Search results for: artificial neural networks; crop water stress index; canopy temperature
22719 MigrationR: An R Package for Analyzing Bird Migration Data Based on Satellite Tracking
Authors: Xinhai Li, Huidong Tian, Yumin Guo
Abstract:
Bird migration is fantastic natural phenomenon. In recent years, the use of GPS transmitters has generated a vast amount of data, and the Movebank platform has made these data publicly accessible. For researchers, what they need are data analysis tools. Although there are approximately 90 R packages dedicated to animal movement analysis, the capacity for comprehensive processing of bird migration data remains limited. Hence, we introduce a novel package called migrationR. This package enables the calculation of movement speed, direction, changes in direction, flight duration, daily and annual movement distances. Furthermore, it can pinpoint the starting and ending dates of migration, estimate nest site locations and stopovers, and visualize movement trajectories at various time scales. migrationR distinguishes individuals through NMDS (non-metric multidimensional scaling) coordinates based on movement variables such as speed, flight duration, path tortuosity, and migration timing. A distinctive aspect of the package is the development of a hetero-occurrences species distribution model that takes into account the daily rhythm of individual birds across different landcover types. Habitat use for foraging and roosting differs significantly for many waterbirds. For example, White-naped Cranes at Poyang Lake in China typically forage in croplands and roost in shallow water areas. Both of these occurrence types are of equal importance. Optimal habitats consist of a combination of crop lands and shallow waters, whereas suboptimal habitats lack both, which necessitates birds to fly extensively. With migrationR, we conduct species distribution modeling for foraging and roosting separately and utilize the moving distance between crop lands and shallow water areas as an index of overall habitat suitability. This approach offers a more nuanced understanding of the habitat requirements for migratory birds and enhances our ability to analyze and interpret their movement patterns effectively. The functions of migrationR are demonstrated using our own tracking data of 78 White-naped Crane individuals from 2014 to 2023, comprising over one million valid locations in total. migrationR can be installed from a GitHub repository by executing the following command: remotes::install_github("Xinhai-Li/migrationR").Keywords: bird migration, hetero-occurrences species distribution model, migrationR, R package, satellite telemetry
Procedia PDF Downloads 6322718 Corrosion Behavior of Induced Stress Duplex Stainless Steel in Chloride Environment
Authors: Serge Mudinga Lemika, Samuel Olukayode Akinwamide, Aribo Sunday, Babatunde Abiodun Obadele, Peter Apata Olubambi
Abstract:
Use of Duplex stainless steel has become predominant in applications where excellent corrosion resistance is of utmost importance. Corrosion behavior of duplex stainless steel induced with varying stress in a chloride media were studied. Characterization of as received 2205 duplex stainless steels were carried out to reveal its structure and properties tensile sample produced from duplex stainless steel was initially subjected to tensile test to obtain the yield strength. Stresses obtained by various percentages (20, 40, 60 and 80%) of the yield strength was induced in DSS samples. Corrosion tests were carried out in magnesium chloride solution at room temperature. Morphologies of cracks observed with optical and scanning electron microscope showed that samples induced with higher stress had its austenite and ferrite grains affected by pitting.Keywords: duplex stainless steel, hardness, nanoceramics, spark plasma sintering
Procedia PDF Downloads 30622717 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection
Procedia PDF Downloads 46922716 Advances in Artificial intelligence Using Speech Recognition
Authors: Khaled M. Alhawiti
Abstract:
This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance
Procedia PDF Downloads 47822715 Status of Physical, Chemical and Biological Attributes of Isheri, Ogun River, in Relation to the Surrounding Anthropogenic Activities of Kara Abattoir, South West Nigeria
Authors: N. B. Ikenweiwe, A. A. Alimi, N. A. Bamidele, A. O. Ewumi, J. Dairo, I. A. Akinnubi, S. O. Otubusin
Abstract:
