Search results for: base metal MMCs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4373

Search results for: base metal MMCs

2363 A Fluorescent Polymeric Boron Sensor

Authors: Soner Cubuk, Mirgul Kosif, M. Vezir Kahraman, Ece Kok Yetimoglu

Abstract:

Boron is an essential trace element for the completion of the life circle for organisms. Suitable methods for the determination of boron have been proposed, including acid - base titrimetric, inductively coupled plasma emission spectroscopy flame atomic absorption and spectrophotometric. However, the above methods have some disadvantages such as long analysis times, requirement of corrosive media such as concentrated sulphuric acid and multi-step sample preparation requirements and time-consuming procedures. In this study, a selective and reusable fluorescent sensor for boron based on glycosyloxyethyl methacrylate was prepared by photopolymerization. The response characteristics such as response time, pH, linear range, limit of detection were systematically investigated. The excitation/emission maxima of the membrane were at 378/423 nm, respectively. The approximate response time was measured as 50 sec. In addition, sensor had a very low limit of detection which was 0.3 ppb. The sensor was successfully used for the determination of boron in water samples with satisfactory results.

Keywords: boron, fluorescence, photopolymerization, polymeric sensor

Procedia PDF Downloads 278
2362 Melting and Making Zn-Based Alloys and Examine Their Biodegradable and Biocompatible Properties

Authors: Abdulrahman Sumayli

Abstract:

Natural Zinc has many significant biological functions, including developments and sustainable of bones and wound healing. Metallic zinc has recently been explored as potential biomaterials that have preferable biodegradable, biocompatible, and mechanical properties. Pure metal zinc has a preferable physical and mechanical properties for biodegradable and biocompatible applications such as density and modulus of elasticity. The aim of the research is to make different Zn-based metallic alloys and test them effectively to be used as biocompatible and biodegradable materials in the field biomedical application. Microstructure study of the as-cast alloys will be examined using SEM (scanning electron microscope) followed by X-ray diffraction investigated so as to evaluate phase constitution of the designed alloys. After that, immersion test and electrochemical test will be applied to the designed alloys so as to study bio corrosion behaviour of the proposed alloys. Finally, in vitro cytocompatibility well conducted to study biocompatibility of the made alloys.

Keywords: Zn-based alloys, biodegradable and biocompatible materials, cytotoxicity test, neutron synchrotron imaging

Procedia PDF Downloads 134
2361 Investigating the Impact of Individual Risk-Willingness and Group-Interaction Effects on Business Model Innovation Decisions

Authors: Sarah Müller-Sägebrecht

Abstract:

Today’s volatile environment challenges executives to make the right strategic decisions to gain sustainable success. Entrepreneurship scholars postulate mainly positive effects of environmental changes on entrepreneurship behavior, such as developing new business opportunities, promoting ingenuity, and the satisfaction of resource voids. A strategic solution approach to overcome threatening environmental changes and catch new business opportunities is business model innovation (BMI). Although this research stream has gained further importance in the last decade, BMI research is still insufficient. Especially BMI barriers, such as inefficient strategic decision-making processes, need to be identified. Strategic decisions strongly impact organizational future and are, therefore, usually made in groups. Although groups draw on a more extensive information base than single individuals, group-interaction effects can influence the decision-making process - in a favorable but also unfavorable way. Decisions are characterized by uncertainty and risk, whereby their intensity is perceived individually differently. Individual risk-willingness influences which option humans choose. The special nature of strategic decisions, such as in BMI processes, is that these decisions are not made individually but in groups due to their high organizational scope. These groups consist of different personalities whose individual risk-willingness can vary considerably. It is known from group decision theory that these individuals influence each other, observable in different group-interaction effects. The following research questions arise: i) Which impact has the individual risk-willingness on BMI decisions? And ii) how do group interaction effects impact BMI decisions? After conducting 26 in-depth interviews with executives from the manufacturing industry, the applied Gioia methodology reveals the following results: i) Risk-averse decision-makers have an increased need to be guided by facts. The more information available to them, the lower they perceive uncertainty and the more willing they are to pursue a specific decision option. However, the results also show that social interaction does not change the individual risk-willingness in the decision-making process. ii) Generally, it could be observed that during BMI decisions, group interaction is primarily beneficial to increase the group’s information base for making good decisions, less than for social interaction. Further, decision-makers mainly focus on information available to all decision-makers in the team but less on personal knowledge. This work contributes to strategic decision-making literature twofold. First, it gives insights into how group-interaction effects influence an organization’s strategic BMI decision-making. Second, it enriches risk-management research by highlighting how individual risk-willingness impacts organizational strategic decision-making. To date, it was known in BMI research that risk aversion would be an internal BMI barrier. However, with this study, it becomes clear that it is not risk aversion that inhibits BMI. Instead, the lack of information prevents risk-averse decision-makers from choosing a riskier option. Simultaneously, results show that risk-averse decision-makers are not easily carried away by the higher risk-willingness of their team members. Instead, they use social interaction to gather missing information. Therefore, executives need to provide sufficient information to all decision-makers to catch promising business opportunities.

