Search results for: nano collagen molecules
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2274

Search results for: nano collagen molecules

264 Luminescent Properties of Sm³⁺-Doped Silica Nanophosphor Synthesized from Highly Active Amorphous Nanosilica Derived from Rice Husk

Authors: Celestine Mbakaan, Iorkyaa Ahemen, A. D. Onoja, A. N. Amah, Emmanuel Barki

Abstract:

Rice husk (RH) is a natural sheath that forms and covers the grain of rice. The husk composed of hard materials, including opaline silica and lignin. It separates from its grain during rice milling. RH also contains approximately 15 to 28 wt % of silica in hydrated amorphous form. Nanosilica was derived from the husk of different rice varieties after pre-treating the husk (RH) with HCl and calcination at 550°C. Nanosilica derived from the husk of Osi rice variety produced the highest silica yield, and further pretreatment with 0.8 M H₃PO₄ acid removed more mineral impurities. The silica obtained from this rice variety was selected as a host matrix for doping with Sm³⁺ ions. Rice husk silica (RH-SiO₂) doped with samarium (RH-SiO₂: xSm³⁺ (x=0.01, 0.05, and 0.1 molar ratios) nanophosphors were synthesized via the sol-gel method. The structural analysis by X-ray diffraction analysis (XRD) reveals amorphous structure while the surface morphology, as revealed by SEM and TEM, indicates agglomerates of nano-sized spherical particles with an average particle size measuring 21 nm. The nanophosphor has a large surface area measuring 198.0 m²/g, and Fourier transform infrared spectroscopy (FT-IR) shows only a single absorption band which is strong and broad with a valley at 1063 cm⁻¹. Diffuse reflectance spectroscopy (DRS) shows strong absorptions at 319, 345, 362, 375, 401, and 474 nm, which can be exclusively assigned to the 6H5/2→4F11/2, 3H7/2, 4F9/2, 4D5/2, 4K11/2, and 4M15/2 + 4I11/2, transitions of Sm³⁺ respectively. The photoluminescence excitation spectra show that near UV and blue LEDs can effectively be used as excitation sources to produce red-orange and yellow-orange emission from Sm³⁺ ion-doped RH-SiO₂ nanophosphors. The photoluminescence (PL) of the nanophosphors gives three main lines; 568, 605, and 652 nm, which are attributed to the intra-4f shell transitions from the excited level to ground levels, respectively under excitation wavelengths of 365 and 400 nm. The result, as confirmed from the 1931 CIE coordinates diagram, indicates the emission of red-orange light by RH-SiO₂: xSm³⁺ (x=0.01 and 0.1 molar ratios) and yellow-orange light from RH-SiO₂: 0.05 Sm³⁺. Finally, the result shows that RH-SiO₂ doped with samarium (Sm³⁺) ions can be applicable in display applications.

Keywords: luminescence, nanosilica, nanophosphors, Sm³⁺

Procedia PDF Downloads 134
263 Computational Approach to Identify Novel Chemotherapeutic Agents against Multiple Sclerosis

Authors: Syed Asif Hassan, Tabrej Khan

Abstract:

Multiple sclerosis (MS) is a chronic demyelinating autoimmune disorder, of the central nervous system (CNS). In the present scenario, the current therapies either do not halt the progression of the disease or have side effects which limit the usage of current Disease Modifying Therapies (DMTs) for a longer period of time. Therefore, keeping the current treatment failure schema, we are focusing on screening novel analogues of the available DMTs that specifically bind and inhibit the Sphingosine1-phosphate receptor1 (S1PR1) thereby hindering the lymphocyte propagation toward CNS. The novel drug-like analogs molecule will decrease the frequency of relapses (recurrence of the symptoms associated with MS) with higher efficacy and lower toxicity to human system. In this study, an integrated approach involving ligand-based virtual screening protocol (Ultrafast Shape Recognition with CREDO Atom Types (USRCAT)) to identify the non-toxic drug like analogs of the approved DMTs were employed. The potency of the drug-like analog molecules to cross the Blood Brain Barrier (BBB) was estimated. Besides, molecular docking and simulation using Auto Dock Vina 1.1.2 and GOLD 3.01 were performed using the X-ray crystal structure of Mtb LprG protein to calculate the affinity and specificity of the analogs with the given LprG protein. The docking results were further confirmed by DSX (DrugScore eXtented), a robust program to evaluate the binding energy of ligands bound to the ligand binding domain of the Mtb LprG lipoprotein. The ligand, which has a higher hypothetical affinity, also has greater negative value. Further, the non-specific ligands were screened out using the structural filter proposed by Baell and Holloway. Based on the USRCAT, Lipinski’s values, toxicity and BBB analysis, the drug-like analogs of fingolimod and BG-12 showed that RTL and CHEMBL1771640, respectively are non-toxic and permeable to BBB. The successful docking and DSX analysis showed that RTL and CHEMBL1771640 could bind to the binding pocket of S1PR1 receptor protein of human with greater affinity than as compared to their parent compound (Fingolimod). In this study, we also found that all the drug-like analogs of the standard MS drugs passed the Bell and Holloway filter.

Keywords: antagonist, binding affinity, chemotherapeutics, drug-like, multiple sclerosis, S1PR1 receptor protein

Procedia PDF Downloads 256
262 An Approach for the Capture of Carbon Dioxide via Polymerized Ionic Liquids

Authors: Ghassan Mohammad Alalawi, Abobakr Khidir Ziyada, Abdulmajeed Khan

Abstract:

A potential alternative or next-generation CO₂-selective separation medium that has lately been suggested is ionic liquids (ILs). It is more facile to "tune" the solubility and selectivity of CO₂ in ILs compared to organic solvents via modification of the cation and/or anion structures. Compared to ionic liquids at ambient temperature, polymerized ionic liquids exhibited increased CO₂ sorption capacities and accelerated sorption/desorption rates. This research aims to investigate the correlation between the CO₂ sorption rate and capacity of poly ionic liquids (pILs) and the chemical structure of these substances. The dependency of sorption on the ion conductivity of the pILs' cations and anions is one of the theories we offered to explain the attraction between CO₂ and pILs. This assumption was supported by the Monte Carlo molecular dynamics simulations results, which demonstrated that CO₂ molecules are localized around both cations and anions and that their sorption depends on the cations' and anions' ion conductivities. Polymerized ionic liquids are synthesized to investigate the impact of substituent alkyl chain length, cation, and anion on CO₂ sorption rate and capacity. Three stages are involved in synthesizing the pILs under study: first, trialkyl amine and vinyl benzyl chloride are directly quaternized to obtain the required cation. Next, anion exchange is performed, and finally, the obtained IL is polymerized to form the desired product (pILs). The synthesized pILs' structures were confirmed using elemental analysis and NMR. The synthesized pILs are characterized by examining their structure topology, chloride content, density, and thermal stability using SEM, ion chromatography (using a Metrohm Model 761 Compact IC apparatus), ultrapycnometer, and TGA. As determined by the CO₂ sorption results using a magnetic suspension balance (MSB) apparatus, the sorption capacity of pILs is dependent on the cation and anion ion conductivities. The anion's size also influences the CO₂ sorption rate and capacity. It was discovered that adding water to pILs caused a dramatic, systematic enlargement of pILs resulting in a significant increase in their capacity to absorb CO₂ under identical conditions, contingent on the type of gas, gas flow, applied gas pressure, and water content of the pILs. Along with its capacity to increase surface area through expansion, water also possesses highly high ion conductivity for cations and anions, enhancing its ability to absorb CO₂.

