Search results for: Auto-Correlation Function (ACF)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4858

Search results for: Auto-Correlation Function (ACF)

4858 Multiple Relaxation Times in the Gibbs Ensemble Monte Carlo Simulation of Phase Separation

Authors: Bina Kumari, Subir K. Sarkar, Pradipta Bandyopadhyay

Abstract:

The autocorrelation function of the density fluctuation is studied in each of the two phases in a Gibbs Ensemble Monte Carlo (GEMC) simulation of the problem of phase separation for a square well potential with various values of its range. We find that the normalized autocorrelation function is described very well as a linear combination of an exponential function with a time scale τ₂ and a stretched exponential function with a time scale τ₁ and an exponent α. Dependence of (α, τ₁, τ₂) on the parameters of the GEMC algorithm and the range of the square well potential is investigated and interpreted. We also analyse the issue of how to choose the parameters of the GEMC simulation optimally.

Keywords: autocorrelation function, density fluctuation, GEMC, simulation

Procedia PDF Downloads 150
4857 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods

Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow

Abstract:

A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.

Keywords: forecasting model, steel demand uncertainty, hierarchical Bayesian framework, exponential smoothing method

Procedia PDF Downloads 318
4856 Estimation of Missing Values in Aggregate Level Spatial Data

Authors: Amitha Puranik, V. S. Binu, Seena Biju

Abstract:

Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.

Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis

Procedia PDF Downloads 341
4855 Confidence Intervals for Process Capability Indices for Autocorrelated Data

Authors: Jane A. Luke

Abstract:

Persistent pressure passed on to manufacturers from escalating consumer expectations and the ever growing global competitiveness have produced a rapidly increasing interest in the development of various manufacturing strategy models. Academic and industrial circles are taking keen interest in the field of manufacturing strategy. Many manufacturing strategies are currently centered on the traditional concepts of focused manufacturing capabilities such as quality, cost, dependability and innovation. Process capability indices was conducted assuming that the process under study is in statistical control and independent observations are generated over time. However, in practice, it is very common to come across processes which, due to their inherent natures, generate autocorrelated observations. The degree of autocorrelation affects the behavior of patterns on control charts. Even, small levels of autocorrelation between successive observations can have considerable effects on the statistical properties of conventional control charts. When observations are autocorrelated the classical control charts exhibit nonrandom patterns and lack of control. Many authors have considered the effect of autocorrelation on the performance of statistical process control charts. In this paper, the effect of autocorrelation on confidence intervals for different PCIs was included. Stationary Gaussian processes is explained. Effect of autocorrelation on PCIs is described in detail. Confidence intervals for Cp and Cpk are constructed for PCIs when data are both independent and autocorrelated. Confidence intervals for Cp and Cpk are computed. Approximate lower confidence limits for various Cpk are computed assuming AR(1) model for the data. Simulation studies and industrial examples are considered to demonstrate the results.

Keywords: autocorrelation, AR(1) model, Bissell’s approximation, confidence intervals, statistical process control, specification limits, stationary Gaussian processes

Procedia PDF Downloads 353
4854 Times Series Analysis of Depositing in Industrial Design in Brazil between 1996 and 2013

Authors: Jonas Pedro Fabris, Alberth Almeida Amorim Souza, Maria Emilia Camargo, Suzana Leitão Russo

Abstract:

With the law Nº. 9279, of May 14, 1996, the Brazilian government regulates rights and obligations relating to industrial property considering the economic development of the country as granting patents, trademark registration, registration of industrial designs and other forms of protection copyright. In this study, we show the application of the methodology of Box and Jenkins in the series of deposits of industrial design at the National Institute of Industrial Property for the period from May 1996 to April 2013. First, a graphical analysis of the data was done by observing the behavior of the data and the autocorrelation function. The best model found, based on the analysis of charts and statistical tests suggested by Box and Jenkins methodology, it was possible to determine the model number for the deposit of industrial design, SARIMA (2,1,0)(2,0,0), with an equal to 9.88% MAPE.

