Search results for: data infrastructure
24539 Plans for Villages in the Margin of the Lagoon with an Accentuation on Tourism Advancement, Case Study: Village Rogbeh, Shadegan, Iran
Authors: Seyed Mohammad Mousavi Shalheh, Elham Rostami, Seyed Majid Mousavi, Somayeh Shirin Jani
Abstract:
The aim of this research was to evaluate the potential of Rogbeh village located in Khanafereh, Shadegan city functions in Khuzestan also is the feasibility to build infrastructure and appropriate spaces to attract tourists as well as creating jobs and transforming the village institute of ecotourism in the region. It seems that the village has the potential for developing rural tourism with careful planning, and with regard to job creation and economic recovery programs, social-cultural and environmental-ecological accompanied will be welcomed by the people. Therefore, we can provide a strategy for developing tourism and achieving sustainable advancement of rural tourism. Based on researches carried out and according to regional climate differences and the position of the Rogbeh Village toward the lagoon, this research can be used by other researchers to develop and manage tourism.Keywords: Shadegan Lagoon, Iranian villages, tourism industry, local architecture, Rogbeh village, landscape design, ecology
Procedia PDF Downloads 18024538 Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network
Authors: Emanuele A. Solagna, Ricardo S, Tozetto, Roberto dos S. Rabello
Abstract:
Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.Keywords: Internet of Things, LoRa, LoRaWAN, smart cities
Procedia PDF Downloads 15424537 Train Timetable Rescheduling Using Sensitivity Analysis: Application of Sobol, Based on Dynamic Multiphysics Simulation of Railway Systems
Authors: Soha Saad, Jean Bigeon, Florence Ossart, Etienne Sourdille
Abstract:
Developing better solutions for train rescheduling problems has been drawing the attention of researchers for decades. Most researches in this field deal with minor incidents that affect a large number of trains due to cascading effects. They focus on timetables, rolling stock and crew duties, but do not take into account infrastructure limits. The present work addresses electric infrastructure incidents that limit the power available for train traction, and hence the transportation capacity of the railway system. Rescheduling is needed in order to optimally share the available power among the different trains. We propose a rescheduling process based on dynamic multiphysics railway simulations that include the mechanical and electrical properties of all the system components and calculate physical quantities such as the train speed profiles, voltage along the catenary lines, temperatures, etc. The optimization problem to solve has a large number of continuous and discrete variables, several output constraints due to physical limitations of the system, and a high computation cost. Our approach includes a phase of sensitivity analysis in order to analyze the behavior of the system and help the decision making process and/or more precise optimization. This approach is a quantitative method based on simulation statistics of the dynamic railway system, considering a predefined range of variation of the input parameters. Three important settings are defined. Factor prioritization detects the input variables that contribute the most to the outputs variation. Then, factor fixing allows calibrating the input variables which do not influence the outputs. Lastly, factor mapping is used to study which ranges of input values lead to model realizations that correspond to feasible solutions according to defined criteria or objectives. Generalized Sobol indexes are used for factor prioritization and factor fixing. The approach is tested in the case of a simple railway system, with a nominal traffic running on a single track line. The considered incident is the loss of a feeding power substation, which limits the power available and the train speed. Rescheduling is needed and the variables to be adjusted are the trains departure times, train speed reduction at a given position and the number of trains (cancellation of some trains if needed). The results show that the spacing between train departure times is the most critical variable, contributing to more than 50% of the variation of the model outputs. In addition, we identify the reduced range of variation of this variable which guarantees that the output constraints are respected. Optimal solutions are extracted, according to different potential objectives: minimizing the traveling time, the train delays, the traction energy, etc. Pareto front is also built.Keywords: optimization, rescheduling, railway system, sensitivity analysis, train timetable
Procedia PDF Downloads 40024536 Cybervetting and Online Privacy in Job Recruitment – Perspectives on the Current and Future Legislative Framework Within the EU
Authors: Nicole Christiansen, Hanne Marie Motzfeldt
Abstract:
