Search results for: subcritical water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8652

Search results for: subcritical water

6642 Enhanced Solar-Driven Evaporation Process via F-Mwcnts/Pvdf Photothermal Membrane for Forward Osmosis Draw Solution Recovery

Authors: Ayat N. El-Shazly, Dina Magdy Abdo, Hamdy Maamoun Abdel-Ghafar, Xiangju Song, Heqing Jiang

Abstract:

Product water recovery and draw solution (DS) reuse is the most energy-intensive stage in forwarding osmosis (FO) technology. Sucrose solution is the most suitable DS for FO application in food and beverages. However, sucrose DS recovery by conventional pressure-driven or thermal-driven concentration techniques consumes high energy. Herein, we developed a spontaneous and sustainable solar-driven evaporation process based on a photothermal membrane for the concentration and recovery of sucrose solution. The photothermal membrane is composed of multi-walled carbon nanotubes (f-MWCNTs)photothermal layer on a hydrophilic polyvinylidene fluoride (PVDF) substrate. The f-MWCNTs photothermal layer with a rough surface and interconnected network structures not only improves the light-harvesting and light-to-heat conversion performance but also facilitates the transport of water molecules. The hydrophilic PVDF substrate can promote the rapid transport of water for adequate water supply to the photothermal layer. As a result, the optimized f-MWCNTs/PVDF photothermal membrane exhibits an excellent light absorption of 95%, and a high surface temperature of 74 °C at 1 kW m−2 . Besides, it realizes an evaporation rate of 1.17 kg m−2 h−1 for 5% (w/v) of sucrose solution, which is about 5 times higher than that of the natural evaporation. The designed photothermal evaporation process is capable of concentrating sucrose solution efficiently from 5% to 75% (w/v), which has great potential in FO process and juice concentration.

Keywords: solar, pothothermal, membrane, MWCNT

Procedia PDF Downloads 99
6641 Remote Sensing of Aerated Flows at Large Dams: Proof of Concept

Authors: Ahmed El Naggar, Homyan Saleh

Abstract:

Dams are crucial for flood control, water supply, and the creation of hydroelectric power. Every dam has a water conveyance system, such as a spillway, providing the safe discharge of catastrophic floods when necessary. Spillway design has historically been investigated in laboratory research owing to the absence of suitable full-scale flow monitoring equipment and safety problems. Prototype measurements of aerated flows are urgently needed to quantify projected scale effects and provide missing validation data for design guidelines and numerical simulations. In this work, an image-based investigation of free-surface flows on a tiered spillway was undertaken at the laboratory (fixed camera installation) and prototype size (drone video) (drone footage) (drone footage). The drone videos were generated using data from citizen science. Analyses permitted the measurement of the free-surface aeration inception point, air-water surface velocities, fluctuations, and residual energy at the chute's downstream end from a remote site. The prototype observations offered full-scale proof of concept, while laboratory results were efficiently confirmed against invasive phase-detection probe data. This paper stresses the efficacy of image-based analyses at prototype spillways. It highlights how citizen science data may enable academics better understand real-world air-water flow dynamics and offers a framework for a small collection of long-missing prototype data.

Keywords: remote sensing, aerated flows, large dams, proof of concept, dam spillways, air-water flows, prototype operation, remote sensing, inception point, optical flow, turbulence, residual energy

Procedia PDF Downloads 92
6640 Advances in Membrane Technologies for Wastewater Treatment

Authors: Deniz Sahin

Abstract:

This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved.

Keywords: industrial pollution, membrane technologies, metal ions, wastewater

Procedia PDF Downloads 197
6639 Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications.

Keywords: fly-ash, carbon black, nanotechnology, geopolymer

Procedia PDF Downloads 113
6638 Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images

Authors: Yindi Zhao, Yun Zhang, Silu Xia, Lixin Wu

Abstract:

The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image.

Keywords: level set model, multi-temporal image, lake contour extraction, contour update

Procedia PDF Downloads 366
6637 Comparative Sulphate Resistance of Pozzolanic Cement Mortars

Authors: Mahmud Abba Tahir

Abstract:

This is report on experiment out to compare the sulphate resistance of sand mortar made with five different pozzolanic cement. The pozzolanic cement were prepared by blending powered burnt bricks from the Adamawa, Makurdi, Kano, Kaduna and Niger bricks factories with ordinary Portland cement in the ratio 1:4. Sand –pozzolanic cement mortars of mix ratio 1:6 and 1:3 with water-cement ratio of 0.65 and 0.40 respectively were used to prepare cubes and bars specimens. 150 mortar cubes of size 70mm x 70mm x 70mm and 35 mortar bars of 15mm x 15mm x 100mm dimensions were cast and cured for 28 days. The cured specimens then immersed in the solutions of K2SO4, (NH4)2SO4 and water for 28 days and then tested. The compressive strengths of cubes in water increased by 34% while those in the sulphate solutions decreased. Strength decreases of the cubes, cracking and warping of bars immersed in K2SO4 were less than those in (NH4)2SO4. Specimens made with Niger and Makurdi pulverized burnt bricks experienced less effect of the sulphates and can therefore be used as pozzolan in mortar and concrete to resist sulphate.