Keywords: business model innovation, decision-making, group biases, group decisions, group-interaction effects, risk-willingness

Procedia PDF Downloads 93
2360 Ammonia Cracking: Catalysts and Process Configurations for Enhanced Performance

Authors: Frea Van Steenweghen, Lander Hollevoet, Johan A. Martens

Abstract:

Compared to other hydrogen (H₂) carriers, ammonia (NH₃) is one of the most promising carriers as it contains 17.6 wt% hydrogen. It is easily liquefied at ≈ 9–10 bar pressure at ambient temperature. More importantly, NH₃ is a carbon-free hydrogen carrier with no CO₂ emission at final decomposition. Ammonia has a well-defined regulatory framework and a good track record regarding safety concerns. Furthermore, the industry already has an existing transport infrastructure consisting of pipelines, tank trucks and shipping technology, as ammonia has been manufactured and distributed around the world for over a century. While NH₃ synthesis and transportation technological solutions are at hand, a missing link in the hydrogen delivery scheme from ammonia is an energy-lean and efficient technology for cracking ammonia into H₂ and N₂. The most explored option for ammonia decomposition is thermo-catalytic cracking which is, by itself, the most energy-efficient approach compared to other technologies, such as plasma and electrolysis, as it is the most energy-lean and robust option. The decomposition reaction is favoured only at high temperatures (> 300°C) and low pressures (1 bar) as the thermocatalytic ammonia cracking process is faced with thermodynamic limitations. At 350°C, the thermodynamic equilibrium at 1 bar pressure limits the conversion to 99%. Gaining additional conversion up to e.g. 99.9% necessitates heating to ca. 530°C. However, reaching thermodynamic equilibrium is infeasible as a sufficient driving force is needed, requiring even higher temperatures. Limiting the conversion below the equilibrium composition is a more economical option. Thermocatalytic ammonia cracking is documented in scientific literature. Among the investigated metal catalysts (Ru, Co, Ni, Fe, …), ruthenium is known to be most active for ammonia decomposition with an onset of cracking activity around 350°C. For establishing > 99% conversion reaction, temperatures close to 600°C are required. Such high temperatures are likely to reduce the round-trip efficiency but also the catalyst lifetime because of the sintering of the supported metal phase. In this research, the first focus was on catalyst bed design, avoiding diffusion limitation. Experiments in our packed bed tubular reactor set-up showed that extragranular diffusion limitations occur at low concentrations of NH₃ when reaching high conversion, a phenomenon often overlooked in experimental work. A second focus was thermocatalyst development for ammonia cracking, avoiding the use of noble metals. To this aim, candidate metals and mixtures were deposited on a range of supports. Sintering resistance at high temperatures and the basicity of the support were found to be crucial catalyst properties. The catalytic activity was promoted by adding alkaline and alkaline earth metals. A third focus was studying the optimum process configuration by process simulations. A trade-off between conversion and favorable operational conditions (i.e. low pressure and high temperature) may lead to different process configurations, each with its own pros and cons. For example, high-pressure cracking would eliminate the need for post-compression but is detrimental for the thermodynamic equilibrium, leading to an optimum in cracking pressure in terms of energy cost.

Keywords: ammonia cracking, catalyst research, kinetics, process simulation, thermodynamic equilibrium

Procedia PDF Downloads 62
2359 Generational Differences in Leadership and Motivation: A Multilevel Study of Federal Workers

Authors: Sally Selden, Jyoti Aggarwal

Abstract:

The research on generational expectations about leadership is developing, but little scholarship exists on this topic for public sector organizations. Given the size of the federal workforce, this research study fills an important gap in the knowledge base and will inform public organizations how to approach managing and leading a multigenerational workforce. The research objectives of this study are to explore leadership preferences and motivation within generations and to determine whether these qualities differ by type of federal agency (e.g., law enforcement, human services, etc.). This paper will review the research on generational differences, expectations, and leadership with a focus on studies of public organizations. Using hierarchical linear modeling (HLM), this study will examine how leadership and motivation vary by generation in the federal government workforce, controlling for other demographic characteristics. The study will also examine whether generational differences impact satisfaction and performance. The study will utilize the 2019 Federal Employee Viewpoint Survey.

Keywords: multigenerational workforce, leadership, generational differences, federal workforce

Procedia PDF Downloads 216
2358 Investigation of Heat Transfer of Nanofluids in Circular Microchannels

Authors: Bayram Sahin, Hourieh Bayramian, Emre Mandev, Murat Ceylan

Abstract:

In industrial applications, the demand for the enhancement of heat transfer is a common engineering problem. The use of additives to heat transfer fluid is a technique applied to enhance the heat transfer performance of base fluids. In this study, the thermal performance of nanofluids consisting of SiO2 particles and deionized water in circular microchannels was investigated experimentally. SiO2 nanoparticles with diameter of 15 nm were added to water to prepare nanofluids with 0.2% and 0.4% volume fractions. Heat transfer characteristics were calculated by using temperature, flow and pressure measurements. The thermal conductivity and viscosity values required for the calculations are measured separately. It is observed that the Nusselt number increases at the all volume fraction of particles, by increasing the Reynolds number and the volumetric ratios of the particles. The highest heat transfer enhancement is obtained at Re = 2160 and 0.4 % vol. by 14% under the condition of a constant pumping power.

Keywords: nanofluid, microchannel, heat transfer, SiO2-water nanofluid

Procedia PDF Downloads 380
2357 Use of Cassava Flour in Cakes Processing

Authors: S. S. Silva, S. M. A. Souza, C. F. P. Oliveira

Abstract:

Brazil's agriculture is a major economic base in the country; in addition, family farming is directly responsible for the production of most agricultural products in Brazil, such as cassava. The number of studies on the use of cassava and its derivatives in the food industry has been increased, which is the basis of this study. Sought to develop a food that take advantage the products from farmers, adding value to these products and to study its effects as a replacement for wheat flour. For such elaborated a gluten-free cake – aiming to meet the needs of the celiac public – containing cassava flour, cane sugar, honey, egg, soya oil, coconut desiccated, baking powder and water. For evaluation of their characteristics technological, physicochemical and texture characterizations were done. Cake showed similar characteristics of cake made with wheat flour and growth and aeration of the dough. In sum up, marketing the product is viable, in that it has a typical overall appearance of cake made of wheat flour, meet the needs of celiac people and value the family farming.

Keywords: baking, cake, cassava flour, celiac disease

Procedia PDF Downloads 418
2356 Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers

Authors: Emanuela Paranhos Lima, Vitaly Félix Rodríguez Esquerre

Abstract:

In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained.

Keywords: directional coupler, finite element method, metallic nanowire, plasmonic, surface plasmon polariton, superfocusing

Procedia PDF Downloads 268
2355 Time-Dependent Density Functional Theory of an Oscillating Electron Density around a Nanoparticle

Authors: Nilay K. Doshi

Abstract:

A theoretical probe describing the excited energy states of the electron density surrounding a nanoparticle (NP) is presented. An electromagnetic (EM) wave interacts with a NP much smaller than the incident wavelength. The plasmon that oscillates locally around the NP comprises of excited conduction electrons. The system is based on the Jellium model of a cluster of metal atoms. Hohenberg-Kohn (HK) equations and the variational Kohn-Sham (SK) scheme have been used to obtain the NP electron density in the ground state. Furthermore, a time-dependent density functional (TDDFT) theory is used to treat the excited states in a density functional theory (DFT) framework. The non-interacting fermionic kinetic energy is shown to be a functional of the electron density. The time dependent potential is written as the sum of the nucleic potential and the incoming EM field. This view of the quantum oscillation of the electron density is a part of the localized surface plasmon resonance.