Keywords: ARIMA models, autocorrelation, Box and Jenkins Models, industrial design, MAPE, time series

Procedia PDF Downloads 511
4853 Dynamical Heterogeneity and Aging in Turbulence with a Nambu-Goldstone Mode

Authors: Fahrudin Nugroho, Halim Hamadi, Yusril Yusuf, Pekik Nurwantoro, Ari Setiawan, Yoshiki Hidaka

Abstract:

We investigate the Nikolaevskiy equation numerically using exponential time differencing method and pseudo-spectral method. This equation develops a long-wavelength modulation that behaves as a Nambu–Goldstone mode, and short-wavelength instability and exhibit turbulence. Using the autocorrelation analysis, the statistical properties of the turbulence governed by the equation are investigated. The autocorrelation then has been fitted with The Kohlrausch– Williams–Watts (KWW) expression. By varying the control parameter, we show a transition from compressed to stretched exponential for the auto-correlation function of Nikolaevskiy turbulence. The compressed exponential is an indicator of the existence of dynamical heterogeneity while the stretched indicates aging process. Thereby, we revealed the existence of dynamical heterogeneity and aging in the turbulence governed by Nikolaevskiy equation.

Keywords: compressed exponential, dynamical heterogeneity, Nikolaevskiy equation, stretched exponential, turbulence

Procedia PDF Downloads 401
4852 Spatial Patterns and Temporal Evolution of Octopus Abundance in the Mauritanian Zone

Authors: Dedah Ahmed Babou, Nicolas Bez

Abstract:

The Min-Max autocorrelation factor (MAF) approach makes it possible to express in a space formed by spatially independent factors, spatiotemporal observations. These factors are ordered in decreasing order of spatial autocorrelation. The starting observations are thus expressed in the space formed by these factors according to temporal coordinates. Each vector of temporal coefficients expresses the temporal evolution of the weight of the corresponding factor. Applying this approach has enabled us to achieve the following results: (i) Define a spatially orthogonal space in which the projections of the raw data are determined; (ii) Define a limit threshold for the factors with the strongest structures in order to analyze the weight, and the temporal evolution of these different structures (iii) Study the correlation between the temporal evolution of the persistent spatial structures and that of the observed average abundance (iv) Propose prototypes of campaigns reflecting a high vs. low abundance (v) Propose a classification of campaigns that highlights seasonal and/or temporal similarities. These results were obtained by analyzing the octopus yield during the scientific campaigns of the oceanographic vessel Al Awam during the period 1989-2017 in the Mauritanian exclusive economic zone.

Keywords: spatiotemporal , autocorrelation, kriging, variogram, Octopus vulgaris

Procedia PDF Downloads 110
4851 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary user (PU), secondary user (SU), fast Fourier transform (FFT), signal to noise ratio (SNR)

Procedia PDF Downloads 318
4850 A Spatial Autocorrelation Analysis of Women’s Mental Health and Walkability Index in Mashhad City, Iran, and Recommendations to Improve It

Authors: Mohammad Rahim Rahnama, Lia Shaddel

Abstract:

Today, along with the development of urbanism, its negative consequences on the health of citizens are emerging. Mental disorders are common in the big cities, while mental health enables individuals to become active citizens. Meanwhile, women have a larger share of mental problems. Depression and anxiety disorders have a higher prevalence rate among women and these disorders affect the health of future generations, too. Therefore, improving women’s mental health through the potentials offered by urban spaces are of paramount importance. The present study aims to first, evaluate the spatial autocorrelation of women’s mental health and walkable spaces and then present solutions, based on the findings, to improve the walkability index. To determine the spatial distribution of women’s mental health in Mashhad, Moran's I was used and 1000 questionnaire were handed out in various sub-districts of Mashhad. Moran's I was calculated to be 0.18 which indicates a cluster distribution pattern. The walkability index was calculated using the four variables pertaining to the length of walkable routes, mixed land use, retail floor area ratio, and household density. To determine spatial autocorrelation of mental health and the walkability index, bivariate Moran’s I was calculated. Moran's I was determined to be 0.37 which shows a direct spatial relationship between variables; 4 clusters in 9 sub-districts of Mashhad were created. In High-Low cluster, there was a negative spatial relationship and hence, to identify factors affecting walkability in urban spaces semi-structures interviews were conducted with 21 women in this cluster. The findings revealed that security is the major factor influencing women’s walking behavior in this cluster. In accordance with the findings, some suggestions are offered to improve the presence of women in this sub-district.