Keywords: polymerized ionic liquids, carbon dioxide, swelling, characterization

Procedia PDF Downloads 63
261 Lung Tissue Damage under Diesel Exhaust Exposure: Modification of Proteins, Cells and Functions in Just 14 Days

Authors: Ieva Bruzauskaite, Jovile Raudoniute, Karina Poliakovaite, Danguole Zabulyte, Daiva Bironaite, Ruta Aldonyte

Abstract:

Introduction: Air pollution is a growing global problem which has been shown to be responsible for various adverse health outcomes. Immunotoxicity, such as dysregulated inflammation, has been proposed as one of the main mechanisms in air pollution-associated diseases. Chronic obstructive pulmonary disease (COPD) is among major morbidity and mortality causes worldwide and is characterized by persistent airflow limitation caused by the small airways disease (obstructive bronchiolitis) and irreversible parenchymal destruction (emphysema). Exact pathways explaining the air pollution induced and mediated disease states are still not clear. However, modern societies understand dangers of polluted air, seek to mitigate such effects and are in need for reliable biomarkers of air pollution. We hypothesise that post-translational modifications of structural proteins, e.g. citrullination, might be a good candidate biomarker. Thus, we have designed this study, where mice were exposed to diesel exhaust and the ongoing protein modifications and inflammation in lungs and other tissues were assessed. Materials And Methods: To assess the effects of diesel exhaust a in vivo study was designed. Mice (n=10) were subjected to everyday 2-hour exposure to diesel exhaust for 14 days. Control mice were treated the same way without diesel exhaust. The effects within lung and other tissues were assessed by immunohistochemistry of formalin-fixed and paraffin-embedded tissues. Levels of inflammation and citrullination related markers were investigated. Levels of parenchymal damage were also measured. Results: In vivo study corroborates our own data from in vitro and reveals diesel exhaust initiated inflammatory shift and modulation of lung peptidyl arginine deiminase 4 (PAD4), citrullination associated enzyme, levels. In addition, high levels of citrulline were observed in exposed lung tissue sections co-localising with increased parenchymal destruction. Conclusions: Subacute exposure to diesel exhaust renders mice lungs inflammatory and modifies certain structural proteins. Such structural changes of proteins may pave a pathways to lost/gain function of affected molecules and also propagate autoimmune processes within the lung and systemically.

Keywords: air pollution, citrullination, in vivo, lungs

Procedia PDF Downloads 156
260 SNP g.1007A>G within the Porcine DNAL4 Gene Affects Sperm Motility Traits

Authors: I. Wiedemann, A. R. Sharifi, A. Mählmeyer, C. Knorr

Abstract:

A requirement for sperm motility is a morphologically intact flagellum with a central axoneme. The flagellar beating is caused by the varying activation and inactivation of dynein molecules which are located in the axoneme. DNAL4 (dynein, axonemal, light chain 4) is regarded as a possible functional candidate gene encoding a small subunit of the dyneins. In the present study, 5814bp of the porcine DNAL4 (GenBank Acc. No. AM284696.1, 6097 bp, 4 exons) were comparatively sequenced using three boars with a high motility (>68%) and three with a low motility (<60%). Primers were self-designed except for those covering exons 1, 2 and 3. Prior to sequencing, the PCR products were purified. Sequencing was performed with an ABI PRISM 3100 Genetic Analyzer using the BigDyeTM Terminator v3.1 Cycle Sequencing Reaction Kit. Finally, 23 SNPs were described and genotyped for 82 AI boars representing the breeds Piétrain, German Large White and German Landrace. The genotypes were used to assess possible associations with standard spermatological parameters (ejaculate volume, density, and sperm motility (undiluted (Motud), 24h (Mot1) and 48h (Mot2) after semen collection) that were regularly recorded on the AI station. The analysis included a total of 8,833 spermatological data sets which ranged from 2 to 295 sets per boar in five years. Only SNP g.1007A>G had a significant effect. Finally, the gene substitution effect using the following statistical model was calculated: Yijk= µ+αi+βj+αβij+b1Sijk+b2Aijk+b3T ijk + b4Vijk+b5(α*A)ijk +b6(β*A)ijk+b7(A*T)ijk+Uijk+eijk where Yijk is the semen characteristics, µ is the general mean, α is the main effect of breed, β is the main effect of season, S is the effect of SNP (g.1007A > G), A is the effect of age at semen collection, V is the effect of diluter, αβ, α*A, β*A, A*T are interactions between the fixed effects, b1-b7 are regression coefficients between y and the respective covariate, U is the random effect of repeated observation on animal and e is the random error. The results from the single marker regression analysis revealed highly significant effects (p < 0.0001) of SNP g.1007A > G on Mot1 resp. on Mot2, resulting in a marked reduction by 11.4% resp. 15.4%. Furthermore a loss of Motud by 4.6% was detected (p < 0.0178). Considering the SNP g.1007A > G as a main factor (dominant-recessive model), significant differences between genotypes AA and AG as well as AA and GG for Mot1 and Mot2 exist. For Motud there was a significant difference between AA and GG.

Keywords: association, DNAL4, porcine, sperm traits

Procedia PDF Downloads 460
259 Synthesis and Characterization of Highly Oriented Bismuth Oxyiodide Thin Films for the Photocatalytical Degradation of Pharmaceuticals Compounds in Water

Authors: Juan C. Duran-Alvarez, Daniel Mejia, Rodolfo Zanella

Abstract:

Heterogeneous photocatalysis is a promising method to achieve the complete degradation and mineralization of organic pollutants in water via their exhaustive oxidation. In order to take this advanced oxidation process towards sustainability, it is necessary to reduce the energy consumption, referred as the light sources and the post-treatment operations. For this, the synthesis of new nanostructures of low band gap semiconductors in the form of thin films is in continuous development. In this work, thin films of the low band gap semiconductor bismuth oxyiodide (BiOI) were synthesized via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. For this, Bi(NO3)3 and KI solutions were prepared, and glass supports were immersed in each solution under strict rate and time immersion conditions. Synthesis was performed at room temperature and a washing step was set prior to each immersion. Thin films with an average thickness below 100 nm were obtained upon a cycle of 30 immersions, as determined by AFM and profilometry measurements. Cubic BiOI nanocrystals with average size of 17 nm and a high orientation to the 001 plane were observed by XRD. In order to optimize the synthesis method, several Bi/I ratios were tested, namely 1/1, 1/5, 1/10, 1/20 and 1/50. The highest crystallinity of the BiOI films was observed when the 1/5 ratio was used in the synthesis. Non-stoichiometric conditions also resulted in the highest uniformity of the thin layers. PVP was used as an additive to improve the adherence of the BiOI thin films to the support. The addition of 0.1 mg/mL of PVP during the washing step resulted in the highest adherence of the thin films. In photocatalysis tests, degradation rate of the antibiotic ciprofloxacin as high as 75% was achieved using visible light (380 to 700 nm) irradiation for 5 h in batch tests. Mineralization of the antibiotic was also observed, although in a lower extent; ~ 30% of the total organic carbon was removed upon 5 h of visible light irradiation. Some ciprofloxacin by-products were identified throughout the reaction; and some of these molecules displayed residual antibiotic activity. In conclusion, it is possible to obtain highly oriented BiOI thin films under ambient conditions via the SILAR method. Non-stoichiometric conditions using PVP additive are necessary to increase the crystallinity and adherence of the films, which are photocatalytically active to remove recalcitrant organic pollutants under visible light irradiation.

Keywords: bismuth oxyhalides, photocatalysis, thin films, water treatment

Procedia PDF Downloads 122
258 Modeling of an Insulin Mircopump

Authors: Ahmed Slami, Med El Amine Brixi Nigassa, Nassima Labdelli, Sofiane Soulimane, Arnaud Pothier

Abstract:

Many people suffer from diabetes, a disease marked by abnormal levels of sugar in the blood; 285 million people have diabetes, 6.6% of the world adult population (in 2010), according to the International Diabetes Federation. Insulin medicament is invented to be injected into the body. Generally, the injection requires the patient to do it manually. However, in many cases he will be unable to inject the drug, saw that among the side effects of hyperglycemia is the weakness of the whole body. The researchers designed a medical device that injects insulin too autonomously by using micro-pumps. Many micro-pumps of concepts have been investigated during the last two decades for injecting molecules in blood or in the body. However, all these micro-pumps are intended for slow infusion of drug (injection of few microliters by minute). Now, the challenge is to develop micro-pumps for fast injections (1 microliter in 10 seconds) with accuracy of the order of microliter. Recently, studies have shown that only piezoelectric actuators can achieve this performance, knowing that few systems at the microscopic level were presented. These reasons lead us to design new smart microsystems injection drugs. Therefore, many technological advances are still to achieve the improvement of materials to their uses, while going through their characterization and modeling action mechanisms themselves. Moreover, it remains to study the integration of the piezoelectric micro-pump in the microfluidic platform features to explore and evaluate the performance of these new micro devices. In this work, we propose a new micro-pump model based on piezoelectric actuation with a new design. Here, we use a finite element model with Comsol software. Our device is composed of two pumping chambers, two diaphragms and two actuators (piezoelectric disks). The latter parts will apply a mechanical force on the membrane in a periodic manner. The membrane deformation allows the fluid pumping, the suction and discharge of the liquid. In this study, we present the modeling results as function as device geometry properties, films thickness, and materials properties. Here, we demonstrate that we can achieve fast injection. The results of these simulations will provide quantitative performance of our micro-pumps. Concern the spatial actuation, fluid rate and allows optimization of the fabrication process in terms of materials and integration steps.

Keywords: COMSOL software, piezoelectric, micro-pump, microfluidic

Procedia PDF Downloads 342
257 Characterization of Particle Charge from Aerosol Generation Process: Impact on Infrared Signatures and Material Reactivity

Authors: Erin M. Durke, Monica L. McEntee, Meilu He, Suresh Dhaniyala

Abstract:

Aerosols are one of the most important and significant surfaces in the atmosphere. They can influence weather, absorption, and reflection of light, and reactivity of atmospheric constituents. A notable feature of aerosol particles is the presence of a surface charge, a characteristic imparted via the aerosolization process. The existence of charge can complicate the interrogation of aerosol particles, so many researchers remove or neutralize aerosol particles before characterization. However, the charge is present in real-world samples, and likely has an effect on the physical and chemical properties of an aerosolized material. In our studies, we aerosolized different materials in an attempt to characterize the charge imparted via the aerosolization process and determine what impact it has on the aerosolized materials’ properties. The metal oxides, TiO₂ and SiO₂, were aerosolized expulsively and then characterized, using several different techniques, in an effort to determine the surface charge imparted upon the particles via the aerosolization process. Particle charge distribution measurements were conducted via the employment of a custom scanning mobility particle sizer. The results of the charge distribution measurements indicated that expulsive generation of 0.2 µm SiO₂ particles produced aerosols with upwards of 30+ charges on the surface of the particle. Determination of the degree of surface charging led to the use of non-traditional techniques to explore the impact of additional surface charge on the overall reactivity of the metal oxides, specifically TiO₂. TiO₂ was aerosolized, again expulsively, onto a gold-coated tungsten mesh, which was then evaluated with transmission infrared spectroscopy in an ultra-high vacuum environment. The TiO₂ aerosols were exposed to O₂, H₂, and CO, respectively. Exposure to O₂ resulted in a decrease in the overall baseline of the aerosol spectrum, suggesting O₂ removed some of the surface charge imparted during aerosolization. Upon exposure to H₂, there was no observable rise in the baseline of the IR spectrum, as is typically seen for TiO₂, due to the population of electrons into the shallow trapped states and subsequent promotion of the electrons into the conduction band. This result suggests that the additional charge imparted via aerosolization fills the trapped states, therefore no rise is seen upon exposure to H₂. Dosing the TiO₂ aerosols with CO showed no adsorption of CO on the surface, even at lower temperatures (~100 K), indicating the additional charge on the aerosol surface prevents the CO molecules from adsorbing to the TiO₂ surface. The results observed during exposure suggest that the additional charge imparted via aerosolization impacts the interaction with each probe gas.

Keywords: aerosols, charge, reactivity, infrared

Procedia PDF Downloads 123
256 High Efficiency Solar Thermal Collectors Utilization in Process Heat: A Case Study of Textile Finishing Industry

Authors: Gökçen A. Çiftçioğlu, M. A. Neşet Kadırgan, Figen Kadırgan

Abstract:

Solar energy, since it is available every day, is seen as one of the most valuable renewable energy resources. Thus, the energy of sun should be efficiently used in various applications. The most known applications that use solar energy are heating water and spaces. High efficiency solar collectors need appropriate selective surfaces to absorb the heat. Selective surfaces (Selektif-Sera) used in this study are applied to flat collectors, which are produced by a roll to roll cost effective coating of nano nickel layers, developed in Selektif Teknoloji Co. Inc. Efficiency of flat collectors using Selektif-Sera absorbers are calculated in collaboration with Institute for Solar Technik Rapperswil, Switzerland. The main cause of high energy consumption in industry is mostly caused from low temperature level processes. There is considerable effort in research to minimize the energy use by renewable energy sources such as solar energy. A feasibility study will be presented to obtain the potential of solar thermal energy utilization in the textile industry using these solar collectors. For the feasibility calculations presented in this study, textile dyeing and finishing factory located at Kahramanmaras is selected since the geographic location was an important factor. Kahramanmaras is located in the south east part of Turkey thus has a great potential to have solar illumination much longer. It was observed that, the collector area is limited by the available area in the factory, thus a hybrid heating generating system (lignite/solar thermal) was preferred in the calculations of this study to be more realistic. During the feasibility work, the calculations took into account the preheating process, where well waters heated from 15 °C to 30-40 °C by using the hot waters in heat exchangers. Then the preheated water was heated again by high efficiency solar collectors. Economic comparison between the lignite use and solar thermal collector use was provided to determine the optimal system that can be used efficiently. The optimum design of solar thermal systems was studied depending on the optimum collector area. It was found that the solar thermal system is more economic and efficient than the merely lignite use. Return on investment time is calculated as 5.15 years.

Keywords: energy, renewable energy, selective surface, solar collector

Procedia PDF Downloads 208
255 Designing Self-Healing Lubricant-Impregnated Surfaces for Corrosion Protection

Authors: Sami Khan, Kripa Varanasi

Abstract:

Corrosion is a widespread problem in several industries and developing surfaces that resist corrosion has been an area of interest since the last several decades. Superhydrophobic surfaces that combine hydrophobic coatings along with surface texture have been shown to improve corrosion resistance by creating voids filled with air that minimize the contact area between the corrosive liquid and the solid surface. However, these air voids can incorporate corrosive liquids over time, and any mechanical faults such as cracks can compromise the coating and provide pathways for corrosion. As such, there is a need for self-healing corrosion-resistance surfaces. In this work, the anti-corrosion properties of textured surfaces impregnated with a lubricant have been systematically studied. Since corrosion resistance depends on the area and physico-chemical properties of the material exposed to the corrosive medium, lubricant-impregnated surfaces (LIS) have been designed based on the surface tension, viscosity and chemistry of the lubricant and its spreading coefficient on the solid. All corrosion experiments were performed in a standard three-electrode cell using iron, which readily corrodes in a 3.5% sodium chloride solution. In order to obtain textured iron surfaces, thin films (~500 nm) of iron were sputter-coated on silicon wafers textured using photolithography, and subsequently impregnated with lubricants. Results show that the corrosion rate on LIS is greatly reduced, and offers an over hundred-fold improvement in corrosion protection. Furthermore, it is found that the spreading characteristics of the lubricant are significant in ensuring corrosion protection: a spreading lubricant (e.g., Krytox 1506) that covers both inside the texture, as well as the top of the texture, provides a two-fold improvement in corrosion protection as compared to a non-spreading lubricant (e.g., Silicone oil) that does not cover texture tops. To enhance corrosion protection of surfaces coated with a non-spreading lubricant, pyramid-shaped textures have been developed that minimize exposure to the corrosive solution, and a consequent twenty-fold increased in corrosion protection is observed. An increase in viscosity of the lubricant scales with greater corrosion protection. Finally, an equivalent cell-circuit model is developed for the lubricant-impregnated systems using electrochemical impedance spectroscopy. Lubricant-impregnated surfaces find attractive applications in harsh corrosive environments, especially where the ability to self-heal is advantageous.

Keywords: lubricant-impregnated surfaces, self-healing surfaces, wettability, nano-engineered surfaces

Procedia PDF Downloads 136
254 Single and Sequential Extraction for Potassium Fractionation and Nano-Clay Flocculation Structure

Authors: Chakkrit Poonpakdee, Jing-Hua Tzen, Ya-Zhen Huang, Yao-Tung Lin

Abstract:

Potassium (K) is a known macro nutrient and essential element for plant growth. Single leaching and modified sequential extraction schemes have been developed to estimate the relative phase associations of soil samples. The sequential extraction process is a step in analyzing the partitioning of metals affected by environmental conditions, but it is not a tool for estimation of K bioavailability. While, traditional single leaching method has been used to classify K speciation for a long time, it depend on its availability to the plants and use for potash fertilizer recommendation rate. Clay mineral in soil is a factor for controlling soil fertility. The change of the micro-structure of clay minerals during various environment (i.e. swelling or shrinking) is characterized using Transmission X-Ray Microscopy (TXM). The objective of this study are to 1) compare the distribution of K speciation between single leaching and sequential extraction process 2) determined clay particle flocculation structure before/after suspension with K+ using TXM. Four tropical soil samples: farming without K fertilizer (10 years), long term applied K fertilizer (10 years; 168-240 kg K2O ha-1 year-1), red soil (450-500 kg K2O ha-1 year-1) and forest soil were selected. The results showed that the amount of K speciation by single leaching method were high in mineral K, HNO3 K, Non-exchangeable K, NH4OAc K, exchangeable K and water soluble K respectively. Sequential extraction process indicated that most K speciations in soil were associated with residual, organic matter, Fe or Mn oxide and exchangeable fractions and K associate fraction with carbonate was not detected in tropical soil samples. In farming long term applied K fertilizer and red soil were higher exchangeable K than farming long term without K fertilizer and forest soil. The results indicated that one way to increase the available K (water soluble K and exchangeable K) should apply K fertilizer and organic fertilizer for providing available K. The two-dimension of TXM image of clay particles suspension with K+ shows that the aggregation structure of clay mineral closed-void cellular networks. The porous cellular structure of soil aggregates in 1 M KCl solution had large and very larger empty voids than in 0.025 M KCl and deionized water respectively. TXM nanotomography is a new technique can be useful in the field as a tool for better understanding of clay mineral micro-structure.

Keywords: potassium, sequential extraction process, clay mineral, TXM

Procedia PDF Downloads 291
253 Polypropylene Matrix Enriched With Silver Nanoparticles From Banana Peel Extract For Antimicrobial Control Of E. coli and S. epidermidis To Maintain Fresh Food

Authors: Michail Milas, Aikaterini Dafni Tegiou, Nickolas Rigopoulos, Eustathios Giaouris, Zaharias Loannou

Abstract:

Nanotechnology, a relatively new scientific field, addresses the manipulation of nanoscale materials and devices, which are governed by unique properties, and is applied in a wide range of industries, including food packaging. The incorporation of nanoparticles into polymer matrices used for food packaging is a field that is highly researched today. One such combination is silver nanoparticles with polypropylene. In the present study, the synthesis of the silver nanoparticles was carried out by a natural method. In particular, a ripe banana peel extract was used. This method is superior to others as it stands out for its environmental friendliness, high efficiency and low-cost requirement. In particular, a 1.75 mM AgNO₃ silver nitrate solution was used, as well as a BPE concentration of 1.7% v/v, an incubation period of 48 hours at 70°C and a pH of 4.3 and after its preparation, the polypropylene films were soaked in it. For the PP films, random PP spheres were melted at 170-190°C into molds with 0.8cm diameter. This polymer was chosen as it is suitable for plastic parts and reusable plastic containers of various types that are intended to come into contact with food without compromising its quality and safety. The antimicrobial test against Escherichia coli DFSNB1 and Staphylococcus epidermidis DFSNB4 was performed on the films. It appeared that the films with silver nanoparticles had a reduction, at least 100 times, compared to those without silver nanoparticles, in both strains. The limit of detection is the lower limit of the vertical error lines in the presence of nanoparticles, which is 3.11. The main reasons that led to the adsorption of nanoparticles are the porous nature of polypropylene and the adsorption capacity of nanoparticles on the surface of the films due to hydrophobic-hydrophilic forces. The most significant parameters that contributed to the results of the experiment include the following: the stage of ripening of the banana during the preparation of the plant extract, the temperature and residence time of the nanoparticle solution in the oven, the residence time of the polypropylene films in the nanoparticle solution, the number of nanoparticles inoculated on the films and, finally, the time these stayed in the refrigerator so that they could dry and be ready for antimicrobial treatment.

Keywords: antimicrobial control, banana peel extract, E. coli, natural synthesis, microbe, plant extract, polypropylene films, S.epidermidis, silver nano, random pp

Procedia PDF Downloads 176
252 Microbial Resource Research Infrastructure: A Large-Scale Research Infrastructure for Microbiological Services

Authors: R. Hurtado-Ortiz, D. Clermont, M. Schüngel, C. Bizet, D. Smith, E. Stackebrandt

Abstract:

Microbiological resources and their derivatives are the essential raw material for the advancement of human health, agro-food, food security, biotechnology, research and development in all life sciences. Microbial resources, and their genetic and metabolic products, are utilised in many areas such as production of healthy and functional food, identification of new antimicrobials against emerging and resistant pathogens, fighting agricultural disease, identifying novel energy sources on the basis of microbial biomass and screening for new active molecules for the bio-industries. The complexity of public collections, distribution and use of living biological material (not only living but also DNA, services, training, consultation, etc.) and service offer, demands the coordination and sharing of policies, processes and procedures. The Microbial Resource Research Infrastructure (MIRRI) is an initiative within the European Strategy Forum Infrastructures (ESFRI), bring together 16 partners including 13 European public microbial culture collections and biological resource centres (BRCs), supported by several European and non-European associated partners. The objective of MIRRI is to support innovation in microbiology by provision of a one-stop shop for well-characterized microbial resources and high quality services on a not-for-profit basis for biotechnology in support of microbiological research. In addition, MIRRI contributes to the structuring of microbial resources capacity both at the national and European levels. This will facilitate access to microorganisms for biotechnology for the enhancement of the bio-economy in Europe. MIRRI will overcome the fragmentation of access to current resources and services, develop harmonised strategies for delivery of associated information, ensure bio-security and other regulatory conditions to bring access and promote the uptake of these resources into European research. Data mining of the landscape of current information is needed to discover potential and drive innovation, to ensure the uptake of high quality microbial resources into research. MIRRI is in its Preparatory Phase focusing on governance and structure including technical, legal governance and financial issues. MIRRI will help the Biological Resources Centres to work more closely with policy makers, stakeholders, funders and researchers, to deliver resources and services needed for innovation.

Keywords: culture collections, microbiology, infrastructure, microbial resources, biotechnology

Procedia PDF Downloads 446
251 Stilbenes as Sustainable Antimicrobial Compounds to Control Vitis Vinifera Diseases

Authors: David Taillis, Oussama Becissa, Julien Gabaston, Jean-Michel Merillon, Tristan Richard, Stephanie Cluzet

Abstract:

Nowadays, there is a strong pressure to reduce the phytosanitary inputs of synthetic chemistry in vineyards. It is, therefore, necessary to find viable alternatives in order to protect the vine against its major diseases. For this purpose, we suggest the use of a plant extract enriched in antimicrobial compounds. Being produced from vine trunks and roots, which are co-products of wine production, the extract produced is part of a circular economy. The antimicrobial molecules present in this plant material are polyphenols and, more particularly, stilbenes, which are derived from a common base, the resveratrol unit, and that are well known vine phytoalexins. The stilbenoids were extracted from trunks and roots (30/70, w/w) by a double extraction with ethyl acetate followed by enrichment by liquid-liquid extraction. The produced extract was characterized by UHPLC-MS, then its antimicrobial activities were tested on Plasmopara viticola and Botrytis cinerea in the laboratory and/or in greenhouse and in vineyard. The major compounds were purified, and their antimicrobial activity was evaluated on B. cinerea. Moreover, after its spraying, the effect of the stilbene extract on the plant defence status was evaluated by analysis of defence gene expression. UHPLC-MS analysis revealed that the extract contains 50% stilbenes with resveratrol, ε-viniferin and r-viniferin as major compounds. The extract showed antimicrobial activities on P. viticola with IC₅₀ and IC₁₀₀ respectively of 90 and 300 mg/L in the laboratory. In addition, it inhibited 40% of downy mildew development in greenhouse. However, probably because of the sensitivity of stilbenes to the environment, such as UV degradation, no activity has been observed in vineyard towards P. viticola development. For B. cinerea, the extract IC50 was 123 mg/L, with resveratrol and ε-viniferin being the most active stilbenes (IC₅₀ of 88 and 142 mg/L, respectively). The analysis of the expression of defence genes revealed that the extract can induce the expression of some defence genes 24, 48, and 72 hours after treatment, meaning that the extract has a defence-stimulating effect at least for the first three days after treatment. In conclusion, we produced a plant extract enriched in stilbenes with antimicrobial properties against two major grapevine pathogenic agents P. viticola and B. cinerea. In addition, we showed that this extract displayed eliciting activity of plant defences. This extract can therefore represent, after formulation development, a viable eco-friendly alternative for vineyard protection. Subsequently, the effect of the stilbenoid extract on primary metabolism will be evaluated by quantitative NMR.

Keywords: antimicrobial, bioprotection, grapevine, Plasmopara viticola, stilbene

Procedia PDF Downloads 219
250 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury

Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas

Abstract:

Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.

Keywords: antibacterial, chitosan, healing process, nanocomposites, silver

Procedia PDF Downloads 288
249 Nanoparticles-Protein Hybrid-Based Magnetic Liposome

Authors: Amlan Kumar Das, Avinash Marwal, Vikram Pareek

Abstract:

Liposome plays an important role in medical and pharmaceutical science as e.g. nano scale drug carriers. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment. Magnet-driven liposome used for the targeted delivery of drugs to organs and tissues1. These liposome preparations contain encapsulated drug components and finely dispersed magnetic particles. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment that are generated in vitro. These are useful in terms of biocompatibility, biodegradability, and low toxicity, and can control biodistribution by changing the size, lipid composition, and physical characteristics2. Furthermore, liposomes can entrap both hydrophobic and hydrophilic drugs and are able to continuously release the entrapped substrate, thus being useful drug carriers. Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magneticor paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI)3. The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology4. Green-synthesized magnetite nanoparticles-protein hybrid has been produced by treating Iron (III)/Iron(II) chloride with the leaf extract of Dhatura Inoxia. The phytochemicals present in the leaf extracts act as a reducing as well stabilizing agents preventing agglomeration, which include flavonoids, phenolic compounds, cardiac glycosides, proteins and sugars. The magnetite nanoparticles-protein hybrid has been trapped inside the aqueous core of the liposome prepared by reversed phase evaporation (REV) method using oleic and linoleic acid which has been shown to be driven under magnetic field confirming the formation magnetic liposome (ML). Chemical characterization of stealth magnetic liposome has been performed by breaking the liposome and release of magnetic nanoparticles. The presence iron has been confirmed by colour complex formation with KSCN and UV-Vis study using spectrophotometer Cary 60, Agilent. This magnet driven liposome using nanoparticles-protein hybrid can be a smart vesicles for the targeted drug delivery.

Keywords: nanoparticles-protein hybrid, magnetic liposome, medical, pharmaceutical science

Procedia PDF Downloads 250
248 Synthesis of Iron Oxide Nanoparticles Using Different Stabilizers and Study of Their Size and Properties

Authors: Mohammad Hassan Ramezan zadeh 1 , Majid Seifi 2 , Hoda Hekmat ara 2 1Biomedical Engineering Department, Near East University, Nicosia, Cyprus 2Physics Department, Guilan University , P.O. Box 41335-1914, Rasht, Iran.

Abstract:

Magnetic nano particles of ferric chloride were synthesised using a co-precipitation technique. For the optimal results, ferric chloride at room temperature was added to different surfactant with different ratio of metal ions/surfactant. The samples were characterised using transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrum to show the presence of nanoparticles, structure and morphology. Magnetic measurements were also carried out on samples using a Vibrating Sample Magnetometer. To show the effect of surfactant on size distribution and crystalline structure of produced nanoparticles, surfactants with various charge such as anionic cetyl trimethyl ammonium bromide (CTAB), cationic sodium dodecyl sulphate (SDS) and neutral TritonX-100 was employed. By changing the surfactant and ratio of metal ions/surfactant the size and crystalline structure of these nanoparticles were controlled. We also show that using anionic stabilizer leads to smallest size and narrowest size distribution and the most crystalline (polycrystalline) structure. In developing our production technique, many parameters were varied. Efforts at reproducing good yields indicated which of the experimental parameters were the most critical and how carefully they had to be controlled. The conditions reported here were the best that we encountered but the range of possible parameter choice is so large that these probably only represent a local optimum. The samples for our chemical process were prepared by adding 0.675 gr ferric chloride (FeCl3, 6H2O) to three different surfactant in water solution. The solution was sonicated for about 30 min until a transparent solution was achieved. Then 0.5 gr sodium hydroxide (NaOH) as a reduction agent was poured to the reaction drop by drop which resulted to participate reddish brown Fe2O3 nanoparticles. After washing with ethanol the obtained powder was calcinated in 600°C for 2h. Here, the sample 1 contained CTAB as a surfactant with ratio of metal ions/surfactant 1/2, sample 2 with CTAB and ratio 1/1, sample 3 with SDS and ratio 1/2, sample 4 SDS 1/1, sample 5 is triton-X-100 with 1/2 and sample 6 triton-X-100 with 1/1.

Keywords: iron oxide nanoparticles, stabilizer, co-precipitation, surfactant

Procedia PDF Downloads 252
247 Development of a Stable RNAi-Based Biological Control for Sheep Blowfly Using Bentonite Polymer Technology

Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody

Abstract:

Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls and the parasite has developed resistance to nearly all control chemicals used in the past. It is therefore critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.

Keywords: flystrike, RNA interference, bentonite polymer technology, Lucillia cuprina

Procedia PDF Downloads 92
246 Enhanced Photocatalytic Activities of TiO2/Ag2O Heterojunction Nanotubes Arrays Obtained by Electrochemical Method

Authors: Magdalena Diaka, Paweł Mazierski, Joanna Żebrowska, Michał Winiarski, Tomasz Klimczuk, Adriana Zaleska-Medynska

Abstract:

During the last years, TiO2 nanotubes have been widely studied due to their unique highly ordered array structure, unidirectional charge transfer and higher specific surface area compared to conventional TiO2 powder. These photoactive materials, in the form of thin layer, can be activated by low powered and low cost irradiation sources (such as LEDs) to remove VOCs, microorganism and to deodorize air streams. This is possible due to their directly growth on a support material and high surface area, which guarantee enhanced photon absorption together with an extensive adsorption of reactant molecules on the photocatalyst surface. TiO2 nanotubes exhibit also lots of other attractive properties, such as potential enhancement of electron percolation pathways, light conversion, and ion diffusion at the semiconductor-electrolyte interface. Pure TiO2 nanotubes were previously used to remove organic compounds from the gas phase as well as in water splitting reaction. The major factors limiting the use of TiO2 nanotubes, which have not been fully overcome, are their relatively large band gap (3-3,2 eV) and high recombination rate of photogenerated electron–hole pairs. Many different strategies were proposed to solve this problem, however titania nanostructures containing incorporated metal oxides like Ag2O shows very promising, new optical and photocatalytic properties. Unfortunately, there is still very limited number of reports regarding application of TiO2/MxOy nanostructures. In the present work, we prepared TiO2/Ag2O nanotubes obtained by anodization of Ti-Ag alloys containing 5, 10 and 15 wt. % Ag. Photocatalysts prepared in this way were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), luminescence spectroscopy and UV-Vis spectroscopy. The activities of new TiO2/Ag2O were examined by photocatalytic degradation of toluene in gas phase reaction and phenol in aqueous phase using 1000 W Xenon lamp (Oriel) and light emitting diodes (LED) as a irradiation sources. Additionally efficiency of bacteria (Pseudomonas aeruginosa) removal from the gas phase was estimated. The number of surviving bacteria was determined by the serial twofold dilution microtiter plate method, in Tryptic Soy Broth medium (TSB, GibcoBRL).

Keywords: photocatalysis, antibacterial properties, titania nanotubes, new TiO2/MxOy nanostructures

Procedia PDF Downloads 293
245 Peptide-Based Platform for Differentiation of Antigenic Variations within Influenza Virus Subtypes (Flutype)

Authors: Henry Memczak, Marc Hovestaedt, Bernhard Ay, Sandra Saenger, Thorsten Wolff, Frank F. Bier

Abstract:

The influenza viruses cause flu epidemics every year and serious pandemics in larger time intervals. The only cost-effective protection against influenza is vaccination. Due to rapid mutation continuously new subtypes appear, what requires annual reimmunization. For a correct vaccination recommendation, the circulating influenza strains had to be detected promptly and exactly and characterized due to their antigenic properties. During the flu season 2016/17, a wrong vaccination recommendation has been given because of the great time interval between identification of the relevant influenza vaccine strains and outbreak of the flu epidemic during the following winter. Due to such recurring incidents of vaccine mismatches, there is a great need to speed up the process chain from identifying the right vaccine strains to their administration. The monitoring of subtypes as part of this process chain is carried out by national reference laboratories within the WHO Global Influenza Surveillance and Response System (GISRS). To this end, thousands of viruses from patient samples (e.g., throat smears) are isolated and analyzed each year. Currently, this analysis involves complex and time-intensive (several weeks) animal experiments to produce specific hyperimmune sera in ferrets, which are necessary for the determination of the antigen profiles of circulating virus strains. These tests also bear difficulties in standardization and reproducibility, which restricts the significance of the results. To replace this test a peptide-based assay for influenza virus subtyping from corresponding virus samples was developed. The differentiation of the viruses takes place by a set of specifically designed peptidic recognition molecules which interact differently with the different influenza virus subtypes. The differentiation of influenza subtypes is performed by pattern recognition guided by machine learning algorithms, without any animal experiments. Synthetic peptides are immobilized in multiplex format on various platforms (e.g., 96-well microtiter plate, microarray). Afterwards, the viruses are incubated and analyzed comparing different signaling mechanisms and a variety of assay conditions. Differentiation of a range of influenza subtypes, including H1N1, H3N2, H5N1, as well as fine differentiation of single strains within these subtypes is possible using the peptide-based subtyping platform. Thereby, the platform could be capable of replacing the current antigenic characterization of influenza strains using ferret hyperimmune sera.

Keywords: antigenic characterization, influenza-binding peptides, influenza subtyping, influenza surveillance

Procedia PDF Downloads 158
244 Industrial Waste to Energy Technology: Engineering Biowaste as High Potential Anode Electrode for Application in Lithium-Ion Batteries

Authors: Pejman Salimi, Sebastiano Tieuli, Somayeh Taghavi, Michela Signoretto, Remo Proietti Zaccaria

Abstract:

Increasing the growth of industrial waste due to the large quantities of production leads to numerous environmental and economic challenges, such as climate change, soil and water contamination, human disease, etc. Energy recovery of waste can be applied to produce heat or electricity. This strategy allows for the reduction of energy produced using coal or other fuels and directly reduces greenhouse gas emissions. Among different factories, leather manufacturing plays a very important role in the whole world from the socio-economic point of view. The leather industry plays a very important role in our society from a socio-economic point of view. Even though the leather industry uses a by-product from the meat industry as raw material, it is considered as an activity demanding integrated prevention and control of pollution. Along the entire process from raw skins/hides to finished leather, a huge amount of solid and water waste is generated. Solid wastes include fleshings, raw trimmings, shavings, buffing dust, etc. One of the most abundant solid wastes generated throughout leather tanning is shaving waste. Leather shaving is a mechanical process that aims at reducing the tanned skin to a specific thickness before tanning and finishing. This product consists mainly of collagen and tanning agent. At present, most of the world's leather processing is chrome-tanned based. Consequently, large amounts of chromium-containing shaving wastes need to be treated. The major concern about the management of this kind of solid waste is ascribed to chrome content, which makes the conventional disposal methods, such as landfilling and incineration, not practicable. Therefore, many efforts have been developed in recent decades to promote eco-friendly/alternative leather production and more effective waste management. Herein, shaving waste resulting from metal-free tanning technology is proposed as low-cost precursors for the preparation of carbon material as anodes for lithium-ion batteries (LIBs). In line with the philosophy of a reduced environmental impact, for preparing fully sustainable and environmentally friendly LIBs anodes, deionized water and carboxymethyl cellulose (CMC) have been used as alternatives to toxic/teratogen N-methyl-2- pyrrolidone (NMP) and to biologically hazardous Polyvinylidene fluoride (PVdF), respectively. Furthermore, going towards the reduced cost, we employed water solvent and fluoride-free bio-derived CMC binder (as an alternative to NMP and PVdF, respectively) together with LiFePO₄ (LFP) when a full cell was considered. These actions make closer to the 2030 goal of having green LIBs at 100 $ kW h⁻¹. Besides, the preparation of the water-based electrodes does not need a controlled environment and due to the higher vapour pressure of water in comparison with NMP, the water-based electrode drying is much faster. This aspect determines an important consequence, namely a reduced energy consumption for the electrode preparation. The electrode derived from leather waste demonstrated a discharge capacity of 735 mAh g⁻¹ after 1000 charge and discharge cycles at 0.5 A g⁻¹. This promising performance is ascribed to the synergistic effect of defects, interlayer spacing, heteroatoms-doped (N, O, and S), high specific surface area, and hierarchical micro/mesopore structure of the biochar. Interestingly, these features of activated biochars derived from the leather industry open the way for possible applications in other EESDs as well.

Keywords: biowaste, lithium-ion batteries, physical activation, waste management, leather industry

Procedia PDF Downloads 171
243 Oxidative Stress Related Alteration of Mitochondrial Dynamics in Cellular Models

Authors: Orsolya Horvath, Laszlo Deres, Krisztian Eros, Katalin Ordog, Tamas Habon, Balazs Sumegi, Kalman Toth, Robert Halmosi

Abstract:

Introduction: Oxidative stress induces an imbalance in mitochondrial fusion and fission processes, finally leading to cell death. The two antioxidant molecules, BGP-15 and L2286 have beneficial effects on mitochondrial functions and on cellular oxidative stress response. In this work, we studied the effects of these compounds on the processes of mitochondrial quality control. Methods: We used H9c2 cardiomyoblast and isolated neonatal rat cardiomyocytes (NRCM) for the experiments. The concentration of stressors and antioxidants was beforehand determined with MTT test. We applied 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG) in 125 µM, 400 µM and 800 µM concentrations for 4 and 8 hours on H9c2 cells. H₂O₂ was applied in 150 µM and 300 µM concentration for 0.5 and 4 hours on both models. L2286 was administered in 10 µM, while BGP-15 in 50 µM doses. Cellular levels of the key proteins playing role in mitochondrial dynamics were measured in Western blot samples. For the analysis of mitochondrial network dynamics, we applied electron microscopy and immunocytochemistry. Results: Due to MNNG treatment the level of fusion proteins (OPA1, MFN2) decreased, while the level of fission protein DRP1 elevated markedly. The levels of fusion proteins OPA1 and MNF2 increased in the L2286 and BGP-15 treated groups. During the 8 hour treatment period, the level of DRP1 also increased in the treated cells (p < 0.05). In the H₂O₂ stressed cells, administration of L2286 increased the level of OPA1 in both H9c2 and NRCM models. MFN2 levels in isolated neonatal rat cardiomyocytes raised considerably due to BGP-15 treatment (p < 0.05). L2286 administration decreased the DRP1 level in H9c2 cells (p < 0.05). We observed that the H₂O₂-induced mitochondrial fragmentation could be decreased by L2286 treatment. Conclusion: Our results indicated that the PARP-inhibitor L2286 has beneficial effect on mitochondrial dynamics during oxidative stress scenario, and also in the case of directly induced DNA damage. We could make the similar conclusions in case of BGP-15 administration, which, via reducing ROS accumulation, propagates fusion processes, this way aids preserving cellular viability. Funding: GINOP-2.3.2-15-2016-00049; GINOP-2.3.2-15-2016-00048; GINOP-2.3.3-15-2016-00025; EFOP-3.6.1-16-2016-00004; ÚNKP-17-4-I-PTE-209

Keywords: H9c2, mitochondrial dynamics, neonatal rat cardiomyocytes, oxidative stress

Procedia PDF Downloads 153
242 Application of Nuclear Magnetic Resonance (1H-NMR) in the Analysis of Catalytic Aquathermolysis: Colombian Heavy Oil Case

Authors: Paola Leon, Hugo Garcia, Adan Leon, Samuel Munoz

Abstract:

The enhanced oil recovery by steam injection was considered a process that only generated physical recovery mechanisms. However, there is evidence of the occurrence of a series of chemical reactions, which are called aquathermolysis, which generates hydrogen sulfide, carbon dioxide, methane, and lower molecular weight hydrocarbons. These reactions can be favored by the addition of a catalyst during steam injection; in this way, it is possible to generate the original oil in situ upgrading through the production increase of molecules of lower molecular weight. This additional effect could increase the oil recovery factor and reduce costs in transport and refining stages. Therefore, this research has focused on the experimental evaluation of the catalytic aquathermolysis on a Colombian heavy oil with 12,8°API. The effects of three different catalysts, reaction time, and temperature were evaluated in a batch microreactor. The changes in the Colombian heavy oil were quantified through nuclear magnetic resonance 1H-NMR. The relaxation times interpretation and the absorption intensity allowed to identify the distribution of the functional groups in the base oil and upgraded oils. Additionally, the average number of aliphatic carbons in alkyl chains, the number of substituted rings, and the aromaticity factor were established as average structural parameters in order to simplify the samples' compositional analysis. The first experimental stage proved that each catalyst develops a different reaction mechanism. The aromaticity factor has an increasing order of the salts used: Mo > Fe > Ni. However, the upgraded oil obtained with iron naphthenate tends to form a higher content of mono-aromatic and lower content of poly-aromatic compounds. On the other hand, the results obtained from the second phase of experiments suggest that the upgraded oils have a smaller difference in the length of alkyl chains in the range of 240º to 270°C. This parameter has lower values at 300°C, which indicates that the alkylation or cleavage reactions of alkyl chains govern at higher reaction temperatures. The presence of condensation reactions is supported by the behavior of the aromaticity factor and the bridge carbons production between aromatic rings (RCH₂). Finally, it is observed that there is a greater dispersion in the aliphatic hydrogens, which indicates that the alkyl chains have a greater reactivity compared to the aromatic structures.

Keywords: catalyst, upgrading, aquathermolysis, steam

Procedia PDF Downloads 111
241 Angiomotin Regulates Integrin Beta 1-Mediated Endothelial Cell Migration and Angiogenesis

Authors: Yuanyuan Zhang, Yujuan Zheng, Giuseppina Barutello, Sumako Kameishi, Kungchun Chiu, Katharina Hennig, Martial Balland, Federica Cavallo, Lars Holmgren

Abstract:

Angiogenesis describes that new blood vessels migrate from pre-existing ones to form 3D lumenized structure and remodeling. During directional migration toward the gradient of pro-angiogenic factors, the endothelial cells, especially the tip cells need filopodia to sense the environment and exert the pulling force. Of particular interest are the integrin proteins, which play an essential role in focal adhesion in the connection between migrating cells and extracellular matrix (ECM). Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving angiogenesis. We have previously identified Angiomotin (Amot), a member of Amot scaffold protein family, as a promoter for endothelial cell migration in vitro and zebrafish models. Hence, we established inducible endothelial-specific Amot knock-out mice to study normal retinal angiogenesis as well as tumor angiogenesis. We found that the migration ratio of the blood vessel network to the edge was significantly decreased in Amotec- retinas at postnatal day 6 (P6). While almost all the Amot defect tip cells lost migration advantages at P7. In consistence with the dramatic morphology defect of tip cells, there was a non-autonomous defect in astrocytes, as well as the disorganized fibronectin expression pattern correspondingly in migration front. Furthermore, the growth of transplanted LLC tumor was inhibited in Amot knockout mice due to fewer vasculature involved. By using MMTV-PyMT transgenic mouse model, there was a significantly longer period before tumors arised when Amot was specifically knocked out in blood vessels. In vitro evidence showed that Amot binded to beta-actin, Integrin beta 1 (ITGB1), Fibronectin, FAK, Vinculin, major focal adhesion molecules, and ITGB1 and stress fibers were distinctly induced by Amot transfection. Via traction force microscopy, the total energy (force indicater) was found significantly decreased in Amot knockdown cells. Taken together, we propose that Amot is a novel partner of the ITGB1/Fibronectin protein complex at focal adhesion and required for exerting force transition between endothelial cell and extracellular matrix.

Keywords: angiogenesis, angiomotin, endothelial cell migration, focal adhesion, integrin beta 1

Procedia PDF Downloads 239
240 Synthesis of Multi-Functional Iron Oxide Nanoparticles for Targeted Drug Delivery in Cancer Treatment

Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour

Abstract:

Significant number of studies and preclinical research in formulation of cancer nano-pharmaceutics have led to an improvement in cancer care. Nonetheless, the antineoplastic agents have ‘failed to live up to its promise’ since their clinical performance is moderately low. For almost ninety years, iron oxide nanoparticles (IONPS) have managed to keep its reputation in clinical application due to their low toxicity, versatility and multi-modal capabilities. Drug Administration approved utilization of IONPs for diagnosis of cancer as contrast media in magnetic resonance imaging, as heat mediator in magnetic hyperthermia and for the treatment of iron deficiency. Furthermore, IONPs have high drug-loading capacity, which makes them good candidates as therapeutic agent transporters. There are yet challenges to overcome for successful clinical application of IONPs, including stability of drug and poor delivery, which might lead to (i) drug resistance, (ii) shorter blood circulation time, and (iii) rapid elimination and adverse side effects from the system. In this study, highly stable and super paramagnetic IONPs were prepared for efficient and targeted drug delivery in cancer treatment. The synthesis procedure was briefly involved the production of IONPs via co-precipitation followed by coating with tetraethyl orthosilicate and 3-aminopropylethoxysilane and grafting with folic acid for stability targeted purposes and controlled drug release. Physiochemical and morphological properties of modified IONPs were characterised using different analytical techniques. The resultant IONPs exhibited clusters of 10 nm spherical shape crystals with less than 100 nm size suitable for drug delivery. The functionalized IONP showed mesoporous features, high stability, dispersibility and crystallinity. Subsequently, the functionalized IONPs were successfully loaded with oxaliplatin, a chemotherapeutic agent, for a controlled drug release in an actively targeting cancer cells. FT-IR observations confirmed presence of oxaliplatin functional groups, while ICP-MS results verified the drug loading was ~ 1.3%.

Keywords: cancer treatment, chemotherapeutic agent, drug delivery, iron oxide, multi-functional nanoparticle

Procedia PDF Downloads 83
239 Functionalization of Carbon-Coated Iron Nanoparticles with Fluorescent Protein

Authors: A. G. Pershina, P. S. Postnikov, M. E. Trusova, D. O. Burlakova, A. E. Sazonov

Abstract:

Invention of magnetic-fluorescent nanocomposites is a rapidly developing area of research. The magnetic-fluorescent nanocomposite attractiveness is connected with the ability of simultaneous management and control of such nanocomposites by two independent methods based on different physical principles. These nanocomposites are applied for the solution of various essential scientific and experimental biomedical problems. The aim of this research is development of principle approach to nanobiohybrid structures with magnetic and fluorescent properties design. The surface of carbon-coated iron nanoparticles (Fe@C) were covalently modified by 4-carboxy benzenediazonium tosylate. Recombinant fluorescent protein TagGFP2 (Eurogen) was obtained in E. coli (Rosetta DE3) by standard laboratory techniques. Immobilization of TagGFP2 on the nanoparticles surface was provided by the carbodiimide activation. The amount of COOH-groups on the nanoparticle surface was estimated by elemental analysis (Elementar Vario Macro) and TGA-analysis (SDT Q600, TA Instruments. Obtained nanocomposites were analyzed by FTIR spectroscopy (Nicolet Thermo 5700) and fluorescence microscopy (AxioImager M1, Carl Zeiss). Amount of the protein immobilized on the modified nanoparticle surface was determined by fluorimetry (Cary Eclipse) and spectrophotometry (Unico 2800) with the help of preliminary obtained calibration plots. In the FTIR spectra of modified nanoparticles the adsorption band of –COOH group around 1700 cm-1 and bands in the region of 450-850 cm-1 caused by bending vibrations of benzene ring were observed. The calculated quantity of active groups on the surface was equal to 0,1 mmol/g of material. The carbodiimide activation of COOH-groups on nanoparticles surface results to covalent immobilization of TagGFP2 fluorescent protein (0.2 nmol/mg). The success of immobilization was proved by FTIR spectroscopy. Protein characteristic adsorption bands in the region of 1500-1600 cm-1 (amide I) were presented in the FTIR spectrum of nanocomposite. The fluorescence microscopy analysis shows that Fe@C-TagGFP2 nanocomposite possesses fluorescence properties. This fact confirms that TagGFP2 protein retains its conformation due to immobilization on nanoparticles surface. Magnetic-fluorescent nanocomposite was obtained as a result of unique design solution implementation – the fluorescent protein molecules were fixed to the surface of superparamagnetic carbon-coated iron nanoparticles using original diazonium salts.

Keywords: carbon-coated iron nanoparticles, diazonium salts, fluorescent protein, immobilization

Procedia PDF Downloads 343
238 Syntheses in Polyol Medium of Inorganic Oxides with Various Smart Optical Properties

Authors: Shian Guan, Marie Bourdin, Isabelle Trenque, Younes Messaddeq, Thierry Cardinal, Nicolas Penin, Issam Mjejri, Aline Rougier, Etienne Duguet, Stephane Mornet, Manuel Gaudon

Abstract:

At the interface of the studies performed by 3 Ph.D. students: Shian Guan (2017-2020), Marie Bourdin (2016-2019) and Isabelle Trenque (2012-2015), a single synthesis route: polyol-mediated process, was used with success for the preparation of different inorganic oxides. Both of these inorganic oxides were elaborated for their potential application as smart optical compounds. This synthesis route has allowed us to develop nanoparticles of zinc oxide, vanadium oxide or tungsten oxide. This route is with easy implementation, inexpensive and with large-scale production potentialities and leads to materials of high purity. The obtaining by this route of nanometric particles, however perfectly crystalline, has notably led to the possibility of doping these matrix materials with high doping ion concentrations (high solubility limits). Thus, Al3+ or Ga3+ doped-ZnO powder, with high doping rate in comparison with the literature, exhibits remarkable infrared absorption properties thanks to their high free carrier density. Note also that due to the narrow particle size distribution of the as-prepared nanometric doped-ZnO powder, the original correlation between crystallite size and unit-cell parameters have been established. Also, depending on the annealing atmosphere use to treat vanadium precursors, VO2, V2O3 or V2O5 oxides with thermochromic or electrochromic properties can be obtained without any impurity, despite the versatility of the oxidation state of vanadium. This is of more particular interest on vanadium dioxide, a relatively difficult-to-prepare oxide, whose first-order metal-insulator phase transition is widely explored in the literature for its thermochromic behavior (in smart windows with optimal thermal insulation). Finally, the reducing nature of the polyol solvents ensures the production of oxygen-deficient tungsten oxide, thus conferring to the nano-powders exotic colorimetric properties, as well as optimized photochromic and electrochromic behaviors.

Keywords: inorganic oxides, electrochromic, photochromic, thermochromic

Procedia PDF Downloads 221
237 Body Fluids Identification by Raman Spectroscopy and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

Authors: Huixia Shi, Can Hu, Jun Zhu, Hongling Guo, Haiyan Li, Hongyan Du

Abstract:

The identification of human body fluids during forensic investigations is a critical step to determine key details, and present strong evidence to testify criminal in a case. With the popularity of DNA and improved detection technology, the potential question must be revolved that whether the suspect’s DNA derived from saliva or semen, menstrual or peripheral blood, how to identify the red substance or aged blood traces on the spot is blood; How to determine who contribute the right one in mixed stains. In recent years, molecular approaches have been developing increasingly on mRNA, miRNA, DNA methylation and microbial markers, but appear expensive, time-consuming, and destructive disadvantages. Physicochemical methods are utilized frequently such us scanning electron microscopy/energy spectroscopy and X-ray fluorescence and so on, but results only showing one or two characteristics of body fluid itself and that out of working in unknown or mixed body fluid stains. This paper focuses on using chemistry methods Raman spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to discriminate species of peripheral blood, menstrual blood, semen, saliva, vaginal secretions, urine or sweat. Firstly, non-destructive, confirmatory, convenient and fast Raman spectroscopy method combined with more accurate matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method can totally distinguish one from other body fluids. Secondly, 11 spectral signatures and specific metabolic molecules have been obtained by analysis results after 70 samples detected. Thirdly, Raman results showed peripheral and menstrual blood, saliva and vaginal have highly similar spectroscopic features. Advanced statistical analysis of the multiple Raman spectra must be requested to classify one to another. On the other hand, it seems that the lactic acid can differentiate peripheral and menstrual blood detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, but that is not a specific metabolic molecule, more sensitivity ones will be analyzed in a forward study. These results demonstrate the great potential of the developed chemistry methods for forensic applications, although more work is needed for method validation.

Keywords: body fluids, identification, Raman spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

Procedia PDF Downloads 138
236 Characterization, Replication and Testing of Designed Micro-Textures, Inspired by the Brill Fish, Scophthalmus rhombus, for the Development of Bioinspired Antifouling Materials

Authors: Chloe Richards, Adrian Delgado Ollero, Yan Delaure, Fiona Regan

Abstract:

Growing concern about the natural environment has accelerated the search for non-toxic, but at the same time, economically reasonable, antifouling materials. Bioinspired surfaces, due to their nano and micro topographical antifouling capabilities, provide a hopeful approach to the design of novel antifouling surfaces. Biological organisms are known to have highly evolved and complex topographies, demonstrating antifouling potential, i.e. shark skin. Previous studies have examined the antifouling ability of topographic patterns, textures and roughness scales found on natural organisms. One of the mechanisms used to explain the adhesion of cells to a substrate is called attachment point theory. Here, the fouling organism experiences increased attachment where there are multiple attachment points and reduced attachment, where the number of attachment points are decreased. In this study, an attempt to characterize the microtopography of the common brill fish, Scophthalmus rhombus, was undertaken. Scophthalmus rhombus is a small flatfish of the family Scophthalmidae, inhabiting regions from Norway to the Mediterranean and the Black Sea. They reside in shallow sandy and muddy coastal areas at depths of around 70 – 80 meters. Six engineered surfaces (inspired by the Brill fish scale) produced by a 2-photon polymerization (2PP) process were evaluated for their potential as an antifouling solution for incorporation onto tidal energy blades. The micro-textures were analyzed for their AF potential under both static and dynamic laboratory conditions using two laboratory grown diatom species, Amphora coffeaeformis and Nitzschia ovalis. The incorporation of a surface topography was observed to cause a disruption in the growth of A. coffeaeformis and N. ovalis cells on the surface in comparison to control surfaces. This work has demonstrated the importance of understanding cell-surface interaction, in particular, topography for the design of novel antifouling technology. The study concluded that biofouling can be controlled by physical modification, and has contributed significant knowledge to the use of a successful novel bioinspired AF technology, based on Brill, for the first time.

Keywords: attachment point theory, biofouling, Scophthalmus rhombus, topography

Procedia PDF Downloads 108
235 The High Precision of Magnetic Detection with Microwave Modulation in Solid Spin Assembly of NV Centres in Diamond

Authors: Zongmin Ma, Shaowen Zhang, Yueping Fu, Jun Tang, Yunbo Shi, Jun Liu

Abstract:

Solid-state quantum sensors are attracting wide interest because of their high sensitivity at room temperature. In particular, spin properties of nitrogen–vacancy (NV) color centres in diamond make them outstanding sensors of magnetic fields, electric fields and temperature under ambient conditions. Much of the work on NV magnetic sensing has been done so as to achieve the smallest volume, high sensitivity of NV ensemble-based magnetometry using micro-cavity, light-trapping diamond waveguide (LTDW), nano-cantilevers combined with MEMS (Micro-Electronic-Mechanical System) techniques. Recently, frequency-modulated microwaves with continuous optical excitation method have been proposed to achieve high sensitivity of 6 μT/√Hz using individual NV centres at nanoscale. In this research, we built-up an experiment to measure static magnetic field through continuous wave optical excitation with frequency-modulated microwaves method under continuous illumination with green pump light at 532 nm, and bulk diamond sample with a high density of NV centers (1 ppm). The output of the confocal microscopy was collected by an objective (NA = 0.7) and detected by a high sensitivity photodetector. We design uniform and efficient excitation of the micro strip antenna, which is coupled well with the spin ensembles at 2.87 GHz for zero-field splitting of the NV centers. Output of the PD signal was sent to an LIA (Lock-In Amplifier) modulated signal, generated by the microwave source by IQ mixer. The detected signal is received by the photodetector, and the reference signal enters the lock-in amplifier to realize the open-loop detection of the NV atomic magnetometer. We can plot ODMR spectra under continuous-wave (CW) microwave. Due to the high sensitivity of the lock-in amplifier, the minimum detectable value of the voltage can be measured, and the minimum detectable frequency can be made by the minimum and slope of the voltage. The magnetic field sensitivity can be derived from η = δB√T corresponds to a 10 nT minimum detectable shift in the magnetic field. Further, frequency analysis of the noise in the system indicates that at 10Hz the sensitivity less than 10 nT/√Hz.

Keywords: nitrogen-vacancy (NV) centers, frequency-modulated microwaves, magnetic field sensitivity, noise density

Procedia PDF Downloads 440