In recent years, more and more HR professionals have been using cyber-vetting in job recruitment in an effort to find the perfect match for the company. These practices are growing rapidly, accessing a vast amount of data from social networks, some of which is privileged and protected information. Thus, there is a risk that the right to privacy is becoming a duty to manage your private data. This paper investigates to which degree a job applicant's fundamental rights are protected adequately in current and future legislation in the EU. This paper argues that current data protection regulations and forthcoming regulations on the use of AI ensure sufficient protection. However, even though the regulation on paper protects employees within the EU, the recruitment sector may not pay sufficient attention to the regulation as it not specifically targeting this area. Therefore, the lack of specific labor and employment regulation is a concern that the social partners should attend to.Keywords: AI, cyber vetting, data protection, job recruitment, online privacy
Procedia PDF Downloads 9324535 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)
Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim
Abstract:
This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm
Procedia PDF Downloads 40624534 Analysis of Problems Faced by the Female Students in Capacity Enhancing at Intermediate Level in Girls College of Khyber Pakhtunkhwa, Pakistan
Authors: Uzma Ahmad
Abstract:
hyber Pakhtunkhwa (KPK) is the most turbulent province of Pakistan, sharing a longborder with Afghanistan. For about four decades, KPK is facing a series of international events. The peak was reached after 9/11when region was labelled as posing a major theatre of militancy and terrorism which was intensified when Tehrik Taliban Pakistan (TTP) began attempts to seize the authority of state. One of the main focus of TTP was to damage and uprooting of female education system and infrastructure in KPK which later became the site of a massacre of school children of Army Public School Peshawar on 16 December 2014.It resulted to the launching of Zarb-e-Azb against the TTP insurgency,casualty and crime rates in the KPKas a whole dropped by 40.0% as compared to 2011–13. All this has badly hampered the female education both in terms of quantity and quality. Malala Yousafzai who is now an advocate of female education has been a victim of Talibans brutality in that area. And thelanguage in which she managed to express herself to the International community is English.Keeping in view the situation, the present project was designed with a sole aim to focus on female students of the area which are few in numbers and to investigate some specific area, where they have been confronting problems in the use of grammar, vocabulary,tenses and organization of ideas in writings. The reasons might be the careless attitude, insufficient reading habits, lack of interest and poor knowledge of English language. The methodology was a descriptive one as it shows the effects of the internal efficiency(independent variables) on an intermediate college’s progress(dependent variables). It was a case study since data was collected from a focused group of 60 female students of arts and humanities at Swabi college at Intermediate level. The ultimate focus was to explore the possibilities of creating a Gender friendly environment for female students. This research has proved how the correct use of English language has given them confidence to move ahead side by side with men and to acknowledge their right of self-determination.Keywords: capacity building, female education, gender friendly, internal efficiency
Procedia PDF Downloads 16824533 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique
Authors: Reda Abdel Azim, Tariq Shehab
Abstract:
The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension
Procedia PDF Downloads 25924532 Governance, Risk Management, and Compliance Factors Influencing the Adoption of Cloud Computing in Australia
Authors: Tim Nedyalkov
Abstract:
A business decision to move to the cloud brings fundamental changes in how an organization develops and delivers its Information Technology solutions. The accelerated pace of digital transformation across businesses and government agencies increases the reliance on cloud-based services. They are collecting, managing, and retaining large amounts of data in cloud environments makes information security and data privacy protection essential. It becomes even more important to understand what key factors drive successful cloud adoption following the commencement of the Privacy Amendment Notifiable Data Breaches (NDB) Act 2017 in Australia as the regulatory changes impact many organizations and industries. This quantitative correlational research investigated the governance, risk management, and compliance factors contributing to cloud security success. The factors influence the adoption of cloud computing within an organizational context after the commencement of the NDB scheme. The results and findings demonstrated that corporate information security policies, data storage location, management understanding of data governance responsibilities, and regular compliance assessments are the factors influencing cloud computing adoption. The research has implications for organizations, future researchers, practitioners, policymakers, and cloud computing providers to meet the rapidly changing regulatory and compliance requirements.Keywords: cloud compliance, cloud security, data governance, privacy protection
Procedia PDF Downloads 12324531 Enabling Enterprise Information System Interoperability: A Future Perspective
Authors: Mahdi Alkaeed, Adeel Ehsan
Abstract:
Enterprise information systems (EIS) act as the backbone of organizations that belong to different domains. These systems not only play a major role in the efficient usage of resources and time but also throw light on the future roadmap for the enterprise. In today's rapidly expanding world of business and technology, enterprise systems from various heterogenous environments have to exchange information at some point, be it within the same organization or between different organizations. This reality strengthens the importance of interoperability between these systems, which is one of the key enablers of systems collaboration. Both information technology infrastructure and business processes have to be aligned with each other to achieve this effect. This will be difficult to attain if traditional tightly coupled architecture is used. Instead, a more loosely coupled service-oriented architecture has to be used. That would enable an effective interoperability level between different EIS. This paper discusses and presents the current work that has been done in the field of EIS interoperability. Along the way, it also discusses the challenges, solutions to tackle those challenges presented in the studied literature, and limitations, if any.Keywords: enterprise systems interoperability, collaboration and integration, service-based architecture, open system architecture
Procedia PDF Downloads 11524530 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa
Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees
Abstract:
The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.Keywords: solar energy, solar radiation, ERA-5, potential energy
Procedia PDF Downloads 21624529 Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data
Authors: Fan Gao, Lior Pachter
Abstract:
The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices, and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data.Keywords: single-cell, ATAC-seq, bioinformatics, open chromatin landscape, chromatin interactome
Procedia PDF Downloads 15824528 Determinants of Diarrhoea Prevalence Variations in Mountainous Informal Settlements of Kigali City, Rwanda
Authors: Dieudonne Uwizeye
Abstract:
Introduction: Diarrhoea is one of the major causes of morbidity and mortality among communities living in urban informal settlements of developing countries. It is assumed that mountainous environment introduces variations of the burden among residents of the same settlements. Design and Objective: A cross-sectional study was done in Kigali to explore the effect of mountainous informal settlements on diarrhoea risk variations. Data were collected among 1,152 households through household survey and transect walk to observe the status of sanitation. The outcome variable was the incidence of diarrhoea among household members of any age. The study used the most knowledgeable person in the household as the main respondent. Mostly this was the woman of the house as she was more likely to know the health status of every household member as she plays various roles: mother, wife, and head of the household among others. The analysis used cross tabulation and logistic regression analysis. Results: Results suggest that risks for diarrhoea vary depending on home location in the settlements. Diarrhoea risk increased as the distance from the road increased. The results of the logistic regression analysis indicate the adjusted odds ratio of 2.97 with 95% confidence interval being 1.35-6.55 and 3.50 adjusted odds ratio with 95% confidence interval being 1.61-7.60 in level two and three respectively compared with level one. The status of sanitation within and around homes was also significantly associated with the increase of diarrhoea. Equally, it is indicated that stable households were less likely to have diarrhoea. The logistic regression analysis indicated the adjusted odds ratio of 0.45 with 95% confidence interval being 0.25-0.81. However, the study did not find evidence for a significant association between diarrhoea risks and household socioeconomic status in the multivariable model. It is assumed that environmental factors in mountainous settings prevailed. Households using the available public water sources were more likely to have diarrhoea in their households. Recommendation: The study recommends the provision and extension of infrastructure for improved water, drainage, sanitation and wastes management facilities. Equally, studies should be done to identify the level of contamination and potential origin of contaminants for water sources in the valleys to adequately control the risks for diarrhoea in mountainous urban settings.Keywords: urbanisation, diarrhoea risk, mountainous environment, urban informal settlements in Rwanda
Procedia PDF Downloads 17724527 Meta Mask Correction for Nuclei Segmentation in Histopathological Image
Authors: Jiangbo Shi, Zeyu Gao, Chen Li
Abstract:
Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations
Procedia PDF Downloads 14324526 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.Keywords: classification, achine learning, predictive quality, feature selection
Procedia PDF Downloads 16624525 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics
Authors: Mia Françoise
Abstract:
This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa
Procedia PDF Downloads 10224524 Secure Data Sharing of Electronic Health Records With Blockchain