A study on the physical, chemical and biological parameters of the lower course of Ogun River, Isheri-Olofin was carried out between January and December 2014 in order to determine the effects of the anthropogenic activities of the Kara abattoir and domestic waste depositions on the quality of the water. Water samples were taken twice each month at three selected stations A, B and C (based on characteristic features or activity levels) along the water course. Samples were analysed using standard methods for chemical and biological parameters the same day in the laboratory while physical parameters were determined in-situ with water parameters kit. Generally, results of Transparency, Dissolved Oxygen, Nitrates, TDS and Alkalinity fall below the permissible limits of WHO and FEPA standards for drinking and fish production. Results of phosphates, lead and cadmium were also low but still within the permissible limit. Only Temperature and pH were within limit. Low plankton community, (phytoplankton, zooplankton), which ranges from 3, 5 to 40, 23 were as a result of low levels of DO, transparency and phosphate. The presence of coliform bacteria of public health importance like Escherichia coli, Proteus vulgaris, Aeromonas sp., Shigella sp, Enterobacter aerogenes as well as gram negative bacteria Proteus morganii are mainly indicators of faecal pollution. Fish and other resources obtained from this water stand the risk of being contaminated with these organisms and man is at the receiving end. The results of the physical, chemical and some biological parameters of Isheri, Ogun River, according to this study showed that the live forms of aquatic and fisheries resources there are dwelling under stress as a result of deposition of bones, horns, faecal components, slurry of suspended solids, fat and blood into the water. Government should therefore establish good monitoring system against illegal waste depositions and create education programmes that will enlighten the community on the social, ecological and economic values of the river.Keywords: water parameters, Isheri Ogun river, anthropogenic activities, Kara abattoir
Procedia PDF Downloads 53922714 The Impact of Artificial Intelligence on Spare Parts Technology
Authors: Amir Andria Gad Shehata
Abstract:
Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.Keywords: spare part, spare part inventory, inventory model, optimization, maintenanceneural network, LSTM, MLP, forecasting demand, inventory management
Procedia PDF Downloads 6322713 Vulnerability Assessment of Groundwater Quality Deterioration Using PMWIN Model
Authors: A. Shakoor, M. Arshad
Abstract:
The utilization of groundwater resources in irrigation has significantly increased during the last two decades due to constrained canal water supplies. More than 70% of the farmers in the Punjab, Pakistan, depend directly or indirectly on groundwater to meet their crop water demands and hence, an unchecked paradigm shift has resulted in aquifer depletion and deterioration. Therefore, a comprehensive research was carried at central Punjab-Pakistan, regarding spatiotemporal variation in groundwater level and quality. Processing MODFLOW for window (PMWIN) and MT3D (solute transport model) models were used for existing and future prediction of groundwater level and quality till 2030. The comprehensive data set of aquifer lithology, canal network, groundwater level, groundwater salinity, evapotranspiration, groundwater abstraction, recharge etc. were used in PMWIN model development. The model was thus, successfully calibrated and validated with respect to groundwater level for the periods of 2003 to 2007 and 2008 to 2012, respectively. The coefficient of determination (R2) and model efficiency (MEF) for calibration and validation period were calculated as 0.89 and 0.98, respectively, which argued a high level of correlation between the calculated and measured data. For solute transport model (MT3D), the values of advection and dispersion parameters were used. The model used for future scenario up to 2030, by assuming that there would be no uncertain change in climate and groundwater abstraction rate would increase gradually. The model predicted results revealed that the groundwater would decline from 0.0131 to 1.68m/year during 2013 to 2030 and the maximum decline would be on the lower side of the study area, where infrastructure of canal system is very less. This lowering of groundwater level might cause an increase in the tubewell installation and pumping cost. Similarly, the predicted total dissolved solids (TDS) of the groundwater would increase from 6.88 to 69.88mg/L/year during 2013 to 2030 and the maximum increase would be on lower side. It was found that in 2030, the good quality would reduce by 21.4%, while marginal and hazardous quality water increased by 19.28 and 2%, respectively. It was found from the simulated results that the salinity of the study area had increased due to the intrusion of salts. The deterioration of groundwater quality would cause soil salinity and ultimately the reduction in crop productivity. It was concluded from the predicted results of groundwater model that the groundwater deteriorated with the depth of water table i.e. TDS increased with declining groundwater level. It is recommended that agronomic and engineering practices i.e. land leveling, rainwater harvesting, skimming well, ASR (Aquifer Storage and Recovery Wells) etc. should be integrated to meliorate management of groundwater for higher crop production in salt affected soils.Keywords: groundwater quality, groundwater management, PMWIN, MT3D model
Procedia PDF Downloads 37822712 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation
Procedia PDF Downloads 34822711 Mathematical Modelling and Numerical Simulation of Maisotsenko Cycle
Authors: Rasikh Tariq, Fatima Z. Benarab
Abstract:
Evaporative coolers has a minimum potential to reach the wet-bulb temperature of intake air which is not enough to handle a large cooling load; therefore, it is not a feasible option to overcome cooling requirement of a building. The invention of Maisotsenko (M) cycle has led evaporative cooling technology to reach the sub-wet-bulb temperature of the intake air; therefore, it brings an innovation in evaporative cooling techniques. In this work, we developed a mathematical model of the Maisotsenko based air cooler by applying energy and mass balance laws on different air channels. The governing ordinary differential equations are discretized and simulated on MATLAB. The temperature and the humidity plots are shown in the simulation results. A parametric study is conducted by varying working air inlet conditions (temperature and humidity), inlet air velocity, geometric parameters and water temperature. The influence of these aforementioned parameters on the cooling effectiveness of the HMX is reported. Results have shown that the effectiveness of the M-Cycle is increased by increasing the ambient temperature and decreasing absolute humidity. An air velocity of 0.5 m/sec and a channel height of 6-8mm is recommended.Keywords: HMX, maisotsenko cycle, mathematical modeling, numerical simulation, parametric study
Procedia PDF Downloads 14722710 An Approaching Index to Evaluate a forward Collision Probability
Authors: Yuan-Lin Chen
Abstract:
This paper presents an approaching forward collision probability index (AFCPI) for alerting and assisting driver in keeping safety distance to avoid the forward collision accident in highway driving. The time to collision (TTC) and time headway (TH) are used to evaluate the TTC forward collision probability index (TFCPI) and the TH forward collision probability index (HFCPI), respectively. The Mamdani fuzzy inference algorithm is presented combining TFCPI and HFCPI to calculate the approaching collision probability index of the vehicle. The AFCPI is easier to understand for the driver who did not even have any professional knowledge in vehicle professional field. At the same time, the driver’s behavior is taken into account for suiting each driver. For the approaching index, the value 0 is indicating the 0% probability of forward collision, and the values 0.5 and 1 are indicating the 50% and 100% probabilities of forward collision, respectively. The AFCPI is useful and easy-to-understand for alerting driver to avoid the forward collision accidents when driving in highway.Keywords: approaching index, forward collision probability, time to collision, time headway
Procedia PDF Downloads 29322709 Solvent-Free Synthesis of Sorbents for Removal of Oil Spills
Authors: Mohammad H. Al-Sayah, Khalid Jarrah, Soleiman Hisaindee
Abstract:
Hydrophobic sorbents are usually used to remove oil spills from water surfaces. In this study, the hydrophilic fibers of natural cotton were chemically modified with a solvent-free process to modify them into hydrophobic fibers that can remove oil from water surfaces. The cellulose-based fibers of cotton were reacted with trichlorosilanes through gas-solid reaction in a dry chamber. Cotton fibers were exposed to vapors of four different chloroalkylsilanes at room temperature for 24 hours. The chlorosilanes were namely trichloromethylsilane, dichlorodimethyl silane, butyltrichlorosilane, and trichloro (3,3,3-trifluoropropyl) silane. The modified cotton fibers were characterized by IR-spectroscopy, thermogravimetric analysis (TGA) and Scanning Electron Microscopy/Energy Dispersive X-Ray Spectroscopy (SEM-EDS). The degree of substitution for each of the grafted alkyl groups was in the range between 0.1 and 0.3 per glucose residue. As a result of sialylation, the cotton fibers became hydrophobic; this was reflected by water contact-angle measurements of the fibers which increased from zero for the unmodified cotton to above 100 degrees for the modified fibers. In addition, the adsorption capacity of the fibers for oil from water surfaces increased by about five times that of the unmodified cotton reaching 18 g oil/g of cotton modified by dimethyl substituted silyl ethers. The optimal fiber-oil contact time and temperature for adsorption were 10 mins at 25°C, respectively. Therefore, the efficacy of cotton fibers to remove oil spills from contaminated water surfaces was significantly enhanced by using a simple solvent-free and environment-friendly process.Keywords: gas-solid silyl reaction, modified cellulose, solvent-free, oil pollution, cotton
Procedia PDF Downloads 16822708 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 7322707 Thermal Comfort and Outdoor Urban Spaces in the Hot Dry City of Damascus, Syria
Authors: Lujain Khraiba
Abstract:
Recently, there is a broad recognition that micro-climate conditions contribute to the quality of life in urban spaces outdoors, both from economical and social viewpoints. The consideration of urban micro-climate and outdoor thermal comfort in urban design and planning processes has become one of the important aspects in current related studies. However, these aspects are so far not considered in urban planning regulations in practice and these regulations are often poorly adapted to the local climate and culture. Therefore, there is a huge need to adapt the existing planning regulations to the local climate especially in cities that have extremely hot weather conditions. The overall aim of this study is to point out the complexity of the relationship between urban planning regulations, urban design, micro-climate and outdoor thermal comfort in the hot dry city of Damascus, Syria. The main aim is to investigate the temporal and spatial effects of micro-climate on urban surface temperatures and outdoor thermal comfort in different urban design patterns as a result of urban planning regulations during the extreme summer conditions. In addition, studying different alternatives of how to mitigate the surface temperature and thermal stress is also a part of the aim. The novelty of this study is to highlight the combined effect of urban surface materials and vegetation to develop the thermal environment. This study is based on micro-climate simulations using ENVI-met 3.1. The input data is calibrated according to a micro-climate fieldwork that has been conducted in different urban zones in Damascus. Different urban forms and geometries including the old and the modern parts of Damascus are thermally evaluated. The Physiological Equivalent Temperature (PET) index is used as an indicator for outdoor thermal comfort analysis. The study highlights the shortcomings of existing planning regulations in terms of solar protection especially at street levels. The results show that the surface temperatures in Old Damascus are lower than in the modern part. This is basically due to the difference in urban geometries that prevent the solar radiation in Old Damascus to reach the ground and heat up the surface whereas in modern Damascus, the streets are prescribed as wide spaces with high values of Sky View Factor (SVF is about 0.7). Moreover, the canyons in the old part are paved in cobblestones whereas the asphalt is the main material used in the streets of modern Damascus. Furthermore, Old Damascus is less stressful than the modern part (the difference in PET index is about 10 °C). The thermal situation is enhanced when different vegetation are considered (an improvement of 13 °C in the surface temperature is recorded in modern Damascus). The study recommends considering a detailed landscape code at street levels to be integrated in urban regulations of Damascus in order to achieve a better urban development in harmony with micro-climate and comfort. Such strategy will be very useful to decrease the urban warming in the city.Keywords: micro-climate, outdoor thermal comfort, urban planning regulations, urban spaces
Procedia PDF Downloads 48522706 Automatic Processing of Trauma-Related Visual Stimuli in Female Patients Suffering From Post-Traumatic Stress Disorder after Interpersonal Traumatization
Authors: Theresa Slump, Paula Neumeister, Katharina Feldker, Carina Y. Heitmann, Thomas Straube
Abstract:
A characteristic feature of post-traumatic stress disorder (PTSD) is the automatic processing of disorder-specific stimuli that expresses itself in intrusive symptoms such as intense physical and psychological reactions to trauma-associated stimuli. That automatic processing plays an essential role in the development and maintenance of symptoms. The aim of our study was, therefore, to investigate the behavioral and neural correlates of automatic processing of trauma-related stimuli in PTSD. Although interpersonal traumatization is a form of traumatization that often occurs, it has not yet been sufficiently studied. That is why, in our study, we focused on patients suffering from interpersonal traumatization. While previous imaging studies on PTSD mainly used faces, words, or generally negative visual stimuli, our study presented complex trauma-related and neutral visual scenes. We examined 19 female subjects suffering from PTSD and examined 19 healthy women as a control group. All subjects did a geometric comparison task while lying in a functional-magnetic-resonance-imaging (fMRI) scanner. Trauma-related scenes and neutral visual scenes that were not relevant to the task were presented while the subjects were doing the task. Regarding the behavioral level, there were not any significant differences between the task performance of the two groups. Regarding the neural level, the PTSD patients showed significant hyperactivation of the hippocampus for task-irrelevant trauma-related stimuli versus neutral stimuli when compared with healthy control subjects. Connectivity analyses revealed altered connectivity between the hippocampus and other anxiety-related areas in PTSD patients, too. Overall, those findings suggest that fear-related areas are involved in PTSD patients' processing of trauma-related stimuli even if the stimuli that were used in the study were task-irrelevant.Keywords: post-traumatic stress disorder, automatic processing, hippocampus, functional magnetic resonance imaging
Procedia PDF Downloads 19922705 Sustainable Water Resource Management and Challenges in Indian Agriculture
Authors: Rajendra Kumar Isaac, Monisha Isaac
Abstract:
India, having a vast cultivable area and regional climatic variability, encounters water Resource Management Problems at various levels. The agricultural production of India needs to be increased to meet out projected population growth. Sustainable water resource is the only option to ensure food security, especially in northern Indian states, where the ground and surface water resources are fast depleting. Various tools and technologies available for management of scarce water resources have been discussed. It was concluded that multiple use of water, adopting latest water management options, identification of climate adoptable cropping and farming systems, can enhance water productivity and would encounter the fast growing water management and water shortage problems in Indian agriculture.Keywords: water resource management, sustainable, water management technologies, water productivity, agriculture
Procedia PDF Downloads 39922704 Crops Cold Stress Alleviation by Silicon: Application on Turfgrass
Authors: Taoufik Bettaieb, Sihem Soufi
Abstract:
As a bioactive metalloid, silicon (Si) is an essential element for plant growth and development. It also plays a crucial role in enhancing plants’ resilience to different abiotic and biotic stresses. The morpho-physiological, biochemical, and molecular background of Si-mediated stress tolerance in plants were unraveled. Cold stress is a severe abiotic stress response to the decrease of plant growth and yield by affecting various physiological activities in plants. Several approaches have been used to alleviate the adverse effects generated from cold stress exposure, but the cost-effective, environmentally friendly, and defensible approach is the supply of silicon. Silicon has the ability to neutralize the harmful impacts of cold stress. Therefore, based on these hypotheses, this study was designed in order to investigate the morphological and physiological background of silicon effects applied at different concentrations on cold stress mitigation during early growth of a turfgrass, namely Paspalum vaginatum Sw. Results show that silicon applied at different concentrations improved the morphological development of Paspalum subjected to cold stress. It is also effective on the photosynthetic apparatus by maintaining stability the photochemical efficiency. As the primary component of cellular membranes, lipids play a critical function in maintaining the structural integrity of plant cells. Silicon application decreased membrane lipid peroxidation and kept on membrane frontline barrier relatively stable under cold stress.Keywords: crops, cold stress, silicon, abiotic stress
Procedia PDF Downloads 12322703 Disaggregation of Coarser Resolution Radiometer Derived Soil Moisture to Finer Scales
Authors: Gurjeet Singh, Rabindra K. Panda
Abstract:
Soil moisture is a key hydrologic state variable and is intrinsically linked to the Earth's water, climate and carbon cycles. On ecological point of view, the soil moisture is a fundamental natural resource providing the transpirable water for plants. Soil moisture varies both temporally and spatially due to spatiotemporal variation in rainfall, vegetation cover, soil properties and topography. Satellite derived soil moisture provides spatio-temporal extensive data. However, the spatial resolution of a typical satellite (L-band radiometry) is of the order of tens of kilometers, which is not good enough for developing efficient agricultural water management schemes at the field scale. In the present study, the soil moisture from radiometer data has been disaggregated using blending approach to achieve higher resolution soil moisture data. The radiometer estimates of soil moisture at a 40 km resolution have been disaggregated to 10 km, 5 km and 1 km resolutions. The disaggregated soil moisture was compared with the observed data, consisting of continuous sensor based soil moisture profile measurements, at three monitoring sites and extensive spatial near-surface soil moisture measurements, concurrent with satellite monitoring in the 500 km2 study watershed in the Eastern India. The estimated soil moisture status at different spatial scales can help in developing efficient agricultural water management schemes to increase the crop production and water use efficiency.Keywords: disaggregation, eastern India, radiometers, soil moisture, water use efficiency
Procedia PDF Downloads 27622702 Omni-Modeler: Dynamic Learning for Pedestrian Redetection
Authors: Michael Karnes, Alper Yilmaz
Abstract:
This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition
Procedia PDF Downloads 7622701 A Lifetime-Enhancing Monitoring Node Distribution Using Minimum Spanning Tree in Mobile Ad Hoc Networks
Authors: Sungchul Ha, Hyunwoo Kim
Abstract:
In mobile ad hoc networks, all nodes in a network only have limited resources and calculation ability. Therefore communication topology which have long lifetime is good for all nodes in mobile ad hoc networks. There are a variety of researches on security problems in wireless ad hoc networks. The existing many researches try to make efficient security schemes to reduce network power consumption and enhance network lifetime. Because a new node can join the network at any time, the wireless ad hoc networks are exposed to various threats and can be destroyed by attacks. Resource consumption is absolutely necessary to secure networks, but more resource consumption can be a critical problem to network lifetime. This paper focuses on efficient monitoring node distribution to enhance network lifetime in wireless ad hoc networks. Since the wireless ad hoc networks cannot use centralized infrastructure and security systems of wired networks, a new special IDS scheme is necessary. The scheme should not only cover all nodes in a network but also enhance the network lifetime. In this paper, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method. The simulation results show that the proposed algorithm has superior performance in comparison with existing algorithms.Keywords: MANETs, IDS, power control, minimum spanning tree
Procedia PDF Downloads 37222700 Response Development of larvae Portunus pelagicus to Artificial Feeding Predigest
Authors: Siti Aslamyah, Yushinta Fujaya, Okto Rimaldi
Abstract:
One of the problems faced in the crab hatchery operations is the reliance on the use of natural feed. This study aims to analyze the response of larval development and determine the initial stages crab larvae begin to fully able to accept artificial feeding predigest with the help of probiotic Bacillus sp. The experiment was conducted in June 2014 through July 2014 at the location of the scale backyard hatcheries, Bojo village Mallusettasi sub-district, district Barru. This study was conducted in two stages larval rearing. The first stage is designed in a completely randomized design with 5 treatments and each with 3 repetitions, ie, without the use of artificial feeding; predigest feed given from zoea 1 - megalopa; predigest feed given since zoea 2 - megalopa; predigest feed given from zoea 3 - megalopa; and feed predigest given since zoea 4 - megalopa. The second stage of the two treatments, i.e. comparing artificial feeding without and with predigest. The results showed that the artificial feeding predigest able to replace the use of natural feed started zoea 3 generated based on the survival rate. Artificial feeding predigest provide a higher survival rate (16%) compared to artificial diets without predigest only 10.8%. However, feed predigest not give a different effect on the rate of development of stadia. Cell activity in larvae that received artificial feed predigest higher with RNA-DNA ratio of 8.88 compared with no predigest only 5:36. This research is very valuable information for crab hatchery hatchery scale households have limitations in preparing natural food.Keywords: artificial feeding, development of stadia, larvae Portunus pelagicus, predigest
Procedia PDF Downloads 53322699 CFD Simulation of Forced Convection Nanofluid Heat Transfer in the Automotive Radiator
Authors: Sina Movafagh, Younes Bakhshan
Abstract:
Heat transfer of coolant flow through the automobile radiators is of great importance for the optimization of fuel consumption. In this study, the heat transfer performance of the automobile radiator is evaluated numerically. Different concentrations of nanofluids have been investigated by the addition of Al2O3 nano-particles into the water. Also, the effect of the inlet temperature of nanofluid on the performance of radiator is studied. Results show that with an increase of inlet temperature the outlet temperature and pressure drop along the radiator increase. Also, it has been observed that increase of nono-particle concentration will result in an increase in heat transfer rate within the radiator.Keywords: heat transfer, nanofluid, car radiator, CFD simulation
Procedia PDF Downloads 30522698 Design, Construction, Technical and Economic Evaluation of a Solar Water Desalination Device with Two Heat Exchangers and a Photovoltaic System
Authors: Mehdi Bakhtiarzadeh, Reza Efatnejad, Kambiz Rezapour Rezapour
Abstract:
Due to the limited resources of fossil fuels and their harmful effects on the environment and human health, research on renewable energy applications in industrial and scientific communities has become particularly important. Only one percent of freshwater resources are available for use in the domestic, agricultural, and industrial sectors. On the other hand, the rapid growth of industry and the increase of population in most countries of the world, including Iran, have led to an increase in demand for freshwater. Among renewable energies, there is the potential of solar energy in Iran. As a result, solar distillation systems can be used as a solution to supply fresh water in remote rural areas. Therefore, in the present study, a solar water desalination device was designed and manufactured using two heat exchangers and a photovoltaic system. Its evaluation was done during September and October of 2020. During the evaluation of the device, environmental variables such as total solar radiation, ambient temperature and cooling tower temperature were recorded at intervals of one hour from 9 am to 5 pm. The effect of these variables on solar concentrator performance, heat exchanger, and daily freshwater production was evaluated. The results showed that using two heat exchangers and a photovoltaic system has led to the daily production of 5 liters of fresh water and 46% economic efficiency.Keywords: solar water desalination, heat exchanger, photovoltaic system, technical and economic evaluation
Procedia PDF Downloads 17022697 A High-Resolution Refractive Index Sensor Based on a Magnetic Photonic Crystal
Authors: Ti-An Tsai, Chun-Chih Wang, Hung-Wen Wang, I-Ling Chang, Lien-Wen Chen
Abstract:
In this study, we demonstrate a high-resolution refractive index sensor based on a magnetic photonic crystal (MPC) composed of a triangular lattice array of air holes embedded in Si matrix. A microcavity is created by changing the radius of an air hole in the middle of the photonic crystal. The cavity filled with gyrotropic materials can serve as a refractive index sensor. The shift of the resonant frequency of the sensor is obtained numerically using finite difference time domain method under different ambient conditions having refractive index from n = 1.0 to n = 1.1. The numerical results show that a tiny change in refractive index of Δn = 0.0001 is distinguishable. In addition, the spectral response of the MPC sensor is studied while an external magnetic field is present. The results show that the MPC sensor exhibits a dramatic improvement in resolution.Keywords: magnetic photonic crystal, refractive index sensor, sensitivity, high-resolution
Procedia PDF Downloads 59122696 Factors Contributing to Work Stress Among Nurses in Hadiya Zone’s Public Hospitals, Central Ethiopia, in 2023
Authors: Asnakech Zekiwos
Abstract:
Background: Stress in nursing refers to the reactions nurses experience when faced with work demands that exceed their knowledge, skills, or ability to cope. Nursing, as a profession, is particularly susceptible to work-related stress. Methods: A cross-sectional study was conducted among 405 randomly selected nurses working in Hadiya Zone Public Hospitals from March 1 to 30, 2023. Data were collected using a pre-tested self-administered questionnaire. The data were entered using Epi-data version 3.1 and analyzed using SPSS version 20.0. Multivariable logistic regression analysis was performed to identify factors associated with the level of work stress. Variables with a p-value <0.05 were considered statistically significant. Results: In this study, 56% (95% CI 50.9-61.2) of the participants reported being stressed in their work. Several factors were found to be associated with work stress, including being female (AOR=1.94, 95% CI 1.19-3.16), rotating shifts (AOR=2.06, 95% CI 1.31-3.25), working in the intensive care unit (AOR=3.42, 95% CI 1.20-9.73), and having post-basic training (AOR=0.55, 95% CI 0.34-0.92). Conclusion: The study revealed a high level of work stress among nurses in the study area. The zonal health unit takes measures to address work stress by providing job orientation during the hiring process, rotation, and on-the-job training to help nurses cope with and manage stressful events. Stress in public hospitals and among nurses is an important issue that needs attention.Keywords: stress, nurses, public hospitals, expanded stress scale
Procedia PDF Downloads 9522695 Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect
Authors: Mantai Chen, Johnny Ching Ming Ho
Abstract:
The stress-strain relationship of concrete under flexure is one of the essential parameters in assessing ultimate flexural strength capacity of RC beams. Currently, the concrete stress-strain curve in flexure is obtained by incorporating a constant scale-down factor of 0.85 in the uniaxial stress-strain curve. However, it was revealed that strain gradient would improve the maximum concrete stress under flexure and concrete stress-strain curve is strain gradient dependent. Based on the strain-gradient-dependent concrete stress-strain curve, the investigation of the combined effects of strain gradient and concrete strength on flexural strength of RC beams was extended to high strength concrete up to 100 MPa by theoretical analysis. As an extension and application of the authors’ previous study, a new flexural strength design method incorporating the combined effects of strain gradient and concrete strength is developed. A set of equivalent rectangular concrete stress block parameters is proposed and applied to produce a series of design charts showing that the flexural strength of RC beams are improved with strain gradient effect considered.Keywords: beams, equivalent concrete stress block, flexural strength, strain gradient
Procedia PDF Downloