Search results for: rising velocity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2309

Search results for: rising velocity

299 Engineering Properties of Different Lithological Varieties of a Singapore Granite

Authors: Louis Ngai Yuen Wong, Varun Maruvanchery

Abstract:

The Bukit Timah Granite, which is a major rock formation in Singapore, encompasses different rock types such as granite, adamellite, and granodiorite with various hybrid rocks. The present study focuses on the Central Singapore Granite found in the Mandai area. Even within this small aerial extent, lithological variations with respect to the composition, texture as well as the grain size have been recognized in this igneous body. Over the years, the research effort on the Bukit Timah Granite has been focused on achieving a better understanding of its engineering properties in association with civil engineering projects. To our best understanding, a few types of research attempted to systematically investigate the influence of grain size, mineral composition, texture etc. on the strength of Bukit Timah Granite rocks in a comprehensive manner. In typical local industry practices, the different lithological varieties are not differentiated, but all are grouped under Bukit Timah Granite during core logging and the subsequent determination of engineering properties. To address such a major gap in the local engineering geological practice, a preliminary study is conducted on the variations of uniaxial compressive strength (UCS) in seven distinctly different lithological varieties found in the Bukit Timah Granite. Other physical properties including Young’s modulus, P-wave velocity and dry density determined from laboratory testing will also be discussed. The study is supplemented by a petrographical thin section examination. In addition, the specimen failure mode is classified and further correlated with the lithological varieties by carefully observing the details of crack initiation, propagation and coalescence processes in the specimens undergoing loading tests using a high-speed camera. The outcome of this research, which is the first of its type in Singapore, will have a direct implication on the sampling and design practices in the field of civil engineering and particularly underground space development in Singapore.

Keywords: Bukit Timah Granite, lithological variety, thin section study, high speed video, failure mode

Procedia PDF Downloads 322
298 The Expansion of Buddhism from India to Nepal Himalaya and Beyond

Authors: Umesh Regmi

Abstract:

This paper explores the expansion of Buddhism from India geographically to the Himalayan region of Nepal, Tibet, India, and Bhutan in chronological historical sequence. The Buddhism practiced in Tibet is the spread of the Mahayana-Vajrayana form appropriately designed by Indian Mahasiddhas, who were the practitioners of the highest form of tantra and meditation. Vajrayana Buddhism roots in the esoteric practices incorporating the teachings of Buddha, mantras, dharanis, rituals, and sadhana for attaining enlightenment. This form of Buddhism spread from India to Nepal after the 5th Century AD and Tibet after the 7th century AD and made a return journey to the Himalayan region of Nepal, India, and Bhutan after the 8th century. The first diffusion of this form of Buddhism from India to Nepal and Tibet is partially proven through Buddhist texts and the archaeological existence of monasteries historically and at times relied on mythological traditions. The second diffusion of Buddhism in Tibet was institutionalized through the textual translations and interpretations of Indian Buddhist masters and their Tibetan disciples and the establishment of different monasteries in various parts of Tibet, later resulting in different schools and their traditions: Nyingma, Kagyu, Sakya, Gelug, and their sub-schools. The first return journey of Buddhism from Tibet to the Himalayan region of Nepal, India, and Bhutan in the 8th century is mythologically recorded in local legends of the arrival of Padmasambhava, and the second journey in the 11th century and afterward flourished by many Indian masters who practiced continuously till date. This return journey of Tibetan Buddhism has been intensified after 1959 with the Chinese occupation of Tibet, resulting in the Tibetan Buddhist masters living in exile in major locations like Kathmandu, Dharmasala, Dehradun, Sikkim, Kalimpong, and beyond. The historic-cultural-critical methodology for the recognition of the qualities of cultural expressions analysis presents the Buddhist practices of the Himalayan region, explaining the concepts of Ri (mountain as spiritual symbols), yul-lha (village deities), dhar-lha (spiritual concept of mountain passes), dharchhog-lungdhar (prayer flags), rig-sum gonpo (small stupas), Chenresig, asura (demi gods), etc. Tibetan Buddhist history has preserved important textual and practical aspects of Vajrayana from Buddhism historically in the form of arrival, advent, and development, including rising and fall. Currently, Tibetan Buddhism has influenced a great deal in the contemporary Buddhist practices of the world. The exploratory findings conducted over seven years of field visits and research in the Himalayan regions of Nepal, India, and Bhutan have demonstrated the fact that Buddhism in the Himalayan region is a return journey from Tibet and lately been popularized globally after 1959 by major monasteries and their Buddhist masters, lamas, nuns and other professionals, who have contributed in different periods of time.

Keywords: Buddhism, expansion, Himalayan region, India, Nepal, Bhutan, return, Tibet, Vajrayana Buddhism

Procedia PDF Downloads 108
297 Numerical Analysis of the Response of Thin Flexible Membranes to Free Surface Water Flow

Authors: Mahtab Makaremi Masouleh, Günter Wozniak

Abstract:

This work is part of a major research project concerning the design of a light temporary installable textile flood control structure. The motivation for this work is the great need of applying light structures for the protection of coastal areas from detrimental effects of rapid water runoff. The prime objective of the study is the numerical analysis of the interaction among free surface water flow and slender shaped pliable structures, playing a key role in safety performance of the intended system. First, the behavior of down scale membrane is examined under hydrostatic pressure by the Abaqus explicit solver, which is part of the finite element based commercially available SIMULIA software. Then the procedure to achieve a stable and convergent solution for strongly coupled media including fluids and structures is explained. A partitioned strategy is imposed to make both structures and fluids be discretized and solved with appropriate formulations and solvers. In this regard, finite element method is again selected to analyze the structural domain. Moreover, computational fluid dynamics algorithms are introduced for solutions in flow domains by means of a commercial package of Star CCM+. Likewise, SIMULIA co-simulation engine and an implicit coupling algorithm, which are available communication tools in commercial package of the Star CCM+, enable powerful transmission of data between two applied codes. This approach is discussed for two different cases and compared with available experimental records. In one case, the down scale membrane interacts with open channel flow, where the flow velocity increases with time. The second case illustrates, how the full scale flexible flood barrier behaves when a massive flotsam is accelerated towards it.

Keywords: finite element formulation, finite volume algorithm, fluid-structure interaction, light pliable structure, VOF multiphase model

Procedia PDF Downloads 186
296 Analysis of Barbell Kinematics of Snatch Technique among Women Weightlifters in India

Authors: Manish Kumar Pillai, Madhavi Pathak Pillai, Rajender Lal, Dinesh P. Sharma

Abstract:

India has not yet been able to produce many weightlifters in the past years. Karnam Malleshwari is the only woman to win a medal for India in Olympics. When we try to introspect, there seem to be different reasons. One of the probable cause could be the lack of biomechanical analysis for technique improvements. The analysis of motion in sports has gained prime importance for technical improvement. It helps an athlete to develop a better understanding of his own skills and increasing the rate of technical learning process. Kinematics is concerned with describing and quantifying both the linear and angular position of bodies and their time derivatives. The techniques analysis of barbell movement is very important in weightlifting. But women weightlifting has a shorter history than men’s. Research on women weightlifting based on video analysis is less; there is a lack of scientific evidence based on kinematic analysis of especially on Indian weightlifters at national level are limited. Hence, the present investigation was aimed to analyze the barbell kinematics of women weightlifters in India. The study was delimited to the medal winners of 69-kilogram weight category in the All India Inter-University Competition, age ranging between 18 and 28 years. The variables selected for the mechanical analysis of Barbell kinematics included barbell trajectory, velocity, acceleration, potential energy, kinetic energy, mechanical energy, and average power output. The performance was captured during the competition by two DV PC-60 Digital cameras (Panasonic Company, Ltd). Two cameras were placed 6-meters perpendicular to the plane of the motion, 130 cm. above the ground to record/capture the frontal and lateral view of the lifters simultaneously. Video recordings were analyzed by using Dartfish software, and barbell kinematics were analyzed with the information derived with the help of software. The result documented on the basis of the finding of the study clearly states that there are differences in the selected kinematic variables in all three lifters in respect to their technique in five phases during snatch technique using by them.

Keywords: dartfish, digital camera, kinematic, snatch, weightlifting

Procedia PDF Downloads 136
295 Regional Rates of Sand Supply to the New South Wales Coast: Southeastern Australia

Authors: Marta Ribo, Ian D. Goodwin, Thomas Mortlock, Phil O’Brien

Abstract:

Coastal behavior is best investigated using a sediment budget approach, based on the identification of sediment sources and sinks. Grain size distribution over the New South Wales (NSW) continental shelf has been widely characterized since the 1970’s. Coarser sediment has generally accumulated on the outer shelf, and/or nearshore zones, with the latter related to the presence of nearshore reef and bedrocks. The central part of the NSW shelf is characterized by the presence of fine sediments distributed parallel to the coastline. This study presents new grain size distribution maps along the NSW continental shelf, built using all available NSW and Commonwealth Government holdings. All available seabed bathymetric data form prior projects, single and multibeam sonar, and aerial LiDAR surveys were integrated into a single bathymetric surface for the NSW continental shelf. Grain size information was extracted from the sediment sample data collected in more than 30 studies. The information extracted from the sediment collections varied between reports. Thus, given the inconsistency of the grain size data, a common grain size classification was her defined using the phi scale. The new sediment distribution maps produced, together with new detailed seabed bathymetric data enabled us to revise the delineation of sediment compartments to more accurately reflect the true nature of sediment movement on the inner shelf and nearshore. Accordingly, nine primary mega coastal compartments were delineated along the NSW coast and shelf. The sediment compartments are bounded by prominent nearshore headlands and reefs, and major river and estuarine inlets that act as sediment sources and/or sinks. The new sediment grain size distribution was used as an input in the morphological modelling to quantify the sediment transport patterns (and indicative rates of transport), used to investigate sand supply rates and processes from the lower shoreface to the NSW coast. The rate of sand supply to the NSW coast from deep water is a major uncertainty in projecting future coastal response to sea-level rise. Offshore transport of sand is generally expected as beaches respond to rising sea levels but an onshore supply from the lower shoreface has the potential to offset some of the impacts of sea-level rise, such as coastline recession. Sediment exchange between the lower shoreface and sub-aerial beach has been modelled across the south, central, mid-north and far-north coast of NSW. Our model approach is that high-energy storm events are the primary agents of sand transport in deep water, while non-storm conditions are responsible for re-distributing sand within the beach and surf zone.

Keywords: New South Wales coast, off-shore transport, sand supply, sediment distribution maps

Procedia PDF Downloads 227
294 Heat Stress a Risk Factor for Poor Maternal Health- Evidence from South India

Authors: Vidhya Venugopal, Rekha S.

Abstract:

Introduction: Climate change and the growing frequency of higher average temperatures and heat waves have detrimental health effects, especially for certain vulnerable groups with limited socioeconomic status (SES) or physiological capacity to adapt to or endure high temperatures. Little research has been conducted on the effects of heat stress on pregnant women and fetuses in tropical regions such as India. Very high ambient temperatures may worsen Adverse Pregnancy Outcomes (APOs) and are a major worry in the scenario of climate change. The relationship between rising temperatures and APO must be better understood in order to design more effective interventions. Methodology: We conducted an observational cohort study involving 865 pregnant women in various districts of Tamil Nadu districts between 2014 and 2021. Physiological Heat Strain Indicators (HSI) such as morning and evening Core Body Temperature (CBT) and Urine Specific Gravity (USG) were monitored using an infrared thermometer and refractometer, respectively. A validated, modified version of the HOTHAPS questionnaire was utilised to collect self-reported health symptoms. A follow-up was undertaken with the mothers to collect information regarding birth outcomes and APOs, such as spontaneous abortions, stillbirths, Preterm Birth (PTB), birth abnormalities, and Low Birth Weight (LBW). Major findings of the study: According to the findings of our study, ambient temperatures (mean WBGT°C) were substantially higher (>28°C) for approximately 46% of women performing moderate daily life activities. 82% versus 43% of these women experienced dehydration and heat-related complaints. 34% of women had USG >1.020, which is symptomatic of dehydration. APOs, which include spontaneous abortions, were prevalent at 2.2%, stillbirth/preterm birth/birth abnormalities were prevalent at 2.2%, and low birth weight was prevalent at 16.3%. With exposures to WBGT>28°C, the incidence of miscarriage or unexpected abortion rose by approximately 2.7 times (95% CI: 1.1-6.9). In addition, higher WBGT exposures were associated with a 1.4-fold increased risk of unfavorable birth outcomes (95% Confidence Interval [CI]: 1.02-1.09). The risk of spontaneous abortions was 2.8 times higher among women who conceived during the hotter months (February – September) compared to those women who conceived in the cooler months (October – January) (95% CI: 1.04-7.4). Positive relationships between ambient heat and APOs found in this study necessitate further exploration into the underlying factors for extensive cohort studies to generate information to enable the formulation of policies that can effectively protect these women against excessive heat stress for enhanced maternal and fetal health.

Keywords: heat exposures, community, pregnant women, physiological strain, adverse outcome, interventions

Procedia PDF Downloads 84
293 Implication of Woman’s Status on Child Health in India

Authors: Rakesh Mishra

Abstract:

India’s Demography has always amazed the world because of its unprecedented outcomes in the presence of multifaceted socioeconomic and geographical characteristics. Being the first one to implement family panning in 1952, it occupies 2nd largest population of the world, with some of its state like Uttar Pradesh contributing 5th largest population to the world population surpassing Brazil. Being the one with higher in number it is more prone to the demographic disparity persisting into its territories brought upon by the inequalities in availability, accessibility and attainability of socioeconomic and various other resources. Fifth goal of Millennium Development Goal emphasis to improve maternal and child health across the world as Children’s development is very important for the overall development of society and the best way to develop national human resources is to take care of children. The target is to reduce the infant deaths by three quarters between 1990 and 2015. Child health status depends on the care and delivery by trained personnel, particularly through institutional facilities which is further associated with the status of the mother. However, delivery in institutional facilities and delivery by skilled personnel are rising slowly in India. The main objective of the present study is to measure the child health status on based on the educational and occupational background of the women in India. Study indicates that women education plays a very crucial role in deciding the health of the new born care and access to family planning, but the women autonomy indicates to have mixed results in different states of India. It is observed that rural women are 1.61 times more likely to exclusive breastfed their children compared to urban women. With respect to Hindu category, women belonging to other religious community were 21 percent less likely to exclusive breastfed their child. Taking scheduled caste as reference category, the odds of exclusive breastfeeding is found to be decreasing in comparison to other castes, and it is found to be significant among general category. Women of high education status have higher odds of using family planning methods in most of the southern states of India. By and large, girls and boys are about equally undernourished. Under nutrition is generally lower for first births than for subsequent births and consistently increases with increasing birth order for all measures of nutritional status. It is to be noted that at age 12-23 months, when many children are being weaned from breast milk, 30 percent of children are severely stunted and around 21 percent are severely underweight. So, this paper presents the evidence on the patterns of prevailing child health status in India and its states with reference to the mother socioeconomics and biological characteristics and examines trends in these, and discusses plausible explanations.

Keywords: immunization, exclusive breastfeeding, under five mortality, binary logistic regression, ordinal regression and life table

Procedia PDF Downloads 265
292 Recovery of Draw Solution in Forward Osmosis by Direct Contact Membrane Distillation

Authors: Su-Thing Ho, Shiao-Shing Chen, Hung-Te Hsu, Saikat Sinha Ray

Abstract:

Forward osmosis (FO) is an emerging technology for direct and indirect potable water reuse application. However, successful implementation of FO is still hindered by the lack of draw solution recovery with high efficiency. Membrane distillation (MD) is a thermal separation process by using hydrophobic microporous membrane that is kept in sandwich mode between warm feed stream and cold permeate stream. Typically, temperature difference is the driving force of MD which attributed by the partial vapor pressure difference across the membrane. In this study, the direct contact membrane distillation (DCMD) system was used to recover diluted draw solution of FO. Na3PO4 at pH 9 and EDTA-2Na at pH 8 were used as the feed solution for MD since it produces high water flux and minimized salt leakage in FO process. At high pH, trivalent and tetravalent ions are much easier to remain at draw solution side in FO process. The result demonstrated that PTFE with pore size of 1 μm could achieve the highest water flux (12.02 L/m2h), followed by PTFE 0.45 μm (10.05 L/m2h), PTFE 0.1 μm (7.38 L/m2h) and then PP (7.17 L/m2h) while using 0.1 M Na3PO4 draw solute. The concentration of phosphate and conductivity in the PTFE (0.45 μm) permeate were low as 1.05 mg/L and 2.89 μm/cm respectively. Although PTFE with the pore size of 1 μm could obtain the highest water flux, but the concentration of phosphate in permeate was higher than other kinds of MD membranes. This study indicated that four kinds of MD membranes performed well and PTFE with the pore size of 0.45 μm was the best among tested membranes to achieve high water flux and high rejection of phosphate (99.99%) in recovery of diluted draw solution. Besides that, the results demonstrate that it can obtain high water flux and high rejection of phosphate when operated with cross flow velocity of 0.103 m/s with Tfeed of 60 ℃ and Tdistillate of 20 ℃. In addition to that, the result shows that Na3PO4 is more suitable for recovery than EDTA-2Na. Besides that, while recovering the diluted Na3PO4, it can obtain the high purity of permeate water. The overall performance indicates that, the utilization of DCMD is a promising technology to recover the diluted draw solution for FO process.

Keywords: membrane distillation, forward osmosis, draw solution, recovery

Procedia PDF Downloads 185
291 Expression of PGC-1 Alpha Isoforms in Response to Eccentric and Concentric Resistance Training in Healthy Subjects

Authors: Pejman Taghibeikzadehbadr

Abstract:

Background and Aim: PGC-1 alpha is a transcription factor that was first detected in brown adipose tissue. Since its discovery, PGC-1 alpha has been known to facilitate beneficial adaptations such as mitochondrial biogenesis and increased angiogenesis in skeletal muscle following aerobic exercise. Therefore, the purpose of this study was to investigate the expression of PGC-1 alpha isoforms in response to eccentric and concentric resistance training in healthy subjects. Materials and Methods: Ten healthy men were randomly divided into two groups (5 patients in eccentric group - 5 in eccentric group). Isokinetic contraction protocols included eccentric and concentric knee extension with maximum power and angular velocity of 60 degrees per second. The torques assigned to each subject were considered to match the workload in both protocols, with a rotational speed of 60 degrees per second. Contractions consisted of a maximum of 12 sets of 10 repetitions for the right leg, a rest time of 30 seconds between each set. At the beginning and end of the study, biopsy of the lateral broad muscle tissue was performed. Biopsies were performed in both distal and proximal directions of the lateral flank. To evaluate the expression of PGC1α-1 and PGC1α-4 genes, tissue analysis was performed in each group using Real-Time PCR technique. Data were analyzed using dependent t-test and covariance test. SPSS21 software and Exell 2013 software were used for data analysis. Results: The results showed that intra-group changes of PGC1α-1 after one session of activity were not significant in eccentric (p = 0.168) and concentric (p = 0.959) groups. Also, inter-group changes showed no difference between the two groups (p = 0.681). Also, intra-group changes of PGC1α-4 after one session of activity were significant in an eccentric group (p = 0.012) and concentric group (p = 0.02). Also, inter-group changes showed no difference between the two groups (p = 0.362). Conclusion: It seems that the lack of significant changes in the desired variables due to the lack of exercise pressure is sufficient to stimulate the increase of PGC1α-1 and PGC1α-4. And with regard to reviewing the answer, it seems that the compatibility debate has different results that need to be addressed.

Keywords: eccentric contraction, concentric contraction, PGC1α-1 و PGC1α-4, human subject

Procedia PDF Downloads 78
290 Electrical Degradation of GaN-based p-channel HFETs Under Dynamic Electrical Stress

Authors: Xuerui Niu, Bolin Wang, Xinchuang Zhang, Xiaohua Ma, Bin Hou, Ling Yang

Abstract:

The application of discrete GaN-based power switches requires the collaboration of silicon-based peripheral circuit structures. However, the packages and interconnection between the Si and GaN devices can introduce parasitic effects to the circuit, which has great impacts on GaN power transistors. GaN-based monolithic power integration technology is an emerging solution which can improve the stability of circuits and allow the GaN-based devices to achieve more functions. Complementary logic circuits consisting of GaN-based E-mode p-channel heterostructure field-effect transistors (p-HFETs) and E-mode n-channel HEMTs can be served as the gate drivers. E-mode p-HFETs with recessed gate have attracted increasing interest because of the low leakage current and large gate swing. However, they suffer from a poor interface between the gate dielectric and polarized nitride layers. The reliability of p-HFETs is analyzed and discussed in this work. In circuit applications, the inverter is always operated with dynamic gate voltage (VGS) rather than a constant VGS. Therefore, dynamic electrical stress has been simulated to resemble the operation conditions for E-mode p-HFETs. The dynamic electrical stress condition is as follows. VGS is a square waveform switching from -5 V to 0 V, VDS is fixed, and the source grounded. The frequency of the square waveform is 100kHz with the rising/falling time of 100 ns and duty ratio of 50%. The effective stress time is 1000s. A number of stress tests are carried out. The stress was briefly interrupted to measure the linear IDS-VGS, saturation IDS-VGS, As VGS switches from -5 V to 0 V and VDS = 0 V, devices are under negative-bias-instability (NBI) condition. Holes are trapped at the interface of oxide layer and GaN channel layer, which results in the reduction of VTH. The negative shift of VTH is serious at the first 10s and then changes slightly with the following stress time. However, different phenomenon is observed when VDS reduces to -5V. VTH shifts negatively during stress condition, and the variation in VTH increases with time, which is different from that when VDS is 0V. Two mechanisms exists in this condition. On the one hand, the electric field in the gate region is influenced by the drain voltage, so that the trapping behavior of holes in the gate region changes. The impact of the gate voltage is weakened. On the other hand, large drain voltage can induce the hot holes generation and lead to serious hot carrier stress (HCS) degradation with time. The poor-quality interface between the oxide layer and GaN channel layer at the gate region makes a major contribution to the high-density interface traps, which will greatly influence the reliability of devices. These results emphasize that the improved etching and pretreatment processes needs to be developed so that high-performance GaN complementary logics with enhanced stability can be achieved.

Keywords: GaN-based E-mode p-HFETs, dynamic electric stress, threshold voltage, monolithic power integration technology

Procedia PDF Downloads 90
289 Improving the Uniformity of Electrostatic Meter’s Spatial Sensitivity

Authors: Mohamed Abdalla, Ruixue Cheng, Jianyong Zhang

Abstract:

In pneumatic conveying, the solids are mixed with air or gas. In industries such as coal fired power stations, blast furnaces for iron making, cement and flour processing, the mass flow rate of solids needs to be monitored or controlled. However the current gas-solids two-phase flow measurement techniques are not as accurate as the flow meters available for the single phase flow. One of the problems that the multi-phase flow meters to face is that the flow profiles vary with measurement locations and conditions of pipe routing, bends, elbows and other restriction devices in conveying system as well as conveying velocity and concentration. To measure solids flow rate or concentration with non-even distribution of solids in gas, a uniform spatial sensitivity is required for a multi-phase flow meter. However, there are not many meters inherently have such property. The circular electrostatic meter is a popular choice for gas-solids flow measurement with its high sensitivity to flow, robust construction, low cost for installation and non-intrusive nature. However such meters have the inherent non-uniform spatial sensitivity. This paper first analyses the spatial sensitivity of circular electrostatic meter in general and then by combining the effect of the sensitivity to a single particle and the sensing volume for a given electrode geometry, the paper reveals first time how a circular electrostatic meter responds to a roping flow stream, which is much more complex than what is believed at present. The paper will provide the recent research findings on spatial sensitivity investigation at the University of Tees side based on Finite element analysis using Ansys Fluent software, including time and frequency domain characteristics and the effect of electrode geometry. The simulation results will be compared tothe experimental results obtained on a large scale (14” diameter) rig. The purpose of this research is paving a way to achieve a uniform spatial sensitivity for the circular electrostatic sensor by mean of compensation so as to improve overall accuracy of gas-solids flow measurement.

Keywords: spatial sensitivity, electrostatic sensor, pneumatic conveying, Ansys Fluent software

Procedia PDF Downloads 367
288 Thermodynamic Analysis of Surface Seawater under Ocean Warming: An Integrated Approach Combining Experimental Measurements, Theoretical Modeling, Machine Learning Techniques, and Molecular Dynamics Simulation for Climate Change Assessment

Authors: Nishaben Desai Dholakiya, Anirban Roy, Ranjan Dey

Abstract:

Understanding ocean thermodynamics has become increasingly critical as Earth's oceans serve as the primary planetary heat regulator, absorbing approximately 93% of excess heat energy from anthropogenic greenhouse gas emissions. This investigation presents a comprehensive analysis of Arabian Sea surface seawater thermodynamics, focusing specifically on heat capacity (Cp) and thermal expansion coefficient (α) - parameters fundamental to global heat distribution patterns. Through high-precision experimental measurements of ultrasonic velocity and density across varying temperature (293.15-318.15K) and salinity (0.5-35 ppt) conditions, it characterize critical thermophysical parameters including specific heat capacity, thermal expansion, and isobaric and isothermal compressibility coefficients in natural seawater systems. The study employs advanced machine learning frameworks - Random Forest, Gradient Booster, Stacked Ensemble Machine Learning (SEML), and AdaBoost - with SEML achieving exceptional accuracy (R² > 0.99) in heat capacity predictions. the findings reveal significant temperature-dependent molecular restructuring: enhanced thermal energy disrupts hydrogen-bonded networks and ion-water interactions, manifesting as decreased heat capacity with increasing temperature (negative ∂Cp/∂T). This mechanism creates a positive feedback loop where reduced heat absorption capacity potentially accelerates oceanic warming cycles. These quantitative insights into seawater thermodynamics provide crucial parametric inputs for climate models and evidence-based environmental policy formulation, particularly addressing the critical knowledge gap in thermal expansion behavior of seawater under varying temperature-salinity conditions.

Keywords: climate change, arabian sea, thermodynamics, machine learning

Procedia PDF Downloads 3
287 Effect of Molecular Weight Distribution on Toughening Performance of Polybutadiene in Polystyrene

Authors: Mohamad Mohsen Yavarizadeh

Abstract:

Polystyrene (PS) and related homopolymers are brittle materials that typically fail in tensile tests at very low strains. These polymers can be toughened by the addition of rubbery particles which initiate a large number of crazes that produce substantial plastic strain at relatively low stresses. Considerable energy is dissipated in the formation of these crazes, producing a relatively tough material that shows an impact toughness of more than 5 times of pure PS. While cross linking of rubbery phase is necessary in aforementioned mechanism of toughening, another mechanism of toughening was also introduced in which low molecular weight liquid rubbers can also toughen PS when dispersed in the form of small pools in the glassy matrix without any cross linking. However, this new mechanism which is based on local plasticization, fails to act properly at high strain rate deformations, i.e. impact tests. In this work, the idea of combination of these two mechanisms was tried. To do so, Polybutadiene rubbers (PB) with bimodal distribution of molecular weight were prepared in which, comparable fractions of very high and very low molecular weight rubbers were mixed. Incorporation of these materials in PS matrix in a reactive process resulted in more significant increases in toughness of PS. In other words, although low molecular weight PB is ineffective in high strain rate impact test by itself, it showed a significant synergistic effect when combined with high molecular weight PB. Surprisingly, incorporation of just 10% of low molecular weight PB doubled the impact toughness of regular high impact PS (HIPS). It was observed that most of rubbery particles could initiate crazes. The effectiveness of low molecular weight PB in impact test was attributed to low strain rate deformation of each individual craze as a result of producing a large number of crazes in this material. In other words, high molecular weight PB chains make it possible to have an appropriate dispersion of rubbery phase in order to create a large number of crazes in the PS matrix and consequently decrease the velocity of each craze. Low molecular weight PB, in turn, would have enough time to locally plasticize craze fibrils and enhance the energy dissipation.

Keywords: molecular weight distribution, polystyrene, toughness, homopolymer

Procedia PDF Downloads 442
286 Looking at Women’s Status in India through Different Lenses: Evidence from Second Wave of IHDS Data

Authors: Vidya Yadav

Abstract:

In every society, males and females are expected to behave in certain ways, and in every culture, those expectation, values and norms are different and vary accordingly. Many of the inequalities between men and women are rooted in institutional structure such as in educational field, labour market, wages, decision-making power, access to services as well as in accessing the health and well-being care also. The marriage and kinship pattern shape both men’s and women’s lives. Earlier many studies have highlighted the gender disparities which vary tremendously between regions, social classes, and communities. This study will try to explore the prominent indicators to show the status of women and well-being condition in Indian society. Primarily this paper concern with firstly identification of indicators related to gender in each area like education, work status, mobility, women participation in public and private decision making, autonomy and domestic violence etc. And once the indicators are identified next task is to define them. The indicators which are selected here are for a comparison of women’s status across Indian states. Recent Indian Human Development Survey, 2011-12 has been procured to show the current situation of women. Result shows that in spite of rising levels of education and images of growing westernization in India, love marriages remain in rarity even among urban elite. In India marriage is universal, and most of the men and women marry at relatively young age. Even though the legal age of marriage is 18, but more than 60 percent are married before the legal age. Not surprisingly, but Bihar and Rajasthan are the states with earliest age at marriage. Most of them reported that they have very limited contact with their husband before marriages. Around 69 percent of women met their husbands on the day of the wedding or shortly before. In spite of decline in fertility, still childbearing remains essential to women’s lives. Mostly women aged 25 and older had at least one child. Women’s control over household resources, physical space and mobility is also limited. Indian women’s, mostly rely on men to purchase day to day necessities, as well as medicines, as well as other necessary items. This ultimately reduces the likelihood that women have cash in hand for such purchases. The story is quite different when it comes to have control over decision over purchasing household assets such as TVs or refrigerator, names on the bank account, and home ownership papers. However, the likelihood of ownership rises among urbanite educated women’s. Women’s still have to the cultural norms and the practice of purdah or ghunghat, familial control over women’s physical movement. Wife beating and domestic violence still remain pervasive, and beaten for minor transgression like going out without permission. Development of India cannot be realized without the very significant component of gender. Therefore detailed examinations of different indicators are required to understand, strategize, plan and formulate programmes.

Keywords: autonomy, empowerment, gender, violence

Procedia PDF Downloads 297
285 Suicide Wrongful Death: Standard of Care Problems Involving the Inaccurate Discernment of Lethal Risk When Focusing on the Elicitation of Suicide Ideation

Authors: Bill D. Geis

Abstract:

Suicide wrongful death forensic cases are the fastest rising tort in mental health law. It is estimated that suicide-related cases have accounted for 15% of U.S. malpractice claims since 2006. Most suicide-related personal injury claims fall into the legal category of “wrongful death.” Though mental health experts may be called on to address a range of forensic questions in wrongful death cases, the central consultation that most experts provide is about the negligence element—specifically, the issue of whether the clinician met the clinical standard of care in assessing, treating, and managing the deceased person’s mental health care. Standards of care, varying from U.S. state to state, are broad and address what a reasonable clinician might do in a similar circumstance. This fact leaves the issue of the suicide standard of care, in each case, up to forensic experts to put forth a reasoned estimate of what the standard of care should have been in the specific case under litigation. Because the general state guidelines for standard of care are broad, forensic experts are readily retained to provide scientific and clinical opinions about whether or not a clinician met the standard of care in their suicide assessment, treatment, and management of the case. In the past and in much of current practice, the assessment of suicide has centered on the elicitation of verbalized suicide ideation. Research in recent years, however, has indicated that the majority of persons who end their lives do not say they are suicidal at their last medical or psychiatric contact. Near-term risk assessment—that goes beyond verbalized suicide ideation—is needed. Our previous research employed structural equation modeling to predict lethal suicide risk--eight negative thought patterns (feeling like a burden on others, hopelessness, self-hatred, etc.) mediated by nine transdiagnostic clinical factors (mental torment, insomnia, substance abuse, PTSD intrusions, etc.) were combined to predict acute lethal suicide risk. This structural equation model, the Lethal Suicide Risk Pattern (LSRP), Acute model, had excellent goodness-of-fit [χ2(df) = 94.25(47)***, CFI = .98, RMSEA = .05, .90CI = .03-.06, p(RMSEA = .05) = .63. AIC = 340.25, ***p < .001.]. A further SEQ analysis was completed for this paper, adding a measure of Acute Suicide Ideation to the previous SEQ. Acceptable prediction model fit was no longer achieved [χ2(df) = 3.571, CFI > .953, RMSEA = .075, .90% CI = .065-.085, AIC = 529.550].This finding suggests that, in this additional study, immediate verbalized suicide ideation information was unhelpful in the assessment of lethal risk. The LSRP and other dynamic, near-term risk models (such as the Acute Suicide Affective Disorder Model and the Suicide Crisis Syndrome Model)—going beyond elicited suicide ideation—need to be incorporated into current clinical suicide assessment training. Without this training, the standard of care for suicide assessment is out of sync with current research—an emerging dilemma for the forensic evaluation of suicide wrongful death cases.

Keywords: forensic evaluation, standard of care, suicide, suicide assessment, wrongful death

Procedia PDF Downloads 68
284 Aerodynamic Design Optimization Technique for a Tube Capsule That Uses an Axial Flow Air Compressor and an Aerostatic Bearing

Authors: Ahmed E. Hodaib, Muhammed A. Hashem

Abstract:

High-speed transportation has become a growing concern. To increase high-speed efficiencies and minimize power consumption of a vehicle, we need to eliminate the friction with the ground and minimize the aerodynamic drag acting on the vehicle. Due to the complexity and high power requirements of electromagnetic levitation, we make use of the air in front of the capsule, that produces the majority of the drag, to compress it in two phases and inject a proportion of it through small nozzles to make a high-pressure air cushion to levitate the capsule. The tube is partially-evacuated so that the air pressure is optimized for maximum compressor effectiveness, optimum tube size, and minimum vacuum pump power consumption. The total relative mass flow rate of the tube air is divided into two fractions. One is by-passed to flow over the capsule body, ensuring that no chocked flow takes place. The other fraction is sucked by the compressor where it is diffused to decrease the Mach number (around 0.8) to be suitable for the compressor inlet. The air is then compressed and intercooled, then split. One fraction is expanded through a tail nozzle to contribute to generating thrust. The other is compressed again. Bleed from the two compressors is used to maintain a constant air pressure in an air tank. The air tank is used to supply air for levitation. Dividing the total mass flow rate increases the achievable speed (Kantrowitz limit), and compressing it decreases the blockage of the capsule. As a result, the aerodynamic drag on the capsule decreases. As the tube pressure decreases, the drag decreases and the capsule power requirements decrease, however, the vacuum pump consumes more power. That’s why Design optimization techniques are to be used to get the optimum values for all the design variables given specific design inputs. Aerodynamic shape optimization, Capsule and tube sizing, compressor design, diffuser and nozzle expander design and the effect of the air bearing on the aerodynamics of the capsule are to be considered. The variations of the variables are to be studied for the change of the capsule velocity and air pressure.

Keywords: tube-capsule, hyperloop, aerodynamic design optimization, air compressor, air bearing

Procedia PDF Downloads 330
283 Best Practical Technique to Drain Recoverable Oil from Unconventional Deep Libyan Oil Reservoir

Authors: Tarek Duzan, Walid Esayed

Abstract:

Fluid flow in porous media is attributed fundamentally to parameters that are controlled by depositional and post-depositional environments. After deposition, digenetic events can act negatively on the reservoir and reduce the effective porosity, thereby making the rock less permeable. Therefore, exploiting hydrocarbons from such resources requires partially altering the rock properties to improve the long-term production rate and enhance the recovery efficiency. In this study, we try to address, firstly, the phenomena of permeability reduction in tight sandstone reservoirs and illustrate the implemented procedures to investigate the problem roots; finally, benchmark the candidate solutions at the field scale and recommend the mitigation strategy for the field development plan. During the study, two investigations have been considered: subsurface analysis using ( PLT ) and Laboratory tests for four candidate wells of the interested reservoir. Based on the above investigations, it was obvious that the Production logging tool (PLT) has shown areas of contribution in the reservoir, which is considered very limited, considering the total reservoir thickness. Also, Alcohol treatment was the first choice to go with for the AA9 well. The well productivity has been relatively restored but not to its initial productivity. Furthermore, Alcohol treatment in the lab was effective and restored permeability in some plugs by 98%, but operationally, the challenge would be the ability to distribute enough alcohol in a wellbore to attain the sweep Efficiency obtained within a laboratory core plug. However, the Second solution, which is based on fracking wells, has shown excellent results, especially for those wells that suffered a high drop in oil production. It is suggested to frac and pack the wells that are already damaged in the Waha field to mitigate the damage and restore productivity back as much as possible. In addition, Critical fluid velocity and its effect on fine sand migration in the reservoir have to be well studied on core samples, and therefore, suitable pressure drawdown will be applied in the reservoir to limit fine sand migration.

Keywords: alcohol treatment, post-depositional environments, permeability, tight sandstone

Procedia PDF Downloads 68
282 Geospatial Modeling Framework for Enhancing Urban Roadway Intersection Safety

Authors: Neeti Nayak, Khalid Duri

Abstract:

Despite the many advances made in transportation planning, the number of injuries and fatalities in the United States which involve motorized vehicles near intersections remain largely unchanged year over year. Data from the National Highway Traffic Safety Administration for 2018 indicates accidents involving motorized vehicles at traffic intersections accounted for 8,245 deaths and 914,811 injuries. Furthermore, collisions involving pedal cyclists killed 861 people (38% at intersections) and injured 46,295 (68% at intersections), while accidents involving pedestrians claimed 6,247 lives (25% at intersections) and injured 71,887 (56% at intersections)- the highest tallies registered in nearly 20 years. Some of the causes attributed to the rising number of accidents relate to increasing populations and the associated changes in land and traffic usage patterns, insufficient visibility conditions, and inadequate applications of traffic controls. Intersections that were initially designed with a particular land use pattern in mind may be rendered obsolete by subsequent developments. Many accidents involving pedestrians are accounted for by locations which should have been designed for safe crosswalks. Conventional solutions for evaluating intersection safety often require costly deployment of engineering surveys and analysis, which limit the capacity of resource-constrained administrations to satisfy their community’s needs for safe roadways adequately, effectively relegating mitigation efforts for high-risk areas to post-incident responses. This paper demonstrates how geospatial technology can identify high-risk locations and evaluate the viability of specific intersection management techniques. GIS is used to simulate relevant real-world conditions- the presence of traffic controls, zoning records, locations of interest for human activity, design speed of roadways, topographic details and immovable structures. The proposed methodology provides a low-cost mechanism for empowering urban planners to reduce the risks of accidents using 2-dimensional data representing multi-modal street networks, parcels, crosswalks and demographic information alongside 3-dimensional models of buildings, elevation, slope and aspect surfaces to evaluate visibility and lighting conditions and estimate probabilities for jaywalking and risks posed by blind or uncontrolled intersections. The proposed tools were developed using sample areas of Southern California, but the model will scale to other cities which conform to similar transportation standards given the availability of relevant GIS data.

Keywords: crosswalks, cyclist safety, geotechnology, GIS, intersection safety, pedestrian safety, roadway safety, transportation planning, urban design

Procedia PDF Downloads 109
281 Challenges in the Last Mile of the Global Guinea Worm Eradication Program: A Systematic Review

Authors: Getahun Lemma

Abstract:

Introduction Guinea Worm Disease (GWD), also known as dracunculiasisis, is one of the oldest diseases in the history of mankind. Dracunculiasis is caused by a parasitic nematode, Dracunculus medinensis. Infection is acquired by drinking contaminated water with copepods containing infective Guinea Worm (GW) larvae). Almost one year after the infection, the worm usually emerges out through the skin on a lower, causing severe pain and disabilities. Although there is no effective drug or vaccine against the disease, the chain of transmission can be effectively prevented with simple and cost effective public health measures. Death due to dracunculiasis is very rare. However, it results in a wide range of physical, social and economic sequels. The disease is usually common in the rural, remote places of Sub-Saharan African countries among the marginalized societies. Currently, GWD is one of the neglected tropical diseases, which is on the verge of eradication. The global Guinea Worm Eradication Program (GWEP) was started in 1980. Since then, the program has achieved a tremendous success in reducing the global burden and number of GW case from 3.5 million to only 28 human cases at the end of 2018. However, it has recently been shown that not only humans can become infected, with a total of 1,105 animal infections have been reported at the end of 2018. Therefore, the objective of this study was to identify the existing challenges in the last mile of the GWEP in order To inform Policy makers and stakeholders on potential measures to finally achieve eradication. Method Systematic literature review on articles published from January 1, 2000 until May 30, 2019. Papers listed in Cochrane Library, Google Scholar, ProQuest PubMed and Web of Science databases were searched and reviewed. Results Twenty-five articles met inclusion criteria of the study and were selected for analysis. Hence, relevant data were extracted, grouped and descriptively analyzed. Results showed the main challenges complicating the last mile of global GWEP: 1. Unusual mode of transmission; 2. Rising animal Guinea Worm infection; 3. Suboptimal surveillance; 4. Insecurity; 5. Inaccessibility; 6. Inadequate safe water points; 7. Migration; 8. Poor case containment measures, 9. Ecological changes; and 10. New geographic foci of the disease. Conclusion This systematic review identified that most of the current challenges in the GWEP have been present since the start of the campaign. However, the recent change in epidemiological patterns and nature of GWD in the last remaining endemic countries illustrates a new twist in the global GWEP. Considering the complex nature of the current challenges, there seems to be a need for a more coordinated and multidisciplinary approach of GWD prevention and control measures in the last mile of the campaign. These new strategies would help to make history by eradicating dracunculiasis as the first ever parasitic disease.

Keywords: dracunculiasis, eradication program, guinea worm, last mile

Procedia PDF Downloads 131
280 A Review on Assessment on the Level of Development of Macedonia and Iran Organic Agriculture as Compared to Nigeria

Authors: Yusuf Ahmad Sani, Adamu Alhaji Yakubu, Alhaji Abdullahi Jamilu, Joel Omeke, Ibrahim Jumare Sambo

Abstract:

With the rising global threat of food security, cancer, and related diseases (carcinogenic) because of increased usage of inorganic substances in agricultural food production, the Ministry of Food Agriculture and Livestock of the Republic of Turkey organized an International Workshop on Organic Agriculture between 8 – 12th December 2014 at the International Agricultural Research and Training Center, Izmir. About 21 countries, including Nigeria, were invited to attend the training workshop. Several topics on organic agriculture were presented by renowned scholars, ranging from regulation, certification, crop, animal, seed production, pest and disease management, soil composting, and marketing of organic agricultural products, among others. This paper purposely selected two countries (Macedonia and Iran) out of the 21 countries to assess their level of development in terms of organic agriculture as compared to Nigeria. Macedonia, with a population of only 2.1 million people as of 2014, started organic agriculture in 2005 with only 266ha of land and has grown significantly to over 5,000ha in 2010, covering such crops as cereals (62%), forage (20%) fruit orchard (7%), vineyards (5%), vegetables (4%), oil seed and industrial crops (1%) each. Others are organic beekeeping from 110 hives to over 15,000 certified colonies. As part of government commitment, the level of government subsidy for organic products was 30% compared to the direct support for conventional agricultural products. About 19 by-laws were introduced on organic agricultural production that was fully consistent with European Union regulations. The republic of Iran, on the other hand, embarked on organic agriculture for the fact, that the country recorded the highest rate of cancer disease in the world, with over 30,000 people dying every year and 297 people diagnosed every day. However, the host country, Turkey, is well advanced in organic agricultural production and now being the largest exporter of organic products to Europe and other parts of the globe. A technical trip to one of the villages that are under the government scheme on organic agriculture reveals that organic agriculture was based on market-demand-driven and the support of the government was very visible, linking the farmers with private companies that provide inputs to them while the companies purchase the products at harvest with high premium price. However, in Nigeria, research on organic agriculture was very recent, and there was very scanty information on organic agriculture due to poor documentation and very low awareness, even among the elites. The paper, therefore, recommends that the government should provide funds to NARIs to conduct research on organic agriculture and to establish clear government policy and good pre-conditions for sustainable organic agricultural production in the country.

Keywords: organic agriculture, food security, food safety, food nutrition

Procedia PDF Downloads 50
279 Study of Morning-Glory Spillway Structure in Hydraulic Characteristics by CFD Model

Authors: Mostafa Zandi, Ramin Mansouri

Abstract:

Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. Morning-Glory spillway is one of the common spillways for discharging the overflow water behind dams, these kinds of spillways are constructed in dams with small reservoirs. In this research, the hydraulic flow characteristics of a morning-glory spillways are investigated with CFD model. Two dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k- and k-, were chosen to model Reynolds shear stress term. The power law scheme was used for discretization of momentum, k , and  equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k -ε (Standard) has the most consistent results with experimental results. When the jet is getting closer to end of basin, the computational results increase with the numerical results of their differences. The lower profile of the water jet has less sensitivity to the hydraulic jet profile than the hydraulic jet profile. In the pressure test, it was also found that the results show that the numerical values of the pressure in the lower landing number differ greatly in experimental results. The characteristics of the complex flows over a Morning-Glory spillway were studied numerically using a RANS solver. Grid study showed that numerical results of a 57512-node grid had the best agreement with the experimental values. The desired downstream channel length was preferred to be 1.5 meter, and the standard k-ε turbulence model produced the best results in Morning-Glory spillway. The numerical free-surface profiles followed the theoretical equations very well.

Keywords: morning-glory spillway, CFD model, hydraulic characteristics, wall function

Procedia PDF Downloads 77
278 The Effects of Billboard Content and Visible Distance on Driver Behavior

Authors: Arsalan Hassan Pour, Mansoureh Jeihani, Samira Ahangari

Abstract:

Distracted driving has been one of the most integral concerns surrounding our daily use of vehicles since the invention of the automobile. While much attention has been recently given to cell phones related distraction, commercial billboards along roads are also candidates for drivers' visual and cognitive distractions, as they may take drivers’ eyes from the road and their minds off the driving task to see, perceive and think about the billboard’s content. Using a driving simulator and a head-mounted eye-tracking system, speed change, acceleration, deceleration, throttle response, collision, lane changing, and offset from the center of the lane data along with gaze fixation duration and frequency data were collected in this study. Some 92 participants from a fairly diverse sociodemographic background drove on a simulated freeway in Baltimore, Maryland area and were exposed to three different billboards to investigate the effects of billboards on drivers’ behavior. Participants glanced at the billboards several times with different frequencies, the maximum of which occurred on the billboard with the highest cognitive load. About 74% of the participants didn’t look at billboards for more than two seconds at each glance except for the billboard with a short visible area. Analysis of variance (ANOVA) was performed to find the variations in driving behavior when they are invisible, readable, and post billboards area. The results show a slight difference in speed, throttle, brake, steering velocity, and lane changing, among different areas. Brake force and deviation from the center of the lane increased in the readable area in comparison with the visible area, and speed increased right after each billboard. The results indicated that billboards have a significant effect on driving performance and visual attention based on their content and visibility status. Generalized linear model (GLM) analysis showed no connection between participants’ age and driving experience with gaze duration. However, the visible distance of the billboard, gender, and billboard content had a significant effect on gaze duration.

Keywords: ANOVA, billboards, distracted driving, drivers' behavior, driving simulator, eye-Tracking system, GLM

Procedia PDF Downloads 127
277 Comparison of Yb and Tm-Fiber Laser Cutting Processes of Fiber Reinforced Plastics

Authors: Oktay Celenk, Ugur Karanfil, Iskender Demir, Samir Lamrini, Jorg Neumann, Arif Demir

Abstract:

Due to its favourable material characteristics, fiber reinforced plastics are amongst the main topics of all actual lightweight construction megatrends. Especially in transportation trends ranging from aeronautics over the automotive industry to naval transportation (yachts, cruise liners) the expected economic and environmental impact is huge. In naval transportation components like yacht bodies, antenna masts, decorative structures like deck lamps, light houses and pool areas represent cheap and robust solutions. Commercially available laser tools like carbon dioxide gas lasers (CO₂), frequency tripled solid state UV lasers, and Neodymium-YAG (Nd:YAG) lasers can be used. These tools have emission wavelengths of 10 µm, 0.355 µm, and 1.064 µm, respectively. The scientific goal is first of all the generation of a parameter matrix for laser processing of each used material for a Tm-fiber laser system (wavelength 2 µm). These parameters are the heat affected zone, process gas pressure, work piece feed velocity, intensity, irradiation time etc. The results are compared with results obtained with well-known material processing lasers, such as a Yb-fiber lasers (wavelength 1 µm). Compared to the CO₂-laser, the Tm-laser offers essential advantages for future laser processes like cutting, welding, ablating for repair and drilling in composite part manufacturing (components of cruise liners, marine pipelines). Some of these are the possibility of beam delivery in a standard fused silica fiber which enables hand guided processing, eye safety which results from the wavelength, excellent beam quality and brilliance due to the fiber nature. There is one more feature that is economically absolutely important for boat, automotive and military projects manufacturing that the wavelength of 2 µm is highly absorbed by the plastic matrix and thus enables selective removal of it for repair procedures.

Keywords: Thulium (Tm) fiber laser, laser processing of fiber-reinforced plastics (FRP), composite, heat affected zone

Procedia PDF Downloads 193
276 Soil Liquefaction Hazard Evaluation for Infrastructure in the New Bejaia Quai, Algeria

Authors: Mohamed Khiatine, Amal Medjnoun, Ramdane Bahar

Abstract:

The North Algeria is a highly seismic zone, as evidenced by the historical seismicity. During the past two decades, it has experienced several moderate to strong earthquakes. Therefore, the geotechnical engineering problems that involve dynamic loading of soils and soil-structure interaction system requires, in the presence of saturated loose sand formations, liquefaction studies. Bejaia city, located in North-East of Algiers, Algeria, is a part of the alluvial plain which covers an area of approximately 750 hectares. According to the Algerian seismic code, it is classified as moderate seismicity zone. This area had not experienced in the past urban development because of the different hazards identified by hydraulic and geotechnical studies conducted in the region. The low bearing capacity of the soil, its high compressibility and the risk of liquefaction and flooding are among these risks and are a constraint on urbanization. In this area, several cases of structures founded on shallow foundations have suffered damages. Hence, the soils need treatment to reduce the risk. Many field and laboratory investigations, core drilling, pressuremeter test, standard penetration test (SPT), cone penetrometer test (CPT) and geophysical down hole test, were performed in different locations of the area. The major part of the area consists of silty fine sand , sometimes heterogeneous, has not yet reached a sufficient degree of consolidation. The ground water depth changes between 1.5 and 4 m. These investigations show that the liquefaction phenomenon is one of the critical problems for geotechnical engineers and one of the obstacles found in design phase of projects. This paper presents an analysis to evaluate the liquefaction potential, using the empirical methods based on Standard Penetration Test (SPT), Cone Penetration Test (CPT) and shear wave velocity and numerical analysis. These liquefaction assessment procedures indicate that liquefaction can occur to considerable depths in silty sand of harbor zone of Bejaia.

Keywords: earthquake, modeling, liquefaction potential, laboratory investigations

Procedia PDF Downloads 353
275 Preparation of Activated Carbon From Waste Feedstock: Activation Variables Optimization and Influence

Authors: Oluwagbemi Victor Aladeokin

Abstract:

In the last decade, the global peanut cultivation has seen increased demand, which is attributed to their health benefits, rising to ~ 41.4 MMT in 2019/2020. Peanut and other nutshells are considered as waste in various parts of the world and are usually used for their fuel value. However, this agricultural by-product can be converted to a higher value product such as activated carbon. For many years, due to the highly porous structure of activated carbon, it has been widely and effectively used as an adsorbent in the purification and separation of gases and liquids. Those used for commercial purposes are primarily made from a range of precursors such as wood, coconut shell, coal, bones, etc. However, due to difficulty in regeneration and high cost, various agricultural residues such as rice husk, corn stalks, apricot stones, almond shells, coffee beans, etc, have been explored to produce activated carbons. In the present study, the potential of peanut shells as precursors in the production of activated carbon and their adsorption capacity is investigated. Usually, precursors used to produce activated carbon have carbon content above 45 %. A typical raw peanut shell has 42 wt.% carbon content. To increase the yield, this study has employed chemical activation method using zinc chloride. Zinc chloride is well known for its effectiveness in increasing porosity of porous carbonaceous materials. In chemical activation, activation temperature and impregnation ratio are parameters commonly reported to be the most significant, however, this study has also studied the influence of activation time on the development of activated carbon from peanut shells. Activated carbons are applied for different purposes, however, as the application of activated carbon becomes more specific, an understanding of the influence of activation variables to have a better control of the quality of the final product becomes paramount. A traditional approach to experimentally investigate the influence of the activation parameters, involves varying each parameter at a time. However, a more efficient way to reduce the number of experimental runs is to apply design of experiment. One of the objectives of this study is to optimize the activation variables. Thus, this work has employed response surface methodology of design of experiment to study the interactions between the activation parameters and consequently optimize the activation parameters (temperature, impregnation ratio, and activation time). The optimum activation conditions found were 485 °C, 15 min and 1.7, temperature, activation time, and impregnation ratio respectively. The optimum conditions resulted in an activated carbon with relatively high surface area ca. 1700 m2/g, 47 % yield, relatively high density, low ash, and high fixed carbon content. Impregnation ratio and temperature were found to mostly influence the final characteristics of the produced activated carbon from peanut shells. The results of this study, using response surface methodology technique, have revealed the potential and the most significant parameters that influence the chemical activation process, of peanut shells to produce activated carbon which can find its use in both liquid and gas phase adsorption applications.

Keywords: chemical activation, fixed carbon, impregnation ratio, optimum, surface area

Procedia PDF Downloads 145
274 Study of the Uncertainty Behaviour for the Specific Total Enthalpy of the Hypersonic Plasma Wind Tunnel Scirocco at Italian Aerospace Research Center

Authors: Adolfo Martucci, Iulian Mihai

Abstract:

By means of the expansion through a Conical Nozzle and the low pressure inside the Test Chamber, a large hypersonic stable flow takes place for a duration of up to 30 minutes. Downstream the Test Chamber, the diffuser has the function of reducing the flow velocity to subsonic values, and as a consequence, the temperature increases again. In order to cool down the flow, a heat exchanger is present at the end of the diffuser. The Vacuum System generates the necessary vacuum conditions for the correct hypersonic flow generation, and the DeNOx system, which follows the Vacuum System, reduces the nitrogen oxide concentrations created inside the plasma flow behind the limits imposed by Italian law. This very large, powerful, and complex facility allows researchers and engineers to reproduce entire re-entry trajectories of space vehicles into the atmosphere. One of the most important parameters for a hypersonic flowfield representative of re-entry conditions is the specific total enthalpy. This is the whole energy content of the fluid, and it represents how severe could be the conditions around a spacecraft re-entering from a space mission or, in our case, inside a hypersonic wind tunnel. It is possible to reach very high values of enthalpy (up to 45 MJ/kg) that, together with the large allowable size of the models, represent huge possibilities for making on-ground experiments regarding the atmospheric re-entry field. The maximum nozzle exit section diameter is 1950 mm, where values of Mach number very much higher than 1 can be reached. The specific total enthalpy is evaluated by means of a number of measurements, each of them concurring with its value and its uncertainty. The scope of the present paper is the evaluation of the sensibility of the uncertainty of the specific total enthalpy versus all the parameters and measurements involved. The sensors that, if improved, could give the highest advantages have so been individuated. Several simulations in Python with the METAS library and by means of Monte Carlo simulations are presented together with the obtained results and discussions about them.

Keywords: hypersonic, uncertainty, enthalpy, simulations

Procedia PDF Downloads 97
273 Performing Arts and Performance Art: Interspaces and Flexible Transitions

Authors: Helmi Vent

Abstract:

This four-year artistic research project has set the goal of exploring the adaptable transitions within the realms between the two genres. This paper will single out one research question from the entire project for its focus, namely on how and under what circumstances such transitions between a reinterpretation and a new creation can take place during the performative process. The film documentation that accompany the project were produced at the Mozarteum University in Salzburg, Austria, as well as on diverse everyday stages at various locations. The model institution that hosted the project is the LIA – Lab Inter Arts, under the direction of Helmi Vent. LIA combines artistic research with performative applications. The project participants are students from various artistic fields of study. The film documentation forms a central platform for the entire project. They function as audiovisual records of performative performative origins and development processes, while serving as the basis for analysis and evaluation, including the self-evaluation of the recorded material and they also serve as illustrative and discussion material in relation to the topic of this paper. Regarding the “interspaces” and variable 'transitions': The performing arts in the western cultures generally orient themselves toward existing original compositions – most often in the interconnected fields of music, dance and theater – with the goal of reinterpreting and rehearsing a pre-existing score, choreographed work, libretto or script and presenting that respective piece to an audience. The essential tool in this reinterpretation process is generally the artistic ‘language’ performers learn over the course of their main studies. Thus, speaking is combined with singing, playing an instrument is combined with dancing, or with pictorial or sculpturally formed works, in addition to many other variations. If the Performing Arts would rid themselves of their designations from time to time and initially follow the emerging, diffusely gliding transitions into the unknown, the artistic language the performer has learned then becomes a creative resource. The illustrative film excerpts depicting the realms between Performing Arts and Performance Art present insights into the ways the project participants embrace unknown and explorative processes, thus allowing the genesis of new performative designs or concepts to be invented between the participants’ acquired cultural and artistic skills and their own creations – according to their own ideas and issues, sometimes with their direct involvement, fragmentary, provisional, left as a rough draft or fully composed. All in all, it is an evolutionary process and its key parameters cannot be distilled down to their essence. Rather, they stem from a subtle inner perception, from deep-seated emotions, imaginations, and non-discursive decisions, which ultimately result in an artistic statement rising to the visible and audible surface. Within these realms between performing arts and performance art and their extremely flexible transitions, exceptional opportunities can be found to grasp and realise art itself as a research process.

Keywords: art as research method, Lab Inter Arts ( LIA ), performing arts, performance art

Procedia PDF Downloads 270
272 Exploration of Cone Foam Breaker Behavior Using Computational Fluid Dynamic

Authors: G. St-Pierre-Lemieux, E. Askari Mahvelati, D. Groleau, P. Proulx

Abstract:

Mathematical modeling has become an important tool for the study of foam behavior. Computational Fluid Dynamic (CFD) can be used to investigate the behavior of foam around foam breakers to better understand the mechanisms leading to the ‘destruction’ of foam. The focus of this investigation was the simple cone foam breaker, whose performance has been identified in numerous studies. While the optimal pumping angle is known from the literature, the contribution of pressure drop, shearing, and centrifugal forces to the foam syneresis are subject to speculation. This work provides a screening of those factors against changes in the cone angle and foam rheology. The CFD simulation was made with the open source OpenFOAM toolkits on a full three-dimensional model discretized using hexahedral cells. The geometry was generated using a python script then meshed with blockMesh. The OpenFOAM Volume Of Fluid (VOF) method was used (interFOAM) to obtain a detailed description of the interfacial forces, and the model k-omega SST was used to calculate the turbulence fields. The cone configuration allows the use of a rotating wall boundary condition. In each case, a pair of immiscible fluids, foam/air or water/air was used. The foam was modeled as a shear thinning (Herschel-Buckley) fluid. The results were compared to our measurements and to results found in the literature, first by computing the pumping rate of the cone, and second by the liquid break-up at the exit of the cone. A 3D printed version of the cones submerged in foam (shaving cream or soap solution) and water, at speeds varying between 400 RPM and 1500 RPM, was also used to validate the modeling results by calculating the torque exerted on the shaft. While most of the literature is focusing on cone behavior using Newtonian fluids, this works explore its behavior in shear thinning fluid which better reflects foam apparent rheology. Those simulations bring new light on the cone behavior within the foam and allow the computation of shearing, pressure, and velocity of the fluid, enabling to better evaluate the efficiency of the cones as foam breakers. This study contributes to clarify the mechanisms behind foam breaker performances, at least in part, using modern CFD techniques.

Keywords: bioreactor, CFD, foam breaker, foam mitigation, OpenFOAM

Procedia PDF Downloads 202
271 Latent Heat Storage Using Phase Change Materials

Authors: Debashree Ghosh, Preethi Sridhar, Shloka Atul Dhavle

Abstract:

The judicious and economic consumption of energy for sustainable growth and development is nowadays a thing of primary importance; Phase Change Materials (PCM) provide an ingenious option of storing energy in the form of Latent Heat. Energy storing mechanism incorporating phase change material increases the efficiency of the process by minimizing the difference between supply and demand; PCM heat exchangers are used to storing the heat or non-convectional energy within the PCM as the heat of fusion. The experimental study evaluates the effect of thermo-physical properties, variation in inlet temperature, and flow rate on charging period of a coiled heat exchanger. Secondly, a numerical study is performed on a PCM double pipe heat exchanger packed with two different PCMs, namely, RT50 and Fatty Acid, in the annular region. In this work, the simulation of charging of paraffin wax (RT50) using water as high-temperature fluid (HTF) is performed. Commercial software Ansys-Fluent 15 is used for simulation, and hence charging of PCM is studied. In the Enthalpy-porosity model, a single momentum equation is applicable to describe the motion of both solid and liquid phases. The details of the progress of phase change with time are presented through the contours of melt-fraction, temperature. The velocity contour is shown to describe the motion of the liquid phase. The experimental study revealed that paraffin wax melts with almost the same temperature variation at the two Intermediate positions. Fatty acid, on the other hand, melts faster owing to greater thermal conductivity and low melting temperature. It was also observed that an increase in flow rate leads to a reduction in the charging period. The numerical study also supports some of the observations found in the experimental study like the significant dependence of driving force on the process of melting. The numerical study also clarifies the melting pattern of the PCM, which cannot be observed in the experimental study.

Keywords: latent heat storage, charging period, discharging period, coiled heat exchanger

Procedia PDF Downloads 116
270 Ultrasound-Mediated Separation of Ethanol, Methanol, and Butanol from Their Aqueous Solutions

Authors: Ozan Kahraman, Hao Feng

Abstract:

Ultrasonic atomization (UA) is a useful technique for producing a liquid spray for various processes, such as spray drying. Ultrasound generates small droplets (a few microns in diameter) by disintegration of the liquid via cavitation and/or capillary waves, with low range velocity and narrow droplet size distribution. In recent years, UA has been investigated as an alternative for enabling or enhancing ultrasound-mediated unit operations, such as evaporation, separation, and purification. The previous studies on the UA separation of a solvent from a bulk solution were limited to ethanol-water systems. More investigations into ultrasound-mediated separation for other liquid systems are needed to elucidate the separation mechanism. This study was undertaken to investigate the effects of the operational parameters on the ultrasound-mediated separation of three miscible liquid pairs: ethanol-, methanol-, and butanol-water. A 2.4 MHz ultrasonic mister with a diameter of 18 mm and rating power of 24 W was installed on the bottom of a custom-designed cylindrical separation unit. Air was supplied to the unit (3 to 4 L/min.) as a carrier gas to collect the mist. The effects of the initial alcohol concentration, viscosity, and temperature (10, 30 and 50°C) on the atomization rates were evaluated. The alcohol concentration in the collected mist was measured with high performance liquid chromatography and a refractometer. The viscosity of the solutions was determined using a Brookfield digital viscometer. The alcohol concentration of the atomized mist was dependent on the feed concentration, feed rate, viscosity, and temperature. Increasing the temperature of the alcohol-water mixtures from 10 to 50°C increased the vapor pressure of both the alcohols and water, resulting in an increase in the atomization rates but a decrease in the separation efficiency. The alcohol concentration in the mist was higher than that of the alcohol-water equilibrium at all three temperatures. More importantly, for ethanol, the ethanol concentration in the mist went beyond the azeotropic point, which cannot be achieved by conventional distillation. Ultrasound-mediated separation is a promising non-equilibrium method for separating and purifying alcohols, which may result in significant energy reductions and process intensification.

Keywords: azeotropic mixtures, distillation, evaporation, purification, seperation, ultrasonic atomization

Procedia PDF Downloads 179