Authors: Kenneth Harper
Abstract:
The secure sharing of Electronic Health Records (EHRs) is a critical challenge in modern healthcare, demanding solutions to enhance interoperability, privacy, and data integrity. Traditional standards like Health Information Exchange (HIE) and HL7 have made significant strides in facilitating data exchange between healthcare entities. However, these approaches rely on centralized architectures that are often vulnerable to data breaches, lack sufficient privacy measures, and have scalability issues. This paper proposes a framework for secure, decentralized sharing of EHRs using blockchain technology, cryptographic tokens, and Non-Fungible Tokens (NFTs). The blockchain's immutable ledger, decentralized control, and inherent security mechanisms are leveraged to improve transparency, accountability, and auditability in healthcare data exchanges. Furthermore, we introduce the concept of tokenizing patient data through NFTs, creating unique digital identifiers for each record, which allows for granular data access controls and proof of data ownership. These NFTs can also be employed to grant access to authorized parties, establishing a secure and transparent data sharing model that empowers both healthcare providers and patients. The proposed approach addresses common privacy concerns by employing privacy-preserving techniques such as zero-knowledge proofs (ZKPs) and homomorphic encryption to ensure that sensitive patient information can be shared without exposing the actual content of the data. This ensures compliance with regulations like HIPAA and GDPR. Additionally, the integration of Fast Healthcare Interoperability Resources (FHIR) with blockchain technology allows for enhanced interoperability, enabling healthcare organizations to exchange data seamlessly and securely across various systems while maintaining data governance and regulatory compliance. Through real-world case studies and simulations, this paper demonstrates how blockchain-based EHR sharing can reduce operational costs, improve patient outcomes, and enhance the security and privacy of healthcare data. This decentralized framework holds great potential for revolutionizing healthcare information exchange, providing a transparent, scalable, and secure method for managing patient data in a highly regulated environment.Keywords: blockchain, electronic health records (ehrs), fast healthcare interoperability resources (fhir), health information exchange (hie), hl7, interoperability, non-fungible tokens (nfts), privacy-preserving techniques, tokens, secure data sharing,
Procedia PDF Downloads 2724523 Nigcomsat-1r and Planned HTS Communication Satellite Critical Pillars for Nigeria’s National Digital Economy Policy and Strategy
Authors: Ibrahim Isa Ali (Pantami), Abdu Jaafaru Bambale, Abimbola Alale, Danjuma Ibrahim Ndihgihdah, Muhammad Alkali, Adamu Idris Umar, Moshood Kareem, Samson Olufunmilayo Abodunrin, Muhammad Dokko Zubairu
Abstract:
The National Digital Economy Policy and Strategy, NDEPS document developed by Nigeria’s Federal Ministry of Communications & Digital Economy (FMoCDE) is anchored on 8 pillars for the acceleration of the National Digital Economy for a Digital Nigeria. NIGCOMSAT-1R and the planned HTS communication Satellite are critical assets for supporting the pillars in the drive for sustainable growth and development. This paper discusses on the gains and contribution of the strategy as a solid infrastructure. The paper also highlights these assets’ contribution as platform for Indigenous Content Development & Adoption, Digital Literacy & Skills, and Digital Services Development & Promotion.Keywords: FMoCDE, HTS, NDEPS, nigcomsat!R, pillars
Procedia PDF Downloads 11924522 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development
Procedia PDF Downloads 42624521 Household Earthquake Absorptive Capacity Impact on Food Security: A Case Study in Rural Costa Rica
Authors: Laura Rodríguez Amaya
Abstract:
The impact of natural disasters on food security can be devastating, especially in rural settings where livelihoods are closely tied to their productive assets. In hazards studies, absorptive capacity is seen as a threshold that impacts the degree of people’s recovery after a natural disaster. Increasing our understanding of households’ capacity to absorb natural disaster shocks can provide the international community with viable measurements for assessing at-risk communities’ resilience to food insecurities. The purpose of this study is to identify the most important factors in determining a household’s capacity to absorb the impact of a natural disaster. This is an empirical study conducted in six communities in Costa Rica affected by earthquakes. The Earthquake Impact Index was developed for the selection of the communities in this study. The households coded as total loss in the selected communities constituted the sampling frame from which the sample population was drawn. Because of the study area geographically dispersion over a large surface, the stratified clustered sampling hybrid technique was selected. Of the 302 households identified as total loss in the six communities, a total of 126 households were surveyed, constituting 42 percent of the sampling frame. A list of indicators compiled based on theoretical and exploratory grounds for