Keywords: Mashhad, spatial autocorrelation, women’s mental health, walkability index

Procedia PDF Downloads 103
4849 The Implementation of Secton Method for Finding the Root of Interpolation Function

Authors: Nur Rokhman

Abstract:

A mathematical function gives relationship between the variables composing the function. Interpolation can be viewed as a process of finding mathematical function which goes through some specified points. There are many interpolation methods, namely: Lagrange method, Newton method, Spline method etc. For some specific condition, such as, big amount of interpolation points, the interpolation function can not be written explicitly. This such function consist of computational steps. The solution of equations involving the interpolation function is a problem of solution of non linear equation. Newton method will not work on the interpolation function, for the derivative of the interpolation function cannot be written explicitly. This paper shows the use of Secton method to determine the numerical solution of the function involving the interpolation function. The experiment shows the fact that Secton method works better than Newton method in finding the root of Lagrange interpolation function.

Keywords: Secton method, interpolation, non linear function, numerical solution

Procedia PDF Downloads 345
4848 Phase II Monitoring of First-Order Autocorrelated General Linear Profiles

Authors: Yihua Wang, Yunru Lai

Abstract:

Statistical process control has been successfully applied in a variety of industries. In some applications, the quality of a process or product is better characterized and summarized by a functional relationship between a response variable and one or more explanatory variables. A collection of this type of data is called a profile. Profile monitoring is used to understand and check the stability of this relationship or curve over time. The independent assumption for the error term is commonly used in the existing profile monitoring studies. However, in many applications, the profile data show correlations over time. Therefore, we focus on a general linear regression model with a first-order autocorrelation between profiles in this study. We propose an exponentially weighted moving average charting scheme to monitor this type of profile. The simulation study shows that our proposed methods outperform the existing schemes based on the average run length criterion.

Keywords: autocorrelation, EWMA control chart, general linear regression model, profile monitoring

Procedia PDF Downloads 428
4847 Forecasting Lake Malawi Water Level Fluctuations Using Stochastic Models

Authors: M. Mulumpwa, W. W. L. Jere, M. Lazaro, A. H. N. Mtethiwa

Abstract:

The study considered Seasonal Autoregressive Integrated Moving Average (SARIMA) processes to select an appropriate stochastic model to forecast the monthly data from the Lake Malawi water levels for the period 1986 through 2015. The appropriate model was chosen based on SARIMA (p, d, q) (P, D, Q)S. The Autocorrelation function (ACF), Partial autocorrelation (PACF), Akaike Information Criteria (AIC), Bayesian Information Criterion (BIC), Box–Ljung statistics, correlogram and distribution of residual errors were estimated. The SARIMA (1, 1, 0) (1, 1, 1)12 was selected to forecast the monthly data of the Lake Malawi water levels from August, 2015 to December, 2021. The plotted time series showed that the Lake Malawi water levels are decreasing since 2010 to date but not as much as was the case in 1995 through 1997. The future forecast of the Lake Malawi water levels until 2021 showed a mean of 474.47 m ranging from 473.93 to 475.02 meters with a confidence interval of 80% and 90% against registered mean of 473.398 m in 1997 and 475.475 m in 1989 which was the lowest and highest water levels in the lake respectively since 1986. The forecast also showed that the water levels of Lake Malawi will drop by 0.57 meters as compared to the mean water levels recorded in the previous years. These results suggest that the Lake Malawi water level may not likely go lower than that recorded in 1997. Therefore, utilisation and management of water-related activities and programs among others on the lake should provide room for such scenarios. The findings suggest a need to manage the Lake Malawi jointly and prudently with other stakeholders starting from the catchment area. This will reduce impacts of anthropogenic activities on the lake’s water quality, water level, aquatic and adjacent terrestrial ecosystems thereby ensuring its resilience to climate change impacts.

Keywords: forecasting, Lake Malawi, water levels, water level fluctuation, climate change, anthropogenic activities

Procedia PDF Downloads 193
4846 Throughput of Point Coordination Function (PCF)

Authors: Faisel Eltuhami Alzaalik, Omar Imhemed Alramli, Ahmed Mohamed Elaieb

Abstract:

The IEEE 802.11 defines two modes of MAC, distributed coordination function (DCF) and point coordination function (PCF) mode. The first sub-layer of the MAC is the distributed coordination function (DCF). A contention algorithm is used via DCF to provide access to all traffic. The point coordination function (PCF) is the second sub-layer used to provide contention-free service. PCF is upper DCF and it uses features of DCF to establish guarantee access of its users. Some papers and researches that have been published in this technology were reviewed in this paper, as well as talking briefly about the distributed coordination function (DCF) technology. The simulation of the PCF function have been applied by using a simulation program called network simulator (NS2) and have been found out the throughput of a transmitter system by using this function.

Keywords: DCF, PCF, throughput, NS2

Procedia PDF Downloads 535
4845 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.

Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis

Procedia PDF Downloads 359
4844 On a Univalent Function and the Integral Means of Its Derivative

Authors: Shatha S. Alhily

Abstract:

The purpose of this research paper is to show all the possible values of the pth power of the integrable function which make the integral means of the derivative of univalent function existing and finite.

Keywords: derivative, integral means, self conformal maps, univalent function

Procedia PDF Downloads 594
4843 Effect of Sodium Chloride Concentration and Degree of Neutralization on the Structure and Dynamics of Poly(Methacrylic Acid) (PMA) in Dilute Aqueous Solutions – a Molecular Dynamics Simulations Study

Authors: Abhishek Kumar Gupta

Abstract:

Atomistic Molecular Dynamics (MD) Simulations have been performed to study the effect of monovalent salt i.e. NaCl concentration (Cs) and chain degree of neutralization (f) on the structure and dynamics of anionic poly(methacrylic acid) (PMA) in dilute aqueous solutions. In the present study, the attention is to unveil the conformational structure, hydrogen-bonding, local polyion-counterion structure, h-bond dynamics, chain dynamics and thermodynamic enthalpy of solvation of a-PMA in dilute aqueous solutions as a function of salt concentration, Cs and f. The results have revealed that at low salt concentration, the conformational radius of gyration (Rg) increases and then decreases reaching a maximum in agreement with the reported light scattering experimental results. The Rg at f = 1 shows a continual decrease and acquire a plateau value at higher salt concentration in agreement with results obtained by light scattering experiments. The radial distribution functions between PMA, salt and water atoms has been computed with respect to atom and centre-of-mass to understand the intermolecular structure in detail. The results pertaining to PMA chain conformations and hydrogen bond autocorrelation function showcasing the h-bond dynamics will be presented. The results pertaining to chain dynamics will be presented. The results pertaining to counterion condensation on the PMA chain shows greater condensation of Na+ ions on to the carboxylate ions with increase in salt concentration. Moreover, the solvation enthalpy of the system as a function of salt concentration will be presented.

Keywords: conformations, molecular dynamics simulations, NaCl concentration, radial distribution functions

Procedia PDF Downloads 72
4842 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis

Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera

Abstract:

Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.