Keywords: burnt bricks powder, comparative, pozzolanic cement, sulphates

Procedia PDF Downloads 244
6636 Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator

Authors: S. Movafagh, Y. Bakhshan

Abstract:

In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied.

Keywords: forced convection, nanofluid, radiator, CFD simulation

Procedia PDF Downloads 344
6635 Chitin Nanocrystals as Sustainable Surfactant Alternative for Enhancing Oil-in-Water Emulsions Stability in Oil and Gas Fields

Authors: A. Altomi, A. Alhebshi, M. Rasm, B. Osman

Abstract:

This study explored the application of chitin nanocrystals (ChiNCs), derived from a renewable and environmentally friendly material, as stabilizers for oil-in-water (O/W) emulsions. O/W emulsions are commonly used in various applications but are prone to instability and degradation over time. Instability can occur due to factors such as flocculation, coalescence, and gravitational separation, including creaming and sedimentation, either independently or simultaneously. To produce ChiNCs, chitin powder underwent acid hydrolysis. Transmission electron microscopy (TEM) analysis revealed that ChiNCs exhibited a needle-like morphology, with lengths ranging from 200 to 800 nm and widths ranging from 20 to 80 nm. The surface charge of ChiNCs was negative at pH values above 7 and positive at pH values below 7. The rheological properties of O/W emulsions stabilized by ChiNCs were compared to those stabilized by synthetic surfactants, namely Tween 80 and CTAB. The emulsions stabilized by ChiNCs demonstrated higher yield stress and lower shear viscosity compared to those stabilized by synthetic surfactants. This indicates that ChiNC-stabilized emulsions are more stable and less prone to breakdown. Based on these findings, ChiNCs show promise as an alternative to synthetic surfactants for stabilizing O/W emulsions.

Keywords: chitin nanocrystals, colloidal pickering, emulsion rheology, oil-in-water, synthetic surfactant

Procedia PDF Downloads 62
6634 Improving Photocatalytic Efficiency of TiO2 Films Incorporated with Natural Geopolymer for Sunlight-Driven Water Purification

Authors: Satam Alotibi, Haya A. Al-Sunaidi, Almaymunah M. AlRoibah, Zahraa H. Al-Omaran, Mohammed Alyami, Fatehia S. Alhakami, Abdellah Kaiba, Mazen Alshaaer, Talal F. Qahtan

Abstract:

This research study presents a novel approach to harnessing the potential of natural geopolymer in conjunction with TiO₂ nanoparticles (TiO₂ NPs) for the development of highly efficient photocatalytic materials for water decontamination. The study begins with the formulation of a geopolymer paste derived from natural sources, which is subsequently applied as a coating on glass substrates and allowed to air-dry at room temperature. The result is a series of geopolymer-coated glass films, serving as the foundation for further experimentation. To enhance the photocatalytic capabilities of these films, a critical step involves immersing them in a suspension of TiO₂ nanoparticles (TiO₂ NPs) in water for varying durations. This immersion process yields geopolymer-loaded TiO₂ NPs films with varying concentrations, setting the stage for comprehensive characterization and analysis. A range of advanced analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), were meticulously employed to assess the structural, morphological, and chemical properties of the geopolymer-based TiO₂ films. These analyses provided invaluable insights into the materials' composition and surface characteristics. The culmination of this research effort sees the geopolymer-based TiO₂ films being repurposed as immobilized photocatalytic reactors for water decontamination under natural sunlight irradiation. Remarkably, the results revealed exceptional photocatalytic performance that exceeded the capabilities of conventional TiO₂-based photocatalysts. This breakthrough underscores the significant potential of natural geopolymer as a versatile and highly effective matrix for enhancing the photocatalytic efficiency of TiO₂ nanoparticles in water treatment applications. In summary, this study represents a significant advancement in the quest for sustainable and efficient photocatalytic materials for environmental remediation. By harnessing the synergistic effects of natural geopolymer and TiO₂ nanoparticles, these geopolymer-based films exhibit outstanding promise in addressing water decontamination challenges and contribute to the development of eco-friendly solutions for a cleaner and healthier environment.

Keywords: geopolymer, TiO2 nanoparticles, photocatalytic materials, water decontamination, sustainable remediation

Procedia PDF Downloads 67
6633 Uncertainty and Multifunctionality as Bridging Concepts from Socio-Ecological Resilience to Infrastructure Finance in Water Resource Decision Making

Authors: Anita Lazurko, Laszlo Pinter, Jeremy Richardson

Abstract:

Uncertain climate projections, multiple possible development futures, and a financing gap create challenges for water infrastructure decision making. In contrast to conventional predict-plan-act methods, an emerging decision paradigm that enables social-ecological resilience supports decisions that are appropriate for uncertainty and leverage social, ecological, and economic multifunctionality. Concurrently, water infrastructure project finance plays a powerful role in sustainable infrastructure development but remains disconnected from discourse in socio-ecological resilience. At the time of research, a project to transfer water from Lesotho to Botswana through South Africa in the Orange-Senqu River Basin was at the pre-feasibility stage. This case was analysed through documents and interviews to investigate how uncertainty and multifunctionality are conceptualised and considered in decisions for the resilience of water infrastructure and to explore bridging concepts that might allow project finance to better enable socio-ecological resilience. Interviewees conceptualised uncertainty as risk, ambiguity and ignorance, and multifunctionality as politically-motivated shared benefits. Numerous efforts to adopt emerging decision methods that consider these terms were in use but required compromises to accommodate the persistent, conventional decision paradigm, though a range of future opportunities was identified. Bridging these findings to finance revealed opportunities to consider a more comprehensive scope of risk, to leverage risk mitigation measures, to diffuse risks and benefits over space, time and to diverse actor groups, and to clarify roles to achieve multiple objectives for resilience. In addition to insights into how multiple decision paradigms interact in real-world decision contexts, the research highlights untapped potential at the juncture between socio-ecological resilience and project finance.

Keywords: socio-ecological resilience, finance, multifunctionality, uncertainty

Procedia PDF Downloads 126
6632 Estimation of Aquifer Properties Using Pumping Tests: Case Study of Pydibhimavaram Industrial Area, Srikakulam, India

Authors: G. Venkata Rao, P. Kalpana, R. Srinivasa Rao

Abstract:

Adequate and reliable estimates of aquifer parameters are of utmost importance for proper management of vital groundwater resources. At present scenario the ground water is polluted because of industrial waste disposed over the land and the contaminants are transported in the aquifer from one area to another area which is depending on the characteristics of the aquifer and contaminants. To know the contaminant transport, the accurate estimation of aquifer properties is highly needed. Conventionally, these properties are estimated through pumping tests carried out on water wells. The occurrence and movement of ground water in the aquifer are characteristically defined by the aquifer parameters. The pumping (aquifer) test is the standard technique for estimating various hydraulic properties of aquifer systems, viz, transmissivity (T), hydraulic conductivity (K), storage coefficient (S) etc., for which the graphical method is widely used. The study area for conducting pumping test is Pydibheemavaram Industrial area near the coastal belt of Srikulam, AP, India. The main objective of the present work is to estimate the aquifer properties for developing contaminant transport model for the study area.

Keywords: aquifer, contaminant transport, hydraulic conductivity, industrial waste, pumping test

Procedia PDF Downloads 446
6631 Drainage Management In A Cascade Hydroponic System: Combination Of Cucumber And Melon Crops

Authors: Nikolaos Katsoulas, Ioannis Naounoulis, Sofia Faliagka

Abstract:

Cascade hydroponic systems have the potential to minimize environmental impact and improve resource efficiency by recycling the nutrient solution drained from a hydroponic (primary-donor) crop to irrigate another (secondary-receiver), less sensitive to salinity crop. However, it remains unclear if the drained solution from the primary crop can fully meet the nutritional requirements of a secondary crop and whether the productivity of the secondary crop is affected. To address this question, a prototype cascade hydroponic system was designed and tested using a cucumber crop as the donor crop and a melon as secondary crop. The performance of the system in terms of productivity and water and nutrient use efficiency was evaluated by measuring plant growth, fresh and dry matter production, nutrients content, and photosynthesis rate in the secondary crop. The amount of water and nutrients used for the primary and secondary crops was also recorded. This work was carried out under the ECONUTRI project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Horizon Europe Grant agreement: 101081858.

Keywords: hydroponics, salinity, water use efficiencu, nutrients use efficiency

Procedia PDF Downloads 82
6630 Mechanical and Barrier Properties of Cellulose Fibers/HNT Reinforced Epoxy Nanocomposites

Authors: H. Alamri

Abstract:

Natural fiber reinforced composites have attracted researchers for their desirable properties of toughness, high modulus, low density, recyclability, and renewability. In fact, the use of natural fibers in polymer composites has the potential to produce materials with higher specific strength and specific modulus due of their low density. Likewise, polymer-nano-filler composites have been widely investigated for their unique and significant improvement in strength, modulus, impact strength, barrier properties, heat resistance and thermal stability. In this paper, The addition of halloysite nanotubes (HNTs) with three different weight percentages (1%, 3% and 5%) on enhancing barrier and flexural strength and modulus of cellulose-fiber (CF) /epoxy composites after water treatment for six months was studied. Results indicated that water uptake decreased as HNT content increased. The presence of HNT improved flexural strength and flexural modulus of CF/epoxy composites. SEM results showed damages in fiber-matrix interfacial bonding due to water absorption. The addition of HNTs was found to enhance to adhesion between fibers and matrix.