Keywords: electron density, energy, electromagnetic, DFT, TDDFT, plasmon, resonance

Procedia PDF Downloads 325
2354 Studies on the Solubility of Oxygen in Water Using a Hose to fill the Air with Different Shapes

Authors: Wichan Lertlop

Abstract:

This research is to study the solubility of oxygen in water taking the form of aeration pipes that have different shaped objectives of the research to compare the amount of oxygen dissolved in the water, whice take the form of aeration pipes. Shaped differently When aeration 5 minutes on air for 10 minutes, and when air fills 30 minutes, as well as compare the durability of the oxygen is dissolved in the water of the inlet air refueling shaped differently when you fill the air 30 minutes and when. aeration and 60 minutes populations used in this study, the population of pond water from Rajabhat University in February 2014 used in this study consists of 1. Aerator 2. Hose using a hose to fill the air with 3 different shape, different shapes pyramid whose base is on the water tank. Shaped rectangular water tank onto the ground. And shapes in a vertical pipe. 3 meter, dissolved oxygen, dissolved in water to get the calibration standard. 4. The clock for timer 5. Three water tanks which are 39 cm wide, 51 cm long and 32 cm high.

Keywords: aeration, dissolve oxygen, different shapes

Procedia PDF Downloads 304
2353 The SEMONT Monitoring and Risk Assessment of Environmental EMF Pollution

Authors: Dragan Kljajic, Nikola Djuric, Karolina Kasas-Lazetic, Danka Antic

Abstract:

Wireless communications have been expanded very fast in recent decades. This technology relies on an extensive network of base stations and antennas, using radio frequency signals to transmit information. Devices that use wireless communication, while offering various services, basically act as sources of non-ionizing electromagnetic fields (EMF). Such devices are permanently present in the human vicinity and almost constantly radiate, causing EMF pollution of the environment. This fact has initiated development of modern systems for observation of the EMF pollution, as well as for risk assessment. This paper presents the Serbian electromagnetic field monitoring network – SEMONT, designed for automated, remote and continuous broadband monitoring of EMF in the environment. Measurement results of the SEMONT monitoring at one of the test locations, within the main campus of the University of Novi Sad, are presented and discussed, along with corresponding exposure assessment of the general population, regarding the Serbian legislation.

Keywords: EMF monitoring, exposure assessment, sensor nodes, wireless network

Procedia PDF Downloads 260
2352 Hydrodynamics of Wound Ballistics

Authors: Harpreet Kaur, Er. Arjun, Kirandeep Kaur, P. K. Mittal

Abstract:

Simulation of a human body from 20% gelatin & 80% water mixture is examined from wound ballistics point of view. Parameters such as incapacitation energy & temporary to permanent cavity size & tools of hydrodynamics have been employed to arrive at a model of human body similar to the one adopted by NATO. Calculations using equations of motion yield a value of 339 µs in which a temporary cavity with maximum size settles down to permanent cavity. This occurs for a 10mm size bullets & settle down to permanent cavity in case of 4 different bullets i.e. 5.45, 5.56, 7.62,10 mm sizes The obtained results are in excellent agreement with the body as right circular cylinder of 15 cm height & 10 cm diameter. An effort is made here in this work to present a sound theoretical base to parameters commonly used in wound ballistics from field experience discussed by Col Coats & Major Beyer. Keywords. Gelatin, gunshot, hydrodynamic model, oscillation time, temporary cavity and permanent cavity, Wound Ballistic.

Keywords: gelatin, gunshot, wound, cavity

Procedia PDF Downloads 98
2351 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution

Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper

Abstract:

Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.

Keywords: laser welding, metals to polymers joining, process monitoring, temperature profile, thermography

Procedia PDF Downloads 131
2350 Optimal Production Planning in Aromatic Coconuts Supply Chain Based on Mixed-Integer Linear Programming

Authors: Chaimongkol Limpianchob

Abstract:

This work addresses the problem of production planning that arises in the production of aromatic coconuts from Samudsakhorn province in Thailand. The planning involves the forwarding of aromatic coconuts from the harvest areas to the factory, which is classified into two groups; self-owned areas and contracted areas, the decisions of aromatic coconuts flow in the plant, and addressing a question of which warehouse will be in use. The problem is formulated as a mixed-integer linear programming model within supply chain management framework. The objective function seeks to minimize the total cost including the harvesting, labor and inventory costs. Constraints on the system include the production activities in the company and demand requirements. Numerical results are presented to demonstrate the feasibility of coconuts supply chain model compared with base case.

Keywords: aromatic coconut, supply chain management, production planning, mixed-integer linear programming

Procedia PDF Downloads 454
2349 The Joint Properties for Friction Stir Welding of Aluminium Tubes

Authors: Ahbdelfattah M. Khourshid, T. Elabeidi

Abstract:

Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical investigation, Optic Microscopy and Scanning Electron Microscopy (SEM) were used for base and weld zones.