Keywords: log-linear model, multi spectral, residuals, spatial error model

Procedia PDF Downloads 269
4841 Solution of the Nonrelativistic Radial Wave Equation of Hydrogen Atom Using the Green's Function Approach

Authors: F. U. Rahman, R. Q. Zhang

Abstract:

This work aims to develop a systematic numerical technique which can be easily extended to many-body problem. The Lippmann Schwinger equation (integral form of the Schrodinger wave equation) is solved for the nonrelativistic radial wave of hydrogen atom using iterative integration scheme. As the unknown wave function appears on both sides of the Lippmann Schwinger equation, therefore an approximate wave function is used in order to solve the equation. The Green’s function is obtained by the method of Laplace transform for the radial wave equation with excluded potential term. Using the Lippmann Schwinger equation, the product of approximate wave function, the Green’s function and the potential term is integrated iteratively. Finally, the wave function is normalized and plotted against the standard radial wave for comparison. The outcome wave function converges to the standard wave function with the increasing number of iteration. Results are verified for the first fifteen states of hydrogen atom. The method is efficient and consistent and can be applied to complex systems in future.

Keywords: Green’s function, hydrogen atom, Lippmann Schwinger equation, radial wave

Procedia PDF Downloads 352
4840 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus

Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara

Abstract:

In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.

Keywords: stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.

Procedia PDF Downloads 354
4839 A Compressor Map Optimizing Tool for Prediction of Compressor Off-Design Performance

Authors: Zhongzhi Hu, Jie Shen, Jiqiang Wang

Abstract:

A high precision aeroengine model is needed when developing the engine control system. Compared with other main components, the axial compressor is the most challenging component to simulate. In this paper, a compressor map optimizing tool based on the introduction of a modifiable β function is developed for FWorks (FADEC Works). Three parameters (d density, f fitting coefficient, k₀ slope of the line β=0) are introduced to the β function to make it modifiable. The comparison of the traditional β function and the modifiable β function is carried out for a certain type of compressor. The interpolation errors show that both methods meet the modeling requirements, while the modifiable β function can predict compressor performance more accurately for some areas of the compressor map where the users are interested in.

Keywords: beta function, compressor map, interpolation error, map optimization tool

Procedia PDF Downloads 230
4838 Geo-spatial Analysis: The Impact of Drought and Productivity to the Poverty in East Java, Indonesia

Authors: Yessi Rahmawati, Andiga Kusuma Nur Ichsan, Fitria Nur Anggraeni

Abstract:

Climate change is one of the focus studies that many researchers focus on in the present world, either in the emerging countries or developed countries which is one of the main pillars on Sustainable Development Goals (SDGs). There is on-going discussion that climate change can affect natural disaster, namely drought, storm, flood, and many others; and also the impact on human life. East Java is the best performances and has economic potential that should be utilized. Despite the economic performance and high agriculture productivity, East Java has the highest number of people under the poverty line. The present study is to measuring the contribution of drought and productivity of agriculture to the poverty in East Java, Indonesia, using spatial econometrics analysis. The authors collect data from 2008 – 2015 from Indonesia’s Ministry of Agriculture, Natural Disaster Management Agency (BNPB), and Official Statistic (BPS). First, the result shows the existence of spatial autocorrelation between drought and poverty. Second, the present research confirms that there is strong relationship between drought and poverty. the majority of farmer in East Java are still relies on the rainfall and traditional irrigation system. When the drought strikes, mostly the farmer will lose their income; make them become more vulnerable household, and trap them into poverty line. The present research will give empirical studies regarding drought and poverty in the academics world.

Keywords: SDGs, drought, poverty, Indonesia, spatial econometrics, spatial autocorrelation

Procedia PDF Downloads 112
4837 Closed Forms of Trigonometric Series Interms of Riemann’s ζ Function and Dirichlet η, λ, β Functions or the Hurwitz Zeta Function and Harmonic Numbers

Authors: Slobodan B. Tričković

Abstract:

We present the results concerned with trigonometric series that include sine and cosine functions with a parameter appearing in the denominator. We derive two types of closed-form formulas for trigonometric series. At first, for some integer values, as we know that Riemann’s ζ function and Dirichlet η, λ equal zero at negative even integers, whereas Dirichlet’s β function equals zero at negative odd integers, after a certain number of members, the rest of the series vanishes. Thus, a trigonometric series becomes a polynomial with coefficients involving Riemann’s ζ function and Dirichlet η, λ, β functions. On the other hand, in some cases, one cannot immediately replace the parameter with any positive integer because we shall encounter singularities. So it is necessary to take a limit, so in the process, we apply L’Hospital’s rule and, after a series of rearrangements, we bring a trigonometric series to a form suitable for the application of Choi-Srivastava’s theorem dealing with Hurwitz’s zeta function and Harmonic numbers. In this way, we express a trigonometric series as a polynomial over Hurwitz’s zeta function derivative.

Keywords: Dirichlet eta lambda beta functions, Riemann's zeta function, Hurwitz zeta function, Harmonic numbers

Procedia PDF Downloads 61
4836 Stability Analysis of SEIR Epidemic Model with Treatment Function

Authors: Sasiporn Rattanasupha, Settapat Chinviriyasit

Abstract:

The treatment function adopts a continuous and differentiable function which can describe the effect of delayed treatment when the number of infected individuals increases and the medical condition is limited. In this paper, the SEIR epidemic model with treatment function is studied to investigate the dynamics of the model due to the effect of treatment. It is assumed that the treatment rate is proportional to the number of infective patients. The stability of the model is analyzed. The model is simulated to illustrate the analytical results and to investigate the effects of treatment on the spread of infection.

Keywords: basic reproduction number, local stability, SEIR epidemic model, treatment function

Procedia PDF Downloads 481
4835 Integration of Quality Function Deployment and Modular Function Deployment in Product Development

Authors: Naga Velamakuri, Jyothi K. Reddy

Abstract:

Quality must be designed into a product and not inspected has become the main motto of all the companies globally. Due to the rapidly increasing technology in the past few decades, the nature of demands from the consumers has become more sophisticated. To sustain this global revolution of innovation in production systems, companies have to take steps to accommodate this technology growth. In this process of understanding the customers' expectations, all the firms globally take steps to deliver a perfect output. Most of these techniques also concentrate on the consistent development and optimization of the product to exceed the expectations. Quality Function Deployment(QFD) and Modular Function Deployment(MFD) are such techniques which rely on the voice of the customer and help deliver the needs. In this paper, Quality Function Deployment and Modular Function Deployment techniques which help in converting the quantitative descriptions to qualitative outcomes are discussed. The area of interest would be to understand the scope of each of the techniques and the application range in product development when these are applied together to any problem. The research question would be mainly aimed at comprehending the limitations using modularity in product development.

Keywords: quality function deployment, modular function deployment, house of quality, methodology

Procedia PDF Downloads 286
4834 Investigating Spatial Disparities in Health Status and Access to Health-Related Interventions among Tribals in Jharkhand

Authors: Parul Suraia, Harshit Sosan Lakra

Abstract:

Indigenous communities represent some of the most marginalized populations globally, with India labeled as tribals, experiencing particularly pronounced marginalization and a concerning decline in their numbers. These communities often inhabit geographically challenging regions characterized by low population densities, posing significant challenges to providing essential infrastructure services. Jharkhand, a Schedule 5 state, is infamous for its low-level health status due to disparities in access to health care. The primary objective of this study is to investigate the spatial inequalities in healthcare accessibility among tribal populations within the state and pinpoint critical areas requiring immediate attention. Health indicators were selected based on the tribal perspective and association of Sustainable Goal 3 (Good Health and Wellbeing) with other SDGs. Focused group discussions in which tribal people and tribal experts were done in order to finalize the indicators. Employing Principal Component Analysis, two essential indices were constructed: the Tribal Health Index (THI) and the Tribal Health Intervention Index (THII). Index values were calculated based on the district-wise secondary data for Jharkhand. The bivariate spatial association technique, Moran’s I was used to assess the spatial pattern of the variables to determine if there is any clustering (positive spatial autocorrelation) or dispersion (negative spatial autocorrelation) of values across Jharkhand. The results helped in facilitating targeting policy interventions in deprived areas of Jharkhand.

Keywords: tribal health, health spatial disparities, health status, Jharkhand

Procedia PDF Downloads 51
4833 A Transfer Function Representation of Thermo-Acoustic Dynamics for Combustors

Authors: Myunggon Yoon, Jung-Ho Moon

Abstract:

In this paper, we present a transfer function representation of a general one-dimensional combustor. The input of the transfer function is a heat rate perturbation of a burner and the output is a flow velocity perturbation at the burner. This paper considers a general combustor model composed of multiple cans with different cross sectional areas, along with a non-zero flow rate.

Keywords: combustor, dynamics, thermoacoustics, transfer function

Procedia PDF Downloads 350
4832 Long Term Variability of Temperature in Armenia in the Context of Climate Change

Authors: Hrachuhi Galstyan, Lucian Sfîcă, Pavel Ichim

Abstract:

The purpose of this study is to analyze the temporal and spatial variability of thermal conditions in the Republic of Armenia. The paper describes annual fluctuations in air temperature. Research has been focused on case study region of Armenia and surrounding areas, where long–term measurements and observations of weather conditions have been performed within the National Meteorological Service of Armenia and its surrounding areas. The study contains yearly air temperature data recorded between 1961-2012. Mann-Kendal test and the autocorrelation function were applied to detect the change trend of annual mean temperature, as well as other parametric and non-parametric tests searching to find the presence of some breaks in the long term evolution of temperature. The analysis of all records reveals a tendency mostly towards warmer years, with increased temperatures especially in valleys and inner basins. The maximum temperature increase is up to 1,5 °C. Negative results have not been observed in Armenia. The patterns of temperature change have been observed since the 1990’s over much of the Armenian territory. The climate in Armenia was influenced by global change in the last 2 decades, as results from the methods employed within the study.

Keywords: air temperature, long-term variability, trend, climate change

Procedia PDF Downloads 259
4831 Geometric Properties of Some q-Bessel Functions

Authors: İbrahim Aktaş, Árpád Baricz

Abstract:

In this paper, the radii of star likeness of the Jackson and Hahn-Exton q-Bessel functions are considered, and for each of them three different normalizations is applied. By applying Euler-Rayleigh inequalities for the first positive zeros of these functions tight lower, and upper bounds for the radii of starlikeness of these functions are obtained. The Laguerre-Pólya class of real entire functions plays an important role in this study. In particular, we obtain some new bounds for the first positive zero of the derivative of the classical Bessel function of the first kind.

Keywords: bessel function, lommel function, radius of starlikeness and convexity, Struve function

Procedia PDF Downloads 245
4830 On the Fractional Integration of Generalized Mittag-Leffler Type Functions

Authors: Christian Lavault

Abstract:

In this paper, the generalized fractional integral operators of two generalized Mittag-Leffler type functions are investigated. The special cases of interest involve the generalized M-series and K-function, both introduced by Sharma. The two pairs of theorems established herein generalize recent results about left- and right-sided generalized fractional integration operators applied here to the M-series and the K-function. The note also results in important applications in physics and mathematical engineering.

Keywords: Fox–Wright Psi function, generalized hypergeometric function, generalized Riemann– Liouville and Erdélyi–Kober fractional integral operators, Saigo's generalized fractional calculus, Sharma's M-series and K-function

Procedia PDF Downloads 400
4829 Particle Swarm Optimization and Quantum Particle Swarm Optimization to Multidimensional Function Approximation

Authors: Diogo Silva, Fadul Rodor, Carlos Moraes

Abstract:

This work compares the results of multidimensional function approximation using two algorithms: the classical Particle Swarm Optimization (PSO) and the Quantum Particle Swarm Optimization (QPSO). These algorithms were both tested on three functions - The Rosenbrock, the Rastrigin, and the sphere functions - with different characteristics by increasing their number of dimensions. As a result, this study shows that the higher the function space, i.e. the larger the function dimension, the more evident the advantages of using the QPSO method compared to the PSO method in terms of performance and number of necessary iterations to reach the stop criterion.

Keywords: PSO, QPSO, function approximation, AI, optimization, multidimensional functions

Procedia PDF Downloads 543