the absorptive capacity construct served to guide the survey development. These indicators were included in the following variables: (1) use of informal safety nets, (2) Coping Strategy, (3) Physical Connectivity, and (4) Infrastructure Damage. A multivariate data analysis was conducted using Statistical Package for Social Sciences (SPSS). The results show that informal safety nets such as family and friends assistance exerted the greatest influence on the ability of households to absorb the impact of earthquakes. In conclusion, communities that experienced the highest environmental impact and human loss got disconnected from the social networks needed to absorb the shock’s impact. This resulted in higher levels of household food insecurity.Keywords: absorptive capacity, earthquake, food security, rural
Procedia PDF Downloads 25824520 An Extended Inverse Pareto Distribution, with Applications
Authors: Abdel Hadi Ebraheim
Abstract:
This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation
Procedia PDF Downloads 8624519 Potential Determinants of Research Output: Comparing Economics and Business
Authors: Osiris Jorge Parcero, Néstor Gandelman, Flavia Roldán, Josef Montag
Abstract:
This paper uses cross-country unbalanced panel data of up to 146 countries over the period 1996 to 2015 to be the first study to identify potential determinants of a country’s relative research output in Economics versus Business. More generally, it is also one of the first studies comparing Economics and Business. The results show that better policy-related data availability, higher income inequality, and lower ethnic fractionalization relatively favor economics. The findings are robust to two alternative fixed effects specifications, three alternative definitions of economics and business, two alternative measures of research output (publications and citations), and the inclusion of meaningful control variables. To the best of our knowledge, our paper is also the first to demonstrate the importance of policy-related data as drivers of economic research. Our regressions show that the availability of this type of data is the single most important factor associated with the prevalence of economics over business as a research domain. Thus, our work has policy implications, as the availability of policy-related data is partially under policy control. Moreover, it has implications for students, professionals, universities, university departments, and research-funding agencies that face choices between profiles oriented toward economics and those oriented toward business. Finally, the conclusions show potential lines for further research.Keywords: research output, publication performance, bibliometrics, economics, business, policy-related data
Procedia PDF Downloads 13824518 Assessment of Routine Health Information System (RHIS) Quality Assurance Practices in Tarkwa Sub-Municipal Health Directorate, Ghana
Authors: Richard Okyere Boadu, Judith Obiri-Yeboah, Kwame Adu Okyere Boadu, Nathan Kumasenu Mensah, Grace Amoh-Agyei
Abstract:
Routine health information system (RHIS) quality assurance has become an important issue, not only because of its significance in promoting a high standard of patient care but also because of its impact on government budgets for the maintenance of health services. A routine health information system comprises healthcare data collection, compilation, storage, analysis, report generation, and dissemination on a routine basis in various healthcare settings. The data from RHIS give a representation of health status, health services, and health resources. The sources of RHIS data are normally individual health records, records of services delivered, and records of health resources. Using reliable information from routine health information systems is fundamental in the healthcare delivery system. Quality assurance practices are measures that are put in place to ensure the health data that are collected meet required quality standards. Routine health information system quality assurance practices ensure that data that are generated from the system are fit for use. This study considered quality assurance practices in the RHIS processes. Methods: A cross-sectional study was conducted in eight health facilities in Tarkwa Sub-Municipal Health Service in the western region of Ghana. The study involved routine quality assurance practices among the 90 health staff and management selected from facilities in Tarkwa Sub-Municipal who collected or used data routinely from 24th December 2019 to 20th January 2020. Results: Generally, Tarkwa Sub-Municipal health service appears to practice quality assurance during data collection, compilation, storage, analysis and dissemination. The results show some achievement in quality control performance in report dissemination (77.6%), data analysis (68.0%), data compilation (67.4%), report compilation (66.3%), data storage (66.3%) and collection (61.1%). Conclusions: Even though the Tarkwa Sub-Municipal Health Directorate engages in some control measures to ensure data quality, there is a need to strengthen the process to achieve the targeted percentage of performance (90.0%). There was a significant shortfall in quality assurance practices performance, especially during data collection, with respect to the expected performance.Keywords: quality assurance practices, assessment of routine health information system quality, routine health information system, data quality
Procedia PDF Downloads 8624517 Sediment Transport Monitoring in the Port of Veracruz Expansion Project
Authors: Francisco Liaño-Carrera, José Isaac Ramírez-Macías, David Salas-Monreal, Mayra Lorena Riveron-Enzastiga, Marcos Rangel-Avalos, Adriana Andrea Roldán-Ubando
Abstract:
The construction of most coastal infrastructure developments around the world are usually made considering wave height, current velocities and river discharges; however, little effort has been paid to surveying sediment transport during dredging or the modification to currents outside the ports or marinas during and after the construction. This study shows a complete survey during the construction of one of the largest ports of the Gulf of Mexico. An anchored Acoustic Doppler Current Velocity profiler (ADCP), a towed ADCP and a combination of model outputs were used at the Veracruz port construction in order to describe the hourly sediment transport and current modifications in and out of the new port. Owing to the stability of the system the new port was construction inside Vergara Bay, a low wave energy system with a tidal range of up to 0.40 m. The results show a two-current system pattern within the bay. The north side of the bay has an anticyclonic gyre, while the southern part of the bay shows a cyclonic gyre. Sediment transport trajectories were made every hour using the anchored ADCP, a numerical model and the weekly data obtained from the towed ADCP within the entire bay. The sediment transport trajectories were carefully tracked since the bay is surrounded by coral reef structures which are sensitive to sedimentation rate and water turbidity. The survey shows that during dredging and rock input used to build the wave breaker sediments were locally added (< 2500 m2) and local currents disperse it in less than 4 h. While the river input located in the middle of the bay and the sewer system plant may add more than 10 times this amount during a rainy day or during the tourist season. Finally, the coastal line obtained seasonally with a drone suggests that the southern part of the bay has not been modified by the construction of the new port located in the northern part of the bay, owing to the two subsystem division of the bay.Keywords: Acoustic Doppler Current Profiler, construction around coral reefs, dredging, port construction, sediment transport monitoring,
Procedia PDF Downloads 23224516 Heart Failure Identification and Progression by Classifying Cardiac Patients
Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan
Abstract:
Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.Keywords: decision tree, heart failure, data mining, classification model
Procedia PDF Downloads 40524515 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems
Authors: Nikolaos Georgoulopoulos, Alkis Hatzopoulos, Konstantinos Karamitsios, Konstantinos Kotrotsios, Alexandros I. Metsai
Abstract:
In modern server systems, business critical applications run in different types of infrastructure, such as cloud systems, physical machines and virtualization. Often, due to high load and over time, various hardware faults occur in servers that translate to errors, resulting to malfunction or even server breakdown. CPU, RAM and hard drive (HDD) are the hardware parts that concern server administrators the most regarding errors. In this work, selected RAM, HDD and CPU errors, that have been observed or can be simulated in kernel ring buffer log files from two groups of Linux servers, are investigated. Moreover, a severity characterization is given for each error type. Better understanding of such errors can lead to more efficient analysis of kernel logs that are usually exploited for fault diagnosis and prediction. In addition, this work summarizes ways of simulating hardware errors in RAM and HDD, in order to test the error detection and correction mechanisms of a Linux server.Keywords: hardware errors, Kernel logs, Linux servers, RAM, hard disk, CPU
Procedia PDF Downloads 16124514 Investigating the Effects of Data Transformations on a Bi-Dimensional Chi-Square Test
Authors: Alexandru George Vaduva, Adriana Vlad, Bogdan Badea
Abstract:
In this research, we conduct a Monte Carlo analysis on a two-dimensional χ2 test, which is used to determine the minimum distance required for independent sampling in the context of chaotic signals. We investigate the impact of transforming initial data sets from any probability distribution to new signals with a uniform distribution using the Spearman rank correlation on the χ2 test. This transformation removes the randomness of the data pairs, and as a result, the observed distribution of χ2 test values differs from the expected distribution. We propose a solution to this problem and evaluate it using another chaotic signal.Keywords: chaotic signals, logistic map, Pearson’s test, Chi Square test, bivariate distribution, statistical independence
Procedia PDF Downloads 10224513 Real Time Data Communication with FlightGear Using Simulink Over a UDP Protocol
Authors: Adil Loya, Ali Haider, Arslan A. Ghaffor, Abubaker Siddique
Abstract:
Simulation and modelling of Unmanned Aero Vehicle (UAV) has gained wide popularity in front of aerospace community. The demand of designing and modelling optimized control system for UAV has increased ten folds since last decade. The reason is next generation warfare is dependent on unmanned technologies. Therefore, this research focuses on the simulation of nonlinear UAV dynamics on Simulink and its integration with Flightgear. There has been lots of research on implementation of optimizing control using Simulink, however, there are fewer known techniques to simulate these dynamics over Flightgear and a tedious technique of acquiring data has been tackled in this research horizon. Sending data to Flightgear is easy but receiving it from Simulink is not that straight forward, i.e. we can only receive control data on the output. However, in this research we have managed to get the data out from the Flightgear by implementation of level 2 s-function block within Simulink. Moreover, the results captured from Flightgear over a Universal Datagram Protocol (UDP) communication are then compared with the attitude signal that were sent previously. This provide useful information regarding the difference in outputs attained from Simulink to Flightgear. It was found that values received on Simulink were in high agreement with that of the Flightgear output. And complete study has been conducted in a discrete way.Keywords: aerospace, flight control, flightgear, communication, Simulink
Procedia PDF Downloads 29124512 A Brief Review of Urban Green Vegetation (Green Wall) in Reduction of Air Pollution
Authors: Masoumeh Pirhadi
Abstract:
Air pollution is becoming a major health problem affecting millions. In support of this observation, the world health organization estimates that many people feel unhealthy due to pollution. This is a coupled fact that one of the main global sources of air pollution in cities is greenhouse gas emissions due heavy traffic. Green walls are developed as a sustainable strategy to reduce pollution by increasing vegetation in developed areas without occupying space in the city. This concept an offer advantageous environmental benefits and they can also be proposed for aesthetic purposes, and today they are used to preserve the urban environment. Green walls can also create environments that can promote a healthy lifestyle. Findings of multiple studies also indicate that Green infrastructure in cities is a strategy for improving air quality and increasing the sustainability of cities. Since these green solutions (green walls) act as porous materials that affect the diffusion of air pollution they can also act as a removing air vents that clean the air. Therefore, implementation of this strategy can be considered as a prominent factor in achieving a cleaner environment.Keywords: green vegetation, air pollution, green wall, urban area
Procedia PDF Downloads 15924511 Open Source, Open Hardware Ground Truth for Visual Odometry and Simultaneous Localization and Mapping Applications
Authors: Janusz Bedkowski, Grzegorz Kisala, Michal Wlasiuk, Piotr Pokorski
Abstract:
Ground-truth data is essential for VO (Visual Odometry) and SLAM (Simultaneous Localization and Mapping) quantitative evaluation using e.g. ATE (Absolute Trajectory Error) and RPE (Relative Pose Error). Many open-access data sets provide raw and ground-truth data for benchmark purposes. The issue appears when one would like to validate Visual Odometry and/or SLAM approaches on data captured using the device for which the algorithm is targeted for example mobile phone and disseminate data for other researchers. For this reason, we propose an open source, open hardware groundtruth system that provides an accurate and precise trajectory with a 3D point cloud. It is based on LiDAR Livox Mid-360 with a non-repetitive scanning pattern, on-board Raspberry Pi 4B computer, battery and software for off-line calculations (camera to LiDAR calibration, LiDAR odometry, SLAM, georeferencing). We show how this system can be used for the evaluation of various the state of the art algorithms (Stella SLAM, ORB SLAM3, DSO) in typical indoor monocular VO/SLAM.Keywords: SLAM, ground truth, navigation, LiDAR, visual odometry, mapping
Procedia PDF Downloads 8224510 VCloud: A Security Framework for VANET
Authors: Wiseborn Manfe Danquah, D. Turgay Altilar
Abstract:
Vehicular Ad-hoc Network (VANET) is an integral component of Intelligent Transport Systems (ITS) that has enjoyed a lot of attention from the research community and the automotive industry. This is mainly due to the opportunities and challenges it presents. Vehicular Ad-hoc Network being a class of Mobile Ad-hoc Networks (MANET) has all the security concerns existing in traditional MANET as well as new security and privacy concerns introduced by the unique vehicular communication environment. This paper provides a survey of the possible attacks in vehicular environment, as well as security and privacy concerns in VANET. It also provides an insight into the development of a comprehensive cloud framework to provide a more robust and secured communication among vehicular nodes and road side units. Our proposal, a Metropolitan Based Public Interconnected Vehicular Cloud (MIVC) infrastructure seeks to provide a more reliable and secured vehicular communication network.Keywords: mobile Ad-hoc networks, vehicular ad hoc network, cloud, ITS, road side units (RSU), metropolitan interconnected vehicular cloud (MIVC)
Procedia PDF Downloads 359