement data of 1/f noise of the diode at forward current, the estimation of a spectrum of relative fluctuations in transfer factor of the mixer is executed. Current dependence of the spectrum of relative fluctuations in transfer factor of the mixer and dependence of the spectrum of relative fluctuations in transfer factor of the mixer on the amplitude of the heterodyne signal are investigated. At the second, fluctuations in parameters of the diode lead to the occurrence of 1/f noise in the output signal of the mixer. This noise limits the sensitivity of the mixer to the value of received signal.Keywords: current-voltage characteristic, fluctuations, mixer, Schottky diode, 1/f noise
Procedia PDF Downloads 5864798 Assessment Of Factors Affecting Sustainability of Rice (Oryza sativa) Processing and Marketing in Ogun State, Nigeria
Authors: A. M. Omoare, O. O. Sofowora, W. O. Oyediran
Abstract:
The study was carried out to assess the factors affecting the sustainability of rice processing and marketing in Ogun State, Nigeria. Multi-stage sampling technique was used to select one hundred and twenty (120) respondents for the study. Descriptive statistics was used to describe the objectives while hypotheses were analyzed with Pearson Product Moment Correlation. The result showed that most (85%) of the respondents was less than 50 years old and had been in rice business for more than 6 years. The majority (66.67%) of the respondents got their capitals from cooperative societies. All (100%) the respondents used rice as household food security and source of income. However, efficient rice processing and marketing were affected by inadequate manpower capacity development and inputs. There was a positive and significant relationship between socio-economic characteristics and processing techniques (p < 0.05). It is hereby recommended that extension service providers should introduce improved rice processing systems to the rice millers traders in the study area.Keywords: sustainability, rice processing, marketing, constraints, millers traders
Procedia PDF Downloads 3924797 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison
Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo
Abstract:
A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.Keywords: affective computing, interface, brain, intelligent interaction
Procedia PDF Downloads 388