Keywords: friction stir welding (FSW), Al alloys, mechanical properties, microstructure

Procedia PDF Downloads 532
2348 Secure Mobile E-Business Applications

Authors: Hala A. Alrumaih

Abstract:

It is widely believed that mobile device is a promising technology for lending the opportunity for the third wave of electronic commerce. Mobile devices have changed the way companies do business. Many applications are under development or being incorporated into business processes. In this day, mobile applications are a vital component of any industry strategy. One of the greatest benefits of selling merchandise and providing services on a mobile application is that it widens a company’s customer base significantly. Mobile applications are accessible to interested customers across regional and international borders in different electronic business (e-business) area. But there is a dark side to this success story. The security risks associated with mobile devices and applications are very significant. This paper introduces a broad risk analysis for the various threats, vulnerabilities, and risks in mobile e-business applications and presents some important risk mitigation approaches. It reviews and compares two different frameworks for security assurance in mobile e-business applications. Based on the comparison, the paper suggests some recommendations for applications developers and business owners in mobile e-business application development process.

Keywords: e-business, mobile applications, risk mitigations, security assurance

Procedia PDF Downloads 289
2347 A Method to Determine Cutting Force Coefficients in Turning Using Mechanistic Approach

Authors: T. C. Bera, A. Bansal, D. Nema

Abstract:

During performing turning operation, cutting force plays a significant role in metal cutting process affecting tool-work piece deflection, vibration and eventually part quality. The present research work aims to develop a mechanistic cutting force model and to study the mechanistic constants used in the force model in case of turning operation. The proposed model can be used for the reliable and accurate estimation of the cutting forces establishing relationship of various force components (cutting force and feed force) with uncut chip thickness. The accurate estimation of cutting force is required to improve thin-walled part accuracy by controlling the tool-work piece deflection induced surface errors and tool-work piece vibration.

Keywords: turning, cutting forces, cutting constants, uncut chip thickness

Procedia PDF Downloads 516
2346 A t-SNE and UMAP Based Neural Network Image Classification Algorithm

Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang

Abstract:

Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.

Keywords: t-SNE, UMAP, fashion MNIST, neural networks

Procedia PDF Downloads 192
2345 The Arabian Financial Framework in the Pre-Islamic Times: Do We Need a New Paradigm

Authors: Fahad Ahmed Qureshi

Abstract:

There were abundant renowned financial markets in Pre-Islamic Arabs. Most of those were patterned and settled during pre-particularized sunshine. Those markets were classified either as vernacular markets helping the neighboring clans, or habitual markets that people sojourned to from all articulations of the Arabian Peninsula, such as Okaz near Mecca. Some of those markets had leading significance due to their geographical positions, such as Prime market of Eden, because of their entanglement in international trade i.e. with the markets of Sub-Continent, Abyssinia, Persia and China. Other markets such as Market of Yamamah annex its gist from being situated on the caravan crossroads. Islamic worldview and Islamic epistemology base of Financial Market’s realistic theory, pragmatic model and operative approach is moderately constrained in terms of its growth. The existent situation only parasol the form of accommodative-modification and splendid-methodologies, which due to depleted and decorous endeavor in explaining Islamic financial market theoretically. This is the demand of time that particular studies should be conduct to magnify the devours in developing theoretical framework for Islamic Financial Market.

Keywords: Islam, financial market, history, research, product development

Procedia PDF Downloads 405
2344 Experimental Study of CO2 Absorption in Different Blend Solutions as Solvent for CO2 Capture

Authors: Rouzbeh Ramezani, Renzo Di Felice

Abstract:

Nowadays, removal of CO2 as one of the major contributors to global warming using alternative solvents with high CO2 absorption efficiency, is an important industrial operation. In this study, three amines, including 2-methylpiperazine, potassium sarcosinate and potassium lysinate as potential additives, were added to the potassium carbonate solution as a base solvent for CO2 capture. In order to study the absorption performance of CO2 in terms of loading capacity of CO2 and absorption rate, the absorption experiments in a blend of additives with potassium carbonate were carried out using the vapor-liquid equilibrium apparatus at a temperature of 313.15 K, CO2 partial pressures ranging from 0 to 50 kPa and at mole fractions 0.2, 0.3, and 0.4. Furthermore, the performance of CO2 absorption in these blend solutions was compared with pure monoethanolamine and with pure potassium carbonate. Finally, a correlation with good accuracy was developed using the nonlinear regression analysis in order to predict CO2 loading capacity.

Keywords: absorption rate, carbon dioxide, CO2 capture, global warming, loading capacity

Procedia PDF Downloads 275
2343 FE Analysis of Blade-Disc Dovetail Joints Using Mortar Base Frictional Contact Formulation

Authors: Abbas Moradi, Mohsen Safajoy, Reza Yazdanparast

Abstract:

Analysis of blade-disc dovetail joints is one of the biggest challenges facing designers of aero-engines. To avoid comparatively expensive experimental full-scale tests, numerical methods can be used to simulate loaded disc-blades assembly. Mortar method provides a powerful and flexible tool for solving frictional contact problems. In this study, 2D frictional contact in dovetail has been analysed based on the mortar algorithm. In order to model the friction, the classical law of coulomb and moving friction cone algorithm is applied. The solution is then obtained by solving the resulting set of non-linear equations using an efficient numerical algorithm based on Newton–Raphson Method. The numerical results show that this approach has better convergence rate and accuracy than other proposed numerical methods.

Keywords: computational contact mechanics, dovetail joints, nonlinear FEM, mortar approach

Procedia PDF Downloads 344
2342 Bioactive, Nutritional and Heavy Metal Constituents of Some Edible Mushrooms Found in Abia State of Nigeria

Authors: I. C. Okwulehie, J. A. Ogoke

Abstract:

The phytocemical, mineral, proximate and heavy metals compositions of six edible and non-edible species of mushrooms were investigated. Fully fleshy mushrooms were used for the analysis. On the averagely, the bioactive constituents of the mushrooms were as follows Alkaloids 0.12 ± 0.02 – 1.01 ± 03 %, Tannins 0.44 ± 0.09 – 1.38 ± 0.6,). Phenols,(0.13 ± 0.01 – 0.26± 0.00, Saponins 0.14 ± 0.03 – 0.32 ± 0.04%, Flavonoids 0.08 ± 0.02 – 0.34 ± 0.02%. The result of proximate composition indicated that the mushroom contained (5.17 ± 0.06 – 12.28 ± 0.16% protein, 0.16 ± 0.02 – 0.67 ± 0.02% fats, 1.06 ± 0.03 – 8.49 ± 0.03 % fibre, (62.06 ± 0.52 – 80.01 ± 4.71% and carbohydrate. The mineral composition of the mushrooms were as follows, calcium 81.49 ± 2.32 - .914 ± 2.32mg/100g, Magnesium(8 ± 1.39-24 ± 2.40mg/100g, Potassium 64.54 ± 0.43 – 164.54 ± 1.23 mg/100g, sodium 9.47 ± 0.12 – 30.97 ± 0.16 mg/100g, and Phosphorus 22.19 ± 0.57-53.2± 0.44 mg/100g. Heavy metals concentration indicated Cadmium 0.7-0.94ppm. Zinc 27.82 – 70.98 ppm. Lead 0.66 – 2.86ppm and Copper 1.8-22.32ppm. The result obtained indicates that the mushrooms are of good sources of phytochemicals, proximate and minerals needed for maintenance of good health and can also be exploited in manufacture of drugs. Heavy metals obtained indicate that when consume intentionally in high content may cause liver, kidney damage and even death.

Keywords: bioactive, heavy metals, mushroom, nutritive

Procedia PDF Downloads 417
2341 Power Aware Modified I-LEACH Protocol Using Fuzzy IF Then Rules

Authors: Gagandeep Singh, Navdeep Singh

Abstract:

Due to limited battery of sensor nodes, so energy efficiency found to be main constraint in WSN. Therefore the main focus of the present work is to find the ways to minimize the energy consumption problem and will results; enhancement in the network stability period and life time. Many researchers have proposed different kind of the protocols to enhance the network lifetime further. This paper has evaluated the issues which have been neglected in the field of the WSNs. WSNs are composed of multiple unattended ultra-small, limited-power sensor nodes. Sensor nodes are deployed randomly in the area of interest. Sensor nodes have limited processing, wireless communication and power resource capabilities Sensor nodes send sensed data to sink or Base Station (BS). I-LEACH gives adaptive clustering mechanism which very efficiently deals with energy conservations. This paper ends up with the shortcomings of various adaptive clustering based WSNs protocols.

Keywords: WSN, I-Leach, MATLAB, sensor

Procedia PDF Downloads 270
2340 Evaluation of an Organic Coating Applied on Algerian Oil Tanker in Sea water by EIS

Authors: Nadia Hammouda, Kamel Belmokre

Abstract:

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.

Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, seawater

Procedia PDF Downloads 413
2339 Effect of Liquid Additive on Dry Grinding for Desired Surface Structure of CaO Catalyst

Authors: Wiyanti Fransisca Simanullang, Shinya Yamanaka

Abstract:

Grinding method was used to control the active site and to improve the specific surface area (SSA) of calcium oxide (CaO) derived from scallop shell as a sustainable resource. The dry grinding of CaO with acetone and tertiary butanol as a liquid additive was carried out using a planetary ball mill with a laboratory scale. The experiments were operated by stepwise addition with time variations to determine the grinding limit. The active site of CaO was measured by X-Ray Diffraction and FT-IR. The SSA variations of products with grinding time were measured by BET method. The morphology structure of CaO was observed by SEM. The use of liquid additive was effective for increasing the SSA and controlling the active site of CaO. SSA of CaO was increased in proportion to the amount of the liquid additive and the grinding time. The performance of CaO as a solid base catalyst for biodiesel production was tested in the transesterification reaction of used cooking oil to produce fatty acid methyl ester (FAME).

Keywords: active site, calcium oxide, grinding, specific surface area

Procedia PDF Downloads 284
2338 Deformability of the Rare Earth Metal Modified Metastable-β Alloy Ti-15Mo

Authors: F. Brunke, L. Waalkes, C. Siemers

Abstract:

Due to reduced stiffness, research on second generation titanium alloys for implant applications, like the metastable β-titanium alloy Ti-15Mo, become more and more important in the recent years. The machinability of these alloys is generally poor leading to problems during implant production and comparably large production costs. Therefore, in the present study, Ti 15Mo was alloyed with 0.8 wt.-% of the rare earth metals lanthanum (Ti-15Mo+0.8La) and neodymium (Ti-15Mo+0.8Nd) to improve its machinability. Their microstructure consisted of a titanium matrix and micrometer-size particles of the rare earth metals and two of their oxides. The particles stabilized the micro structure as grain growth was minimized. As especially the ductility might be affected by the precipitates, the behavior of Ti-15Mo+0.8La and Ti-15Mo+0.8Nd was investigated during static and dynamic deformation at elevated temperature to develop a processing route. The resulting mechanical properties (static strength and ductility) were similar in all investigated alloys.

Keywords: Ti 15Mo, titanium alloys, rare earth metals, free machining alloy

Procedia PDF Downloads 337
2337 Distribution Planning with Renewable Energy Units Based on Improved Honey Bee Mating Optimization

Authors: Noradin Ghadimi, Nima Amjady, Oveis Abedinia, Roza Poursoleiman

Abstract:

This paper proposed an Improved Honey Bee Mating Optimization (IHBMO) for a planning paradigm for network upgrade. The proposed technique is a new meta-heuristic algorithm which inspired by mating of the honey bee. The paradigm is able to select amongst several choices equi-cost one assuring the optimum in terms of voltage profile, considering various scenarios of DG penetration and load demand. The distributed generation (DG) has created a challenge and an opportunity for developing various novel technologies in power generation. DG prepares a multitude of services to utilities and consumers, containing standby generation, peaks chopping sufficiency, base load generation. The proposed algorithm is applied over the 30 lines, 28 buses power system. The achieved results demonstrate the good efficiency of the DG using the proposed technique in different scenarios.

Keywords: distributed generation, IHBMO, renewable energy units, network upgrade

Procedia PDF Downloads 483
2336 Ionic Liquid Desiccant for the Dehumidification System

Authors: Chih-Hao Chen, Yu-Heng Fang, Jyi-Ching Perng, Wei-Chih Lee, Yi-Hsiang Chen, Jiun-Jen Chen

Abstract:

Emerging markets are almost in the high temperature and high humidity area. Regardless of industry or domestic fields, the energy consumption of air conditioning systems in buildings is always significant. Moreover, the proportion of latent heat load is high. A liquid desiccant dehumidification system is one kind of energy-saving air conditioning system. However, traditional absorbents such as lithium chloride are hindered in market promotion because they will crystallized and cause metal corrosion. This study used the commercial ionic liquid to build a liquid desiccant dehumidification system with an air volume of 300 CMH. When the absolute humidity of the inlet air was 15g/kg, the absolute humidity of the outlet air was 10g/kg. The operating condition of a hot water temperature is 45 °C, and the cooling water temperature is 15 °C. The test result proves that the ionic liquid desiccant can completely replace the traditional liquid desiccant.

Keywords: ionic liquid desiccant, dehumidification, heat pump, air conditioning systems

Procedia PDF Downloads 160
2335 Comparative Evaluation of High Pure Mn3O4 Preparation Technique between the Conventional Process from Electrolytic Manganese and a Sustainable Approach Directly from Low-Grade Rhodochrosite

Authors: Fang Lian, Zefang Chenli, Laijun Ma, Lei Mao

Abstract:

Up to now, electrolytic process is a popular way to prepare Mn and MnO2 (EMD) with high purity. However, the conventional preparation process of manganese oxide such as Mn3O4 with high purity from electrolytic manganese metal is characterized by long production-cycle, high-pollution discharge and high energy consumption especially initially from low-grade rhodochrosite, the main resources for exploitation and applications in China. Moreover, Mn3O4 prepared from electrolytic manganese shows large particles, single morphology beyond the control and weak chemical activity. On the other hand, hydrometallurgical method combined with thermal decomposition, hydrothermal synthesis and sol-gel processes has been widely studied because of its high efficiency, low consumption and low cost. But the key problem in direct preparation of manganese oxide series from low-grade rhodochrosite is to remove completely the multiple impurities such as iron, silicon, calcium and magnesium. It is urgent to develop a sustainable approach to high pure manganese oxide series with character of short process, high efficiency, environmentally friendly and economical benefit. In our work, the preparation technique of high pure Mn3O4 directly from low-grade rhodochrosite ore (13.86%) was studied and improved intensively, including the effective leaching process and the short purifying process. Based on the same ion effect, the repeated leaching of rhodochrosite with sulfuric acid is proposed to improve the solubility of Mn2+ and inhibit the dissolution of the impurities Ca2+ and Mg2+. Moreover, the repeated leaching process could make full use of sulfuric acid and lower the cost of the raw material. With the aid of theoretical calculation, Ba(OH)2 was chosen to adjust the pH value of manganese sulfate solution and BaF2 to remove Ca2+ and Mg2+ completely in the process of purifying. Herein, the recovery ratio of manganese and removal ratio of the impurity were evaluated via chemical titration and ICP analysis, respectively. Comparison between conventional preparation technique from electrolytic manganese and a sustainable approach directly from low-grade rhodochrosite have also been done herein. The results demonstrate that the extraction ratio and the recovery ratio of manganese reached 94.3% and 92.7%, respectively. The heavy metal impurities has been decreased to less than 1ppm, and the content of calcium, magnesium and sodium has been decreased to less than 20ppm, which meet standards of high pure reagent for energy and electronic materials. In compare with conventional technique from electrolytic manganese, the power consumption has been reduced to ≤2000 kWh/t(product) in our short-process approach. Moreover, comprehensive recovery rate of manganese increases significantly, and the wastewater generated from our short-process approach contains low content of ammonia/ nitrogen about 500 mg/t(product) and no toxic emissions. Our study contributes to the sustainable application of low-grade manganese ore. Acknowledgements: The authors are grateful to the National Science and Technology Support Program of China (No.2015BAB01B02) for financial support to the work.

Keywords: leaching, high purity, low-grade rhodochrosite, manganese oxide, purifying process, recovery ratio

Procedia PDF Downloads 246
2334 Multiband Microstrip Slotted Patch Antenna for mmWave 5G Femtocell Applications

Authors: Bhargavi G., Arathi R. Shankar

Abstract:

Transmitter and receiver closer to every other, which creates the twin benefits of better-nice links and more spatial reuse. In a network with nomadic customers, this inevitably includes deploying greater infrastructure, normally in the form of microcells, hot spots, disbursed antennas, or relays. A less pricey alternative is the recent concept of femtocells, additionally known as domestic base stations that are facts get admission to points installed by means of domestic users to get higher indoor voice and records insurance. Femtocells have the potential to offer excessive exceptional community get entry to indoor customers at low cost, even as concurrently reducing the load. gift femtocells that perform in 4G can also be extended for 5G sub-6 GHz band. Designing the femtocell in mmWave band of 5G may have many blessings in terms of bandwidth availability and coverage. Multiband microstrip patch antennas can be considered as a low value and prominent antennas in designing the femtocells because the single antenna helps multiple frequency.

Keywords: 5G, mmWave, antennas, wireless communications, femtocell

Procedia PDF Downloads 68