Keywords: mechanical properties, epoxy, nanocomposites, halloysite nanotubes

Procedia PDF Downloads 327
6629 Geochemistry and Tectonic Framework of Malani Igneous Suite and Their Effect on Groundwater Quality of Tosham, India

Authors: Naresh Kumar, Savita Kumari, Naresh Kochhar

Abstract:

The objective of the study was to assess the role of mineralogy and subsurface structure on water quality of Tosham, Malani Igneous Suite (MIS), Western Rajasthan, India. MIS is the largest (55,000 km2) A-type, anorogenic and high heat producing acid magmatism in the peninsular India and owes its origin to hot spot tectonics. Apart from agricultural and industrial wastes, geogenic activities cause fluctuations in quality parameters of water resources. Twenty water samples (20) selected from Tosham and surrounding areas were analyzed for As, Pb, B, Al, Zn, Fe, Ni using Inductive coupled plasma emission and F by Ion Chromatography. The concentration of As, Pb, B, Ni and F was above the stipulated level specified by BIS (Bureau of Indian Standards IS-10500, 2012). The concentration of As and Pb in surrounding areas of Tosham ranged from 1.2 to 4.1 mg/l and from 0.59 to 0.9 mg/l respectively which is higher than limits of 0.05mg/l (As) and 0.01 mg/l (Pb). Excess trace metal accumulation in water is toxic to humans and adversely affects the central nervous system, kidneys, gastrointestinal tract, skin and cause mental confusion. Groundwater quality is defined by nature of rock formation, mineral water reaction, physiography, soils, environment, recharge and discharge conditions of the area. Fluoride content in groundwater is due to the solubility of fluoride-bearing minerals like fluorite, cryolite, topaz, and mica, etc. Tosham is comprised of quartz mica schist, quartzite, schorl, tuff, quartz porphyry and associated granites, thus, fluoride is leached out and dissolved in groundwater. In the study area, Ni concentration ranged from 0.07 to 0.5 mg/l (permissible limit 0.02 mg/l). The primary source of nickel in drinking water is leached out nickel from ore-bearing rocks. Higher concentration of As is found in some igneous rocks specifically containing minerals as arsenopyrite (AsFeS), realgar (AsS) and orpiment (As2S3). MIS consists of granite (hypersolvus and subsolvus), rhyolite, dacite, trachyte, andesite, pyroclasts, basalt, gabbro and dolerite which increased the trace elements concentration in groundwater. Nakora, a part of MIS rocks has high concentration of trace and rare earth elements (Ni, Rb, Pb, Sr, Y, Zr, Th, U, La, Ce, Nd, Eu and Yb) which percolates the Ni and Pb to groundwater by weathering, contacts and joints/fractures in rocks. Additionally, geological setting of MIS also causes dissolution of trace elements in water resources beneath the surface. NE–SW tectonic lineament, radial pattern of dykes and volcanic vent at Nakora created a way for leaching of these elements to groundwater. Rain water quality might be altered by major minerals constituents of host Tosham rocks during its percolation through the rock fracture, joints before becoming the integral part of groundwater aquifer. The weathering process like hydration, hydrolysis and solution might be the cause of change in water chemistry of particular area. These studies suggest that geological relation of soil-water horizon with MIS rocks via mineralogical variations, structures and tectonic setting affects the water quality of the studied area.

Keywords: geochemistry, groundwater, malani igneous suite, tosham

Procedia PDF Downloads 219
6628 Carbonation of Wollastonite (001) competing Hydration: Microscopic Insights from Ion Spectroscopy and Density Functional Theory

Authors: Peter Thissen

Abstract:

In this work, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as model surface of cement and concrete. Total energy calculations based on density functional theory (DFT) combined with kinetic barrier predictions based on nudge elastic band (NEB) method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO32-) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (MPER, also called early stage hydration) and Ca2+ ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca2+ react again with CO2 and form carbonate complexes, ending in a delocalized layer. By means of high resolution time-of-flight secondary-ion mass-spectroscopy images (ToF-SIMS), we confirm that hydration can lead to a partially delocalization of Ca2+ ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by means of Low Energy Ion Scattering (LEIS) spectroscopy combined with careful discussion about the competing reactions of carbonation vs. hydration.

Keywords: Calcium-silicate, carbonation, hydration, metal-proton exchange reaction

Procedia PDF Downloads 363
6627 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations

Authors: M. Mazraehli, F. Mehrabani, S. Zare

Abstract:

In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.

Keywords: distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations

Procedia PDF Downloads 166
6626 Photo Catalytic Treatment of Wastewater from Processing Poultry by-Products

Authors: J. Franco Macías, E. Montes Alba, A. López Vásquez

Abstract:

The growing development in the poultry industry has generated a strong and adverse impact on quality and availability of water resources. Inside this industry, is finding out the treatment of by-products such as feathers, viscera and blood demanding highly water consumption, generating contaminant discharges as well. As one of current of treatment of by-products is the effluent of cooking condensate steam that has contaminant organic load; therefore, it is necessary to implement removal treatments before discharging it toward water sources. The photo catalysis appears as a promising alternative of treatment due to the different advantages it has, among others, includes low cost, easily operation, high efficiency and elimination of a wide variety of contaminants in a watery environment. This study has evaluated a heterogeneous photo catalytic treatment for removal contaminant organic load. This process was developed in oxidation and reduction conditions. It was analyzed the effect of factors such as pH, catalyst and sacrifice agent concentration. Finally, good conditions to removal contaminant organic load were achieved to determine percentage of contaminant organic load by means of response surface methodology.

Keywords: poultry industry, advanced oxidation process, photocatalysis, photodegradation, TiO2

Procedia PDF Downloads 404
6625 Stress Corrosion Crackings Test of Candidate Materials in Support of the Development of the European Small Modular Supercritical Water Cooled Rector Concept

Authors: Radek Novotny, Michal Novak, Daniela Marusakova, Monika Sipova, Hugo Fuentes, Peter Borst

Abstract:

This research has been conducted within the European HORIZON 2020 project ECC-SMART. The main objective is to assess whether it is feasible to design and develop a small modular reactor (SMR) that would be cooled by supercritical water (SCW). One of the main objectives for material research concerns the corrosion of the candidate cladding materials. The experimental part has been conducted in support of the qualification procedure of the future SCW-SMR constructional materials. The last objective was to identify the gaps in current norms and guidelines. Apart from corrosion, resistance testing of candidate materials stresses corrosion cracking susceptibility tests have been performed in supercritical water. This paper describes part of these tests, in particular, those slow strain rate tensile loading applied for tangential ring shape specimens of two candidate materials, Alloy 800H and 310S stainless steel. These ring tensile tests are one the methods used for tensile testing of nuclear cladding. Here full circular heads with dimensions roughly equal to the inner diameter of the sample and the gage sections are placed in the parallel direction to the applied load. Slow strain rate tensile tests have been conducted in 380 or 500oC supercritical water applying two different elongation rates, 1x10-6 and 1x10-7 s-1. The effect of temperature and dissolved oxygen content on the SCC susceptibility of Alloy 800H and 310S stainless steel was investigated when two different temperatures and concentrations of dissolved oxygen were applied in supercritical water. The post-fracture analysis includes fractographic analysis of the fracture surfaces using SEM as well as cross-sectional analysis on the occurrence of secondary cracks. Assessment of the effect of environment and dissolved oxygen content was by comparing to the results of the reference tests performed in air and N2 gas overpressure. The effect of high temperature on creep and its role in the initiation of SCC was assessed as well. It has been concluded that the applied test method could be very useful for the investigation of stress corrosion cracking susceptibility of candidate cladding materials in supercritical water.

Keywords: stress corrosion cracking, ring tensile tests, super-critical water, alloy 800H, 310S stainless steel

Procedia PDF Downloads 87
6624 Strategies for Drought Adpatation and Mitigation via Wastewater Management

Authors: Simrat Kaur, Fatema Diwan, Brad Reddersen

Abstract:

The unsustainable and injudicious use of natural renewable resources beyond the self-replenishment limits of our planet has proved catastrophic. Most of the Earth’s resources, including land, water, minerals, and biodiversity, have been overexploited. Owing to this, there is a steep rise in the global events of natural calamities of contrasting nature, such as torrential rains, storms, heat waves, rising sea levels, and megadroughts. These are all interconnected through common elements, namely oceanic currents and land’s the green cover. The deforestation fueled by the ‘economic elites’ or the global players have already cleared massive forests and ecological biomes in every region of the globe, including the Amazon. These were the natural carbon sinks prevailing and performing CO2 sequestration for millions of years. The forest biomes have been turned into mono cultivation farms to produce feedstock crops such as soybean, maize, and sugarcane; which are one of the biggest green house gas emitters. Such unsustainable agriculture practices only provide feedstock for livestock and food processing industries with huge carbon and water footprints. These are two main factors that have ‘cause and effect’ relationships in the context of climate change. In contrast to organic and sustainable farming, the mono-cultivation practices to produce food, fuel, and feedstock using chemicals devoid of the soil of its fertility, abstract surface, and ground waters beyond the limits of replenishment, emit green house gases, and destroy biodiversity. There are numerous cases across the planet where due to overuse; the levels of surface water reservoir such as the Lake Mead in Southwestern USA and ground water such as in Punjab, India, have deeply shrunk. Unlike the rain fed food production system on which the poor communities of the world relies; the blue water (surface and ground water) dependent mono-cropping for industrial and processed food create water deficit which put the burden on the domestic users. Excessive abstraction of both surface and ground waters for high water demanding feedstock (soybean, maize, sugarcane), cereal crops (wheat, rice), and cash crops (cotton) have a dual and synergistic impact on the global green house gas emissions and prevalence of megadroughts. Both these factors have elevated global temperatures, which caused cascading events such as soil water deficits, flash fires, and unprecedented burning of the woods, creating megafires in multiple continents, namely USA, South America, Europe, and Australia. Therefore, it is imperative to reduce the green and blue water footprints of agriculture and industrial sectors through recycling of black and gray waters. This paper explores various opportunities for successful implementation of wastewater management for drought preparedness in high risk communities.

Keywords: wastewater, drought, biodiversity, water footprint, nutrient recovery, algae

Procedia PDF Downloads 100
6623 The Effect of CPU Location in Total Immersion of Microelectronics

Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson

Abstract:

Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.

Keywords: CPU location, data centre cooling, heat sink in enclosures, immersed microelectronics, turbulent natural convection in enclosures

Procedia PDF Downloads 272
6622 Transformation of Iopromide Due to Redox Gradients in Sediments of the Hyporheic Zone

Authors: Niranjan Mukherjee, Burga Braun, Ulrich Szewzyk

Abstract:

Recalcitrant pharmaceuticals are increasingly found in urban water systems forced by demographic changes. The groundwater-surface water interface, or the hyporheic zone, is known for its impressive self-purification capacity of water bodies. Redox gradients present in this zone provide a wide range of electron acceptors and harbour diverse microbial communities. Biotic transformations of pharmaceuticals in this zone have been demonstrated, but not much information is available on the kind of communities bringing about these transformations. Therefore, bioreactors using sediment from the hyporheic zone of a river in Berlin were set up and fed with iopromide, a recalcitrant iodinated X-ray contrast medium. Iopromide, who’s many oxic and anoxic transformation products have been characterized, was shown to be transformed in such a bioreactor as it passes along the gradient. Many deiodinated transformation products of iopromide could be identified at the outlet of the reactor. In our experiments, it was seen that at the same depths of the column, the transformation of iopromide increased over time. This could be an indication of the microbial communities in the sediment adapting to iopromide. The hyporheic zone, with its varying redox conditions, mainly due to the upwelling and downwelling of surface and groundwater levels, could potentially provide microorganisms with conditions for the complete transformation of recalcitrant pharmaceuticals.

Keywords: iopromide, hyporheic zone, recalcitrant pharmaceutical, redox gradients

Procedia PDF Downloads 128
6621 Dynamic Change of Floods Disaster Monitoring for River Central Bar by Remote Sensing Time-Series Images

Authors: Zuoji Huang, Jinyan Sun, Chunlin Wang, Haiming Qian, Nan Xu

Abstract:

The spatial extent and area of central river bars can always vary due to the impact of water level, sediment supply and human activities. In 2016, a catastrophic flood disaster caused by sustained and heavy rainfall happened in the middle and lower Yangtze River. The flood led to the most serious economic and social loss since 1954, and strongly affected the central river bar. It is essential to continuously monitor the dynamics change of central bars because it can avoid frequent field measurements in central bars before and after the flood disaster and is helpful for flood warning. This paper focused on the dynamic change of central bars of Phoenix bar and Changsha bar in the Yangtze River in 2016. In this study, GF-1 (GaoFen-1) WFV(wide field view) data was employed owing to its high temporal frequency and high spatial resolution. A simple NDWI (Normalized Difference Water Index) method was utilized for river central bar mapping. Human-checking was then performed to ensure the mapping quality. The relationship between the area of central bars and the measured water level was estimated using four mathematical models. Furthermore, a risk assessment index was proposed to map the spatial pattern of inundation risk of central bars. The results indicate a good ability of the GF-1 WFV imagery with a 16-m spatial resolution to characterize the seasonal variation of central river bars and to capture the impact of a flood disaster on the area of central bars. This paper observed a significant negative but nonlinear relationship between the water level and the area of central bars, and found that the cubic function fits best among four models (R² = 0.9839, P < 0.000001, RMSE = 0.4395). The maximum of the inundated area of central bars appeared during the rainy season on July 8, 2016, and the minimum occurred during the dry season on December 28, 2016, which are consistent with the water level measured by the hydrological station. The results derived from GF-1 data could provide a useful reference for decision-making of real-time disaster early warning and post-disaster reconstruction.

Keywords: central bars, dynamic change, water level, the Yangtze river

Procedia PDF Downloads 242
6620 One Health Approach: The Importance of Improving the Identification of Waterborne Bacteria in Austrian Water

Authors: Aurora Gitto, Philipp Proksch

Abstract:

The presence of various microorganisms (bacteria, fungi) in surface water and groundwater represents an important issue for human health worldwide. The matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) has emerged as a promising and reliable tool for bacteria identification in clinical diagnostic microbiology and environmental strains thanks to an ionization technique that uses a laser energy absorbing matrix to create ions from large molecules with minimal fragmentation. The study aims first to conceptualise and set up library information and create a comprehensive database of MALDI-TOF-MS spectra from environmental water samples. The samples were analysed over a year (2021-2022) using membrane filtration methodology (0.45 μm and 0.22 μm) and then isolated on R2A agar for a period of 5 days and Yeast extract agar growing at 22 °C up to 4 days and 37 °C for 48 hours. The undetected organisms by MALDI-TOF-MS were analysed by PCR and then sequenced. The information obtained by the sequencing was further implemented in the MALDI-TOF-MS library. Among the culturable bacteria, the results show how the incubator temperature affects the growth of some genera instead of others, as demonstrated by Pseudomonas sp., which grows at 22 °C, compared to Bacillus sp., which is abundant at 37 °C. The bacteria community shows a variation in composition also between the media used, as demonstrated with R2A agar which has been defined by a higher presence of organisms not detected compared to YEA. Interesting is the variability of the Genus over one year of sampling and how the seasonality impacts the bacteria community; in fact, in some sampling locations, we observed how the composition changed, moving from winter to spring and summer. In conclusion, the bacteria community in groundwater and river bank filtration represents important information that needs to be added to the library to simplify future water quality analysis but mainly to prevent potential risks to human health.

Keywords: water quality, MALDI-TOF-MS, sequencing, library

Procedia PDF Downloads 83
6619 Recovery of Iodide Ion from TFT-LCD Wastewater by Forward Osmosis

Authors: Yu-Ting Chen, Shiao-Shing Chen, Hung-Te Hsu, Saikat Sinha Ray

Abstract:

Forward osmosis (FO) is a crucial technology with low operating pressure and cost for water reuse and reclamation. In Taiwan, with the advance of science and technology, thin film transistor liquid crystal displays (TFT-LCD) based industries are growing exponentially. In the optoelectronic industry wastewater, the iodide is one of the valuable element; it is also used in the medical industry. In this study, it was intended to concentrate iodide by utilizing FO system and can be reused for TFT-LCD production. Cellulose triacetate (CTA) membranes were used for all these FO experiments, and potassium iodide solution was used as the feed solution. It has been found that EDTA-2Na as draw solution at pH 8 produced high water flux and minimized salt leakage. The result also demonstrated that EDTA-2Na of concentration 0.6M could achieve the highest water flux (6.69L/m2 h). Additionally, from the recovered iodide ion from pH 3-8, the I- species was found to be more than 99%, whereas I2 was measured to be less than 1%. When potassium iodide solution was used from low to high concentration (1000 ppm to 10000 ppm), the iodide rejection was found to be than more 90%. Since, CTA membrane is negatively charged and I- is anionic in nature, so it will from electrostatic repulsion and hence there will be higher rejection. The overall performance demonstrates that recovery of concentrated iodide using FO system is a promising technology.

Keywords: draw solution, EDTA-2Na, forward osmosis, potassium iodide

Procedia PDF Downloads 367
6618 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model

Authors: K. G. R. M. Jayathilake, S. Rudra

Abstract:

Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.

Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood

Procedia PDF Downloads 125
6617 Mooring Analysis of Duct-Type Tidal Current Power System in Shallow Water

Authors: Chul H. Jo, Do Y. Kim, Bong K. Cho, Myeong J. Kim

Abstract:

The exhaustion of oil and the environmental pollution from the use of fossil fuel are increasing. Tidal current power (TCP) has been proposed as an alternative energy source because of its predictability and reliability. By applying a duct and single point mooring (SPM) system, a TCP device can amplify the generating power and keep its position properly. Because the generating power is proportional to cube of the current stream velocity, amplifying the current speed by applying a duct to a TCP system is an effective way to improve the efficiency of the power device. An SPM system can be applied at any water depth and is highly cost effective. Simple installation and maintenance procedures are also merits of an SPM system. In this study, we designed an SPM system for a duct-type TCP device for use in shallow water. Motions of the duct are investigated to obtain the response amplitude operator (RAO) as the magnitude of the transfer function. Parameters affecting the stability of the SPM system such as the fairlead departure angle, current velocity, and the number of clamp weights are analyzed and/or optimized. Wadam and OrcaFlex commercial software is used to design the mooring line.

Keywords: mooring design, parametric analysis, RAO (Response Amplitude Operator), SPM (Single Point Mooring)

Procedia PDF Downloads 289
6616 Treatment Performance of Waste Stabilization Ponds: A Look at Physic-Chemical Parameters in Ghana

Authors: Emmanuel Adu-Ofori, Richard Amfo-Otu, Isaac O. A. Hodgson

Abstract:

The study was conducted to determine the treatment performance of waste stabilization ponds in Akosombo. A total of 15 samples were taken for four consecutive months from the inlet, facultative pond and outlet of maturation pond. The samples were preserved and transported to Water Research Institute for laboratory analysis. The wastewater quality parameters analysed to assess the treatment performance were total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia and phosphate. The results of the laboratory analysis showed that the ponds achieved TSS, BOD and COD removals of about 30, 82 and 75 per cent respectively. Statistically, the BOD (t = 10.27, p = 6.68 x 10-6) and COD (t = 4.23, p = 0.0029) of the raw sewage were significantly different from the total effluent at 95% confidence interval. The ammonia and phosphate removal was as high as 92% and 84% respectively. The quality parameters analysed for the final effluent from the Waste Stabilisation Pond was within the EPA guideline values. The general treatment performances were very good with respect to the parameters studied and does not pose threat to the receiving water body. A further study to examine the bacteriological treatment performance was recommended.

Keywords: waste stabilization pond, wast water, treatment performance, nutrient, Ghana

Procedia PDF Downloads 319
6615 Effect of Channel Variation of Two-Dimensional Water Tunnel to Study Fluid Dynamics Phenomenon

Authors: Rizka Yunita, Mas Aji Rizki Wijayanto

Abstract:

Computational fluid dynamics (CFD) is the solution to explain how fluid dynamics behavior. In this work, we obtain the effect of channel width of two-dimensional fluid visualization. Using a horizontal water tunnel and flowing soap film, we got a visualization of continuous film that can be observe a graphical overview of the flow that occurs on a space or field in which the fluid flow. The horizontal water tunnel we used, divided into three parts, expansion area, parallel area that used to test the data, and contraction area. The width of channel is the boundary of parallel area with the originally width of 7.2 cm, and the variation of channel width we observed is about 1 cm and its times. To compute the velocity, vortex shedding, and other physical parameters of fluid, we used the cyclinder circular as an obstacle to create a von Karman vortex in fluid and analyzed that phenomenon by using Particle Imaging Velocimetry (PIV) method and comparing Reynolds number and Strouhal number from the visualization we got. More than width the channel, the film is more turbulent and have a separation zones that occurs of uncontinuous flowing fluid.

Keywords: flow visualization, width of channel, vortex, Reynolds number, Strouhal number

Procedia PDF Downloads 379
6614 Assessing Smallholder Rice and Vegetable Farmers’ Constraints and Needs to Adopt Small-Scale Irrigation in South Tongu District, Ghana

Authors: Tamekloe Michael Kossivi, Kenichi Matsui

Abstract:

Irrigation access is one of the essential rural development investment options that can significantly improve smallholder farmers’ agriculture productivity. Investment in irrigation infrastructural development to supply adequate water could improve food security, growth in income for farmers, poverty alleviation, and improve business and livelihood. This paper assesses smallholder farmers’ constraints and the needs to adopt small-scale irrigation for crops production in the South Tongu District of Ghana. The data collection involved database search, questionnaire survey, interview, and field work. The structured questionnaire survey was administered from September to November 2020 among 120 respondents in six purposively sampled irrigation communities in the District. The questions focused on small-scale irrigation development constraints and needs. As a result, we found that the respondents relied mainly on rainfall for agriculture production. They did not have adequate irrigation access. Even though the District is blessed with open arable lands and rich water sources for rice and vegetable production on a massive scale, water sources like the Lower Volta River, Tordzi River, and Avu Lagoon were not close enough to the respondents. The respondents faced inadequate credit support (100%), unreliable rainfall (76%), insufficient water supply (54%), and unreliable water delivery challenges on their farms (53%). Physical constraints for the respondents to adopt irrigation included flood (77%), drought (93%), inadequate irrigation technology (59%), and insufficient technical know-how (65%). Farmers were interested in investing in irrigation infrastructural development to enhance productivity on their farms only if they own the farmlands. External support from donors on irrigation systems did not allow smallholder farmers to control irrigation facilities.

Keywords: constraints, food security, needs, smallholder farmers, small-scale irrigation

Procedia PDF Downloads 137
6613 Leaching of Metal Cations from Basic Oxygen Furnace (BOF) Steelmaking Slag Immersed in Water

Authors: Umashankar Morya, Somnath Basu

Abstract:

Metalloids like arsenic are often present as contaminants in industrial effluents. Removal of the same is essential before the safe discharge of the wastewater into the environment. Otherwise, these pollutants tend to percolate into aquifers over a period of time and contaminate drinking water sources. Several adsorbents, including metal powders, carbon nanotubes and zeolites, are being used for this purpose, with varying degrees of success. However, most of these solutions are not only costly but also not always readily available. This restricts their use, especially among financially weaker communities. Slag generated globally from primary steelmaking operations exceeds 200 billion kg every year. Some of it is utilized for applications like road construction, filler in reinforced concrete, railway track ballast and recycled into iron ore agglomeration processes. However, these usually involve low-value addition, and a significant amount of the slag still ends up in a landfill. However, there is a strong possibility that the constituents in the steelmaking slag may immobilize metalloid contaminants present in wastewater through a combination of adsorption and precipitation of insoluble product(s). Preliminary experiments have already indicated that exposure to basic oxygen steelmaking slag does reduce pollutant concentration in wastewater. In addition, the slag is relatively inexpensive and available in large quantities and in several countries across the world. Investigations on the mechanism of interactions at the water-solid interfaces have been in progress for some time. However, at the same time, there are concerns about the possibility of leaching of metal ions from the slag particles in concentrations greater than what exists in the water bodies where the “treated” wastewater would eventually be discharged. The effect of such leached ions on the aquatic flora and fauna is yet uncertain. This has prompted the present investigation, which focuses on the leaching of metal ions from steelmaking slag particles in contact with wastewater, and the influence of these ions on the removal of contaminant species. Experiments were carried out to quantify the leaching behavior of different ionic species upon exposure of the slag particles to simulated wastewater, both with and without specific metalloid contaminants.

Keywords: slag, water, metalloid, heavy metal, wastewater

Procedia PDF Downloads 75