Search results for: productive learning environment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15380

Search results for: productive learning environment

13340 Remedying Students' Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)

Authors: Ihuarulam A. Ikenna

Abstract:

In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and do not agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.

Keywords: remedying, students’ misconceptions, learning, intervention discussion, learning model

Procedia PDF Downloads 418
13339 Modelling the Effect of Physical Environment Factors on Child Pedestrian Severity Collisions in Malaysia: A Multinomial Logistic Regression Analysis

Authors: Muhamad N. Borhan, Nur S. Darus, Siti Z. Ishak, Rozmi Ismail, Siti F. M. Razali

Abstract:

Children are at the greater risk to be involved in road traffic collisions due to the complex interaction of various elements in our transportation system. It encompasses interactions between the elements of children and driver behavior along with physical and social environment factors. The present study examined the effect between the collisions severity and physical environment factors on child pedestrian collisions. The severity of collisions is categorized into four injury outcomes: fatal, serious injury, slight injury, and damage. The sample size comprised of 2487 cases of child pedestrian-vehicle collisions in which children aged 7 to 12 years old was involved in Malaysia for the years 2006-2015. A multinomial logistic regression was applied to establish the effect between severity levels and physical environment factors. The results showed that eight contributing factors influence the probability of an injury road surface material, traffic system, road marking, control type, lighting condition, type of location, land use and road surface condition. Understanding the effect of physical environment factors may contribute to the improvement of physical environment design and decrease the collision involvement.

Keywords: child pedestrian, collisions, primary school, road injuries

Procedia PDF Downloads 162
13338 Injury Prediction for Soccer Players Using Machine Learning

Authors: Amiel Satvedi, Richard Pyne

Abstract:

Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.

Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer

Procedia PDF Downloads 180
13337 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 89
13336 Reinforcement Learning Optimization: Unraveling Trends and Advancements in Metaheuristic Algorithms

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The field of machine learning (ML) is experiencing rapid development, resulting in a multitude of theoretical advancements and extensive practical implementations across various disciplines. The objective of ML is to facilitate the ability of machines to perform cognitive tasks by leveraging knowledge gained from prior experiences and effectively addressing complex problems, even in situations that deviate from previously encountered instances. Reinforcement Learning (RL) has emerged as a prominent subfield within ML and has gained considerable attention in recent times from researchers. This surge in interest can be attributed to the practical applications of RL, the increasing availability of data, and the rapid advancements in computing power. At the same time, optimization algorithms play a pivotal role in the field of ML and have attracted considerable interest from researchers. A multitude of proposals have been put forth to address optimization problems or improve optimization techniques within the domain of ML. The necessity of a thorough examination and implementation of optimization algorithms within the context of ML is of utmost importance in order to provide guidance for the advancement of research in both optimization and ML. This article provides a comprehensive overview of the application of metaheuristic evolutionary optimization algorithms in conjunction with RL to address a diverse range of scientific challenges. Furthermore, this article delves into the various challenges and unresolved issues pertaining to the optimization of RL models.

Keywords: machine learning, reinforcement learning, loss function, evolutionary optimization techniques

Procedia PDF Downloads 72
13335 The Impact of Work-Related Crime on the Work Environment

Authors: Monica Kaltenbrunner

Abstract:

Work-related crime has severe consequences for individual employees and society, and the problem has received widespread attention. For those who work where this type of criminality occurs, it can deteriorate the work environment. The purpose of the systematic literature review is to collate and enhance knowledge about work-related crime and its consequences for the work environment, primarily from an employee perspective. A comprehensive literature search was conducted in three databases, with the final search in May 2024. Grey literature was searched for on relevant websites. Only literature conducted in the EU, Norway, and Canada between 2013 and 2024 was included. Industries represented are land-based industry, hotel and restaurant, health and welfare/domestic work, construction, vehicles and transport, and cleaning. The literature review includes 39 publications, of which 33 are scientific studies. The results show that both men and women work in a work-related crime setting, most from Central and Eastern Europe, Asia, Africa, and South America. The results demonstrate that, regardless of workers’ gender or industry, workers are being exploited. Their work environment is characterized by high demand, low influence and low support. It is also common for the work environment to involve different risks, such as safety problems and risks of harassment and discrimination. This systematic literature review is one of few that focuses on the employee perspective on the work environment in workplaces where work-related crime occurs and collates existing research within the field.

Keywords: occupational safety and health, undeclared work, migrant, exploitation

Procedia PDF Downloads 2
13334 Mobile Learning and Student Engagement in English Language Teaching: The Case of First-Year Undergraduate Students at Ecole Normal Superieur, Algeria

Authors: I. Tiahi

Abstract:

The aim of the current paper is to explore educational practices in contemporary Algeria. Researches explain such practices bear traditional approach and the overlooks modern teaching methods such as mobile learning. That is why the research output of examining student engagement in respect of mobile learning was obtained from the following objectives: (1) To evaluate the current practice of English language teaching within Algerian higher education institutions, (2) To explore how social constructivism theory and m-learning help students’ engagement in the classroom and (3) To explore the feasibility and acceptability of m-learning amongst institutional leaders. The methodology underpins a case study and action research. For the case study, the researcher engaged with 6 teachers, 4 institutional leaders, and 30 students subjected for semi-structured interviews and classroom observations to explore the current teaching methods for English as a foreign language. For the action research, the researcher applied an intervention course to investigate the possibility and implications for future implementation of mobile learning in higher education institutions. The results were deployed using thematic analysis. The research outcome showed that the disengagement of students in English language learning has many aspects. As seen from the interviews from the teachers, the researcher found that they do not have enough resources except for using ppt for some teacher. According to them, the teaching method they are using is mostly communicative and competency-based approach. Teachers informed that students are disengaged because they have psychological barriers. In classroom setting, the students are conscious about social approval from the peer, and thus if they are to face negative reinforcement which would damage their image, it is seen as a preventive mechanism to be scared of committing mistakes. This was also very reflective in this finding. A lot of other arguments can be given for this claim; however, in Algerian setting, it is usual practice where teachers do not provide positive reinforcement which is open up students for possible learning. Thus, in order to overcome such a psychological barrier, proper measures can be taken. On a conclusive remark, it is evident that teachers, students, and institutional leaders provided positive feedback for using mobile learning. It is not only motivating but also engaging in learning processes. Apps such as Kahoot, Padlet and Slido were well received and thus can be taken further to examine its higher impact in Algerian context. Thus, in the future, it will be important to implement m-learning effectively in higher education to transform the current traditional practices into modern, innovative and active learning. Persuasion for this change for stakeholder may be challenging; however, its long-term benefits can be reflective from the current research paper.

Keywords: Algerian context, mobile learning, social constructivism, student engagement

Procedia PDF Downloads 137
13333 The Antecedents That Effect to the Adventure Tourism in Krabi, Thailand

Authors: Autjira Songjan, Vimolsri Sansuk

Abstract:

The research aim to study the possible negative environmental impact by adventure tourism in Krabi, Thailand, which is a popular destination for adventure tourism. The research is carried out through quantitative and qualitative methods. Questionnaires are distributed to 400 adventure tourists: 160 Thai and 240 international tourists. Questions involved experiences and opinions towards the environment and certain practices which influence a protection or degradation of environment from tour guides, tour operators and tourists. Furthermore, in-depth interviews were carried out with 21 adventure tour operators operating 5 main adventure tours. The finding shows the various types of adventure activities in Krabi involve different kinds of nature, therefore the characteristics of the different adventure activities are likely to affect the physical environment in different level. Kayaking tours are managed inside the mangrove forests, and may lead to negative impact on the ecosystem of mangroves, through loud noise, pulling out the mangrove population.

Keywords: adventure activities, Krabi province in Thailand, physical environment, adventure tourism

Procedia PDF Downloads 265
13332 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph

Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao

Abstract:

As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.

Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning

Procedia PDF Downloads 170
13331 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 77
13330 Fapitow: An Advanced AI Agent for Travel Agent Competition

Authors: Faiz Ul Haque Zeya

Abstract:

In this paper, Fapitow’s bidding strategy and approach to participate in Travel Agent Competition (TAC) is described. Previously, Fapitow is designed using the agents provided by the TAC Team and mainly used their modification for developing our strategy. But later, by observing the behavior of the agent, it is decided to come up with strategies that will be the main cause of improved utilities of the agent, and by theoretical examination, it is evident that the strategies will provide a significant improvement in performance which is later proved by agent’s performance in the games. The techniques and strategies for further possible improvement are also described. TAC provides a real-time, uncertain environment for learning, experimenting, and implementing various AI techniques. Some lessons learned about handling uncertain environments are also presented.

Keywords: agent, travel agent competition, bidding, TAC

Procedia PDF Downloads 105
13329 Development Framework Based on Mobile Augmented Reality for Pre-Literacy Kit

Authors: Nazatul Aini Abd Majid, Faridah Yunus, Haslina Arshad, Mohammad Farhan Mohammad Johari

Abstract:

Mobile technology, augmented reality, and game-based learning are some of the key learning technologies that can be fully optimized to promote pre-literacy skills. The problem is how to design an effective pre-literacy kit that utilizes some of the learning technologies. This paper presents a framework based on mobile augmented reality for the development of pre-literacy kit. This pre-literacy kit incorporates three main components which are contents, design, and tools. A prototype of a mobile app based on the three main components was developed for promoting pre-literacy. The results show that the children and teachers gave positive feedbacks after using the mobile app for the pre-literacy.

Keywords: framework, mobile technology, augmented reality, pre-literacy skills

Procedia PDF Downloads 593
13328 Neuronal Mechanisms of Observational Motor Learning in Mice

Authors: Yi Li, Yinan Zheng, Ya Ke, Yungwing Ho

Abstract:

Motor learning is a process that frequently happens among humans and rodents, which is defined as the changes in the capability to perform a skill that is conformed to have a relatively permanent improvement through practice or experience. There are many ways to learn a behavior, among which is observational learning. Observational learning is the process of learning by watching the behaviors of others, for example, a child imitating parents, learning a new sport by watching the training videos or solving puzzles by watching the solutions. Many research explores observational learning in humans and primates. However, the neuronal mechanism of which, especially observational motor learning, was uncertain. It’s well accepted that mirror neurons are essential in the observational learning process. These neurons fire when the primate performs a goal-directed action and sees someone else demonstrating the same action, which suggests they have high firing activity both completing and watching the behavior. The mirror neurons are assumed to mediate imitation or play a critical and fundamental role in action understanding. They are distributed in many brain areas of primates, i.e., posterior parietal cortex (PPC), premotor cortex (M2), and primary motor cortex (M1) of the macaque brain. However, few researchers report the existence of mirror neurons in rodents. To verify the existence of mirror neurons and the possible role in motor learning in rodents, we performed customised string-pulling behavior combined with multiple behavior analysis methods, photometry, electrophysiology recording, c-fos staining and optogenetics in healthy mice. After five days of training, the demonstrator (demo) mice showed a significantly quicker response and shorter time to reach the string; fast, steady and accurate performance to pull down the string; and more precisely grasping the beads. During three days of observation, the mice showed more facial motions when the demo mice performed behaviors. On the first training day, the observer reduced the number of trials to find and pull the string. However, the time to find beads and pull down string were unchanged in the successful attempts on the first day and other training days, which indicated successful action understanding but failed motor learning through observation in mice. After observation, the post-hoc staining revealed that the c-fos expression was increased in the cognitive-related brain areas (medial prefrontal cortex) and motor cortices (M1, M2). In conclusion, this project indicated that the observation led to a better understanding of behaviors and activated the cognitive and motor-related brain areas, which suggested the possible existence of mirror neurons in these brain areas.

Keywords: observation, motor learning, string-pulling behavior, prefrontal cortex, motor cortex, cognitive

Procedia PDF Downloads 86
13327 The Use of Authentic Videos to Change Learners’ Negative Attitudes and Perceptions toward Grammar Learning

Authors: Khaldi Youcef

Abstract:

This investigation seeks to inquire into the effectiveness of using authentic videos for grammar teaching purposes. In this investigation, an English animated situation, Hercules, was used as a type of authentic multimedia to teach a particular grammatical structure, namely conditional sentences. This study also aims at investigating the EFL learners’ attitudes toward grammar learning after being exposed to such an authentic video. To reach that purpose, 56 EFL learners were required ultimately to respond to a questionnaire with an aim to reveal their attitudes towards grammar as a language entity and as a subject for being learned. Then, as a second stage of the investigation, the EFL learners were divided into a control group and an experimental group with 28 learners in each. The first group was taught grammar -conditional sentences- using a deductive-inductive approach, while the second group was exposed to an authentic video to learn conditional sentences. There was a post-lesson stage that included a questionnaire to be answered by learners of each group. The aim of this stage is to capture any change in learners' attitudes shown in the pre-lesson questionnaire. The findings of the first stage revealed learners' negative attitudes towards grammar learning. And the third stage results showed the effectiveness of authentic videos in entirely turning learners' attitudes toward grammar learning to be significantly positive. Also, the utility of authentic videos in highly motivating EFL learners can be deduced. The findings of this survey asserted the need for incorporation and integration of authentic videos in EFL classrooms as they resulted in rising effectively learners’ awareness of grammar and looking at it from a communicative perspective.

Keywords: multimedia, authentic videos, negative attitudes, grammar learning, EFL learners

Procedia PDF Downloads 97
13326 Educatronic Prototype for Learning Geometry, Based on a Multitouch Surface

Authors: Vicario Marina, Bustos Freddy, Olivares Jesús, Gómez Pilar

Abstract:

This paper presents a didactic model and a tool as educational resources to support the learning of geometry; they focus on topics difficult to understand. The target population is elementary school students. The tool is based on a collaborative educational approach using multi-touch devices. The proposal is based on the challenges found in the instructional design and prototype implementation. Traditionally, elementary students have had many problems assimilating mathematical topics; this new Educatronic prototype facilitates the learning experience using exercises and they were tested with different children demonstrating the benefits of the prototype by improving their mathematical skills.

Keywords: educatronic prototype, geometry, multitouch surface, educational computing, primary school, mathematics, educational informatics

Procedia PDF Downloads 316
13325 The Effect of Observational Practice on the Volleyball Service Learning with Emphasis on the Role of Self–Efficacy

Authors: Majed Zobairy, Payam Mohammadpanahi

Abstract:

Introduction: Skill movement education is one of extremely important duty for sport coaches and sport teachers. Researchers have done lots of studies in this filed to gain the best methodology in movement learning. One of the essential aspects in skill movement education is observational learning. Observational learning, or learning by watching demonstrations, has been characterized as one of the most important methods by which people learn variety of skill and behaviours.The purpose of this study was determined the effect of observational practice on the volleyball service learning with emphasis on the Role of Self–Efficacy. Methods: The Sample consisted of100 male students was assigned accessible sampling technique and homogeneous manner with emphasis on the Role of Self–Efficacy level to 4 groups. The first group performed physical training, the second group performed observational practice task, the third practiced physically and observationally and the fourth group served as the control group. The experimental groups practiced in a one day acquisition and performed the retention task, after 72 hours. Kolmogorov-Smirnov test and independent t-test were used for Statistical analyses. Results and Discussion: Results shows that observation practice task group can significantly improve volleyball services skills acquisition (T=7.73). Also mixed group (physically and observationally) is significantly better than control group regarding to volleyball services skills acquisition (T=7.04). Conclusion: Results have shown observation practice task group and mixed group are significantly better than control group in acquisition test. The present results are in line with previous studies, suggesting that observation learning can improve performance. On the other hand, results shows that self-efficacy level significantly effect on acquisition movement skill. In other words, high self-efficacy is important factor in skill learning level in volleyball service.

Keywords: observational practice, volleyball service, self–efficacy, sport science

Procedia PDF Downloads 393
13324 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image

Authors: Abe D. Desta

Abstract:

This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.

Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking

Procedia PDF Downloads 124
13323 Response of First Bachelor of Medicine, Bachelor of Surgery (MBBS) Students to Integrated Learning Program

Authors: Raveendranath Veeramani, Parkash Chand, H. Y. Suma, A. Umamageswari

Abstract:

Background and Aims: The aim of this study was to evaluate students’ perception of Integrated Learning Program[ILP]. Settings and Design: A questionnaire was used to survey and evaluate the perceptions of 1styear MBBS students at the Department of Anatomy at our medical college in India. Materials and Methods: The first MBBS Students of Anatomy were involved in the ILP on the Liver and extra hepatic biliary apparatus integrating the Departments of Anatomy, Biochemistry and Hepato-biliary Surgery. The evaluation of the ILP was done by two sets of short questionnaire that had ten items using the Likert five-point grading scale. The data involved both the students’ responses and their grading. Results: A majority of students felt that the ILP was better in as compared to the traditional lecture method of teaching.The integrated teaching method was better at fulfilling learning objectives (128 students, 83%), enabled better understanding (students, 94%), were more interesting (140 students, 90%), ensured that they could score better in exams (115 students, 77%) and involved greater interaction (100 students, 66%), as compared to traditional teaching methods. Most of the students (142 students, 95%) opined that more such sessions should be organized in the future. Conclusions: Responses from students show that the integrated learning session should be incorporated even at first phase of MBBS for selected topics so as to create interest in the medical sciences at the entry level and to make them understand the importance of basic science.

Keywords: integrated learning, students response, vertical integration, horizontal integration

Procedia PDF Downloads 198
13322 A Game-Based Product Modelling Environment for Non-Engineer

Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige

Abstract:

In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.

Keywords: game-based learning, knowledge based engineering, product modelling, design automation

Procedia PDF Downloads 153
13321 Using Short Learning Programmes to Develop Students’ Digital Literacies in Art and Design Education

Authors: B.J. Khoza, B. Kembo

Abstract:

Global socioeconomic developments and ever-growing technological advancements of the art and design industry indicate the pivotal importance of lifelong learning. There exists a discrepancy between competencies, personal ambition, and workplace requirements. There are few , if at all, institutions of higher learning in South Africa which offer Short Learning Programmes (SLP) in Art and Design Education. Traditionally, Art and Design education is delivered face to face via a hands-on approach. In this way the enduring perception among educators is that art and design education does not lend itself to online delivery. Short Learning programmes (SLP) are a concentrated approach to make revenue and lure potential prospective students to embark on further education study, this is often of weighted value to both students and employers. SLPs are used by Higher Education institutions to generate income in support of the core academic programmes. However, there is a gap in terms of the translation of art and design studio pedagogy into SLPs which provide quality education, are adaptable and delivered via a blended mode. In our paper, we propose a conceptual framework drawing on secondary research to analyse existing research to SLPs for arts and design education. We aim to indicate a new dimension to the process of using a design-based research approach for short learning programmes in art and design education. The study draws on a conceptual framework, a qualitative analysis through the lenses of Herrington, McKenney, Reeves and Oliver (2005) principles of the design-based research approach. The results of this study indicate that design-based research is not only an effective methodological approach for developing and deploying arts and design education curriculum for 1st years in Higher Education context but it also has the potential to guide future research. The findings of this study propose that the design-based research approach could bring theory and praxis together regarding a common purpose to design context-based solutions to educational problems.

Keywords: design education, design-based research, digital literacies, multi-literacies, short learning programme

Procedia PDF Downloads 164
13320 Collaborative Learning Strategies in Engineering Tuition Focused on Students’ Engagement

Authors: Maria Gonzalez Alriols, Itziar Egues, Maria A. Andres, Mirari Antxustegi

Abstract:

Peer to peer learning is an educational tool very useful to enhance teamwork and reinforce cooperation between mates. It is particularly successful to work with students of different level of previous knowledge, as it often happens among pupils of subjects in the first course of science and engineering studies. Depending on the performed pre-university academic itinerary, the acquired knowledge in disciplines as mathematics, physics, or chemistry may be quite different. This fact is an added difficulty to the tuition of first-course basic science subjects of engineering degrees, with inexperienced students that do not know each other. In this context, peer to peer learning applied in small groups facilitates the communication between mates and makes it easier for the students with low level to be helped by the ones with better prior knowledge. In this work, several collaborative learning strategies were designed to be applied in the tuition of the subject 'chemistry', which is imparted in the first course of an engineering degree. Students were organized in groups combining mates with different level of prior knowledge. The teaching role was offered to the more experienced students who were responsible for designing learning pills to help the other mates in their group. This workload was rewarded with an extra mark, and more extra points were offered to all the group mates if every student in the group reached a determined level at the end of the semester. It was very important to start these activities from the beginning of the semester in order to avoid absenteeism. The obtained results were positive as a higher percentage of mates signed up and passed the final exam, the obtained final marks were higher, and a much better atmosphere was observed in the class.

Keywords: peer to peer tuition, collaborative learning, engineering instruction, chemistry

Procedia PDF Downloads 139
13319 The Use of Creativity to Nudge Students Into Heutagogy: An Implementation in Graduate Business Education

Authors: Ricardo Bragança, Tom Vinaimont

Abstract:

This paper discusses the introduction of processes of self-determined learning (heutagogy) into a graduate course on financial modeling, using elements of entangled pedagogy and Biggs’ constructive alignment. To encourage learners to take control of their own learning journey and develop critical thinking and problem-solving skills, each session in the course receives tailor-made media-enhanced pedagogical assets. The design of those assets specifically supports entangled pedagogy, which opposes technological or pedagogical determinism in support of the collaborative integration of pedagogy and technology. Media assets for each of the ten sessions in this course consist of three components. The first component in this three-pronged approach is a game-cut-like cinematographic representation that introduces the context of the session. The second component represents a character from an open-source-styled community that encourages self-determined learning. The third component consists of a character, which refers to the in-person instructor and also aligns learning outcomes and assessment tasks, using Biggs’ constructive alignment, to the cinematographic and open-source-styled component. In essence, the course's metamorphosis helps students apply the concepts they've studied to actual financial modeling issues. The audio-visual media assets create a storyline throughout the course based on gamified and real-world applications, thus encouraging student engagement and interaction. The structured entanglement of pedagogy and technology also guides the instructor in the design of the in-class interactions and directs the focus on outcomes and assessments. The transformation process of this graduate course in financial modeling led to an institutional teaching award in 2021. The transformation of this course may be used as a model for other courses and programs in many disciplines to help with intended learning outcomes integration, constructive alignment, and Assurance of Learning.

Keywords: innovative education, active learning, entangled pedagogy, heutagogy, constructive alignment, project based learning, financial modeling, graduate business education

Procedia PDF Downloads 70
13318 Correlation between Speech Emotion Recognition Deep Learning Models and Noises

Authors: Leah Lee

Abstract:

This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.

Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16

Procedia PDF Downloads 75
13317 Motivation on Vocabulary and Reading Skill via Teacher-Created Website for Thai Students

Authors: P. Klinkesorn, S. Yordchim, T. Gibbs, J. Achariyopas

Abstract:

Vocabulary and reading skill were examined in terms of teaching and learning via teacher-created website. The aims of this study are 1) to survey students’ opinions on the teacher-created website for learning vocabulary and reading skill 2) to survey the students’ motivation for learning vocabulary and reading skill through the teacher-created website. Motivation was applied to the results of the questionnaires and interview forms. Finding suggests that Teacher-Created Website can increase students’ motivation to read more, build up a large stock of vocabulary and improve their understanding of the vocabulary. Implications for developing both social engagement and emotional satisfaction are discussed.

Keywords: motivation, teacher-created website, Thai students, vocabulary and reading skill

Procedia PDF Downloads 462
13316 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study

Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng

Abstract:

MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.

Keywords: microRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM

Procedia PDF Downloads 397
13315 Radar Fault Diagnosis Strategy Based on Deep Learning

Authors: Bin Feng, Zhulin Zong

Abstract:

Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.

Keywords: radar system, fault diagnosis, deep learning, radar fault

Procedia PDF Downloads 90
13314 NABERS Indoor Environment - a Rating Tool to Benchmark the IEQ of Australian Office Commercial Buildings

Authors: Kazi Hossain

Abstract:

The National Australian Built Environment Rating System (NABERS) is the key industry standard for measuring and benchmarking environmental performance of existing buildings in Australia. Developed and run by the New South Wales government, NABERS measures the operational efficiency of different types of buildings by using a set of tools that provide an easy to understand graphical rating outcome ranged from 0 to 6 stars. This set of tools also include a tool called NABERS IE which enables tenants or building managers to benchmark their buildings indoor environment quality against the national market. Launched in 2009, the number NABERS IE ratings have steadily increased from 10 certified ratings in 2011 to 43 in 2013. However there is a massive uptake of over 50 ratings alone in 2014 making the number of ratings to reach over 100. This paper outlines the methodology used to create this tool, a statistical overview of the tool, and the driving factor that motivates the building owners and managers to use this tool every year to rate their buildings.

Keywords: Acoustic comfort, Indoor air quality, Indoor Environment, NABERS, National Australian Built Environment Rating System, Performance rating, Rating System, Thermal comfort, Ventilation effectiveness, Visual comfort.

Procedia PDF Downloads 561
13313 Errors and Misconceptions for Students with Mathematical Learning Disabilities: Quest for Suitable Teaching Strategy

Authors: A. K. Tsafe

Abstract:

The study investigates the efficacy of Special Mathematics Teaching Strategy (SMTS) as against Conventional Mathematics Teaching Strategy (CMTS) in teaching students identified with Mathematics Learning Disabilities (MLDs) – dyslexia, Down syndrome, dyscalculia, etc., in some junior secondary schools around Sokoto metropolis. Errors and misconceptions in learning Mathematics displayed by these categories of students were observed. Theory of variation was used to provide a prism for viewing the MLDs from theoretical perspective. Experimental research design was used, involving pretest-posttest non-randomized approach. Pretest was administered to the intact class taught using CMTS before the class was split into experimental and control groups. Experimental group of the students – those identified with MLDs was taught with SMTS and later mean performance of students taught using the two strategies was sought to find if there was any significant difference between the performances of the students. A null hypothesis was tested at α = 0.05 level of significance. T-test was used to establish the difference between the mean performances of the two tests. The null hypothesis was rejected. Hence, the performance of students, identified with MLDs taught using SMTS was found to be better than their earlier performance taught using CMTS. The study, therefore, recommends amongst other things that teachers should be encouraged to use SMTS in teaching mathematics especially when students are found to be suffering from MLDs and exhibiting errors and misconceptions in the process of learning mathematics.

Keywords: disabilities, errors, learning, misconceptions

Procedia PDF Downloads 96
13312 A Development of Creative Instruction Model through Digital Media

Authors: Kathaleeya Chanda, Panupong Chanplin, Suppara Charoenpoom

Abstract:

This purposes of the development of creative instruction model through digital media are to: 1) enable learners to learn from instruction media application; 2) help learners implementing instruction media correctly and appropriately; and 3) facilitate learners to apply technology for searching information and practicing skills to implement technology creatively. The sample group consists of 130 cases of secondary students studying in Bo Kluea School, Bo Kluea Nuea Sub-district, Bo Kluea District, Nan Province. The probability sampling was selected through the simple random sampling and the statistics used in this research are percentage, mean, standard deviation and one group pretest – posttest design. The findings are summarized as follows: The congruence index of instruction media for occupation and technology subjects is appropriate. By comparing between learning achievements before implementing the instruction media and learning achievements after implementing the instruction media, it is found that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. For the learning achievements from instruction media implementation, pretest mean is 16.24 while posttest mean is 26.28. Besides, pretest and posttest results are compared and differences of mean are tested, the test results show that the posttest achievements are higher than the pretest achievements with statistical significance at the level of .05. This can be interpreted that the learners achieve better learning progress.

Keywords: teaching learning model, digital media, creative instruction model, Bo Kluea school

Procedia PDF Downloads 142
13311 Strategic Alliances of US Engineering and Construction Companies in China

Authors: Zonggui Chen, Yuhong Wang, Yun Le

Abstract:

U.S. engineering and construction companies have increased their presence in China. A strategy for them to enter and operate in China is to forge strategic alliances with local firms. Managing the differences in motives and cultures and using proper controls are essential for a productive strategic alliance. Based on literature and in-depth interviews, this paper examines the differences in motives and cultures within Sino–U.S. strategic alliances and the impacts of the differences on control mechanisms. This paper not only contributes to a better understanding of cross-border strategic alliances in construction, but also facilitates the operation of the alliances.

Keywords: strategic alliance, Chinese construction industry, motives, cultural differences

Procedia PDF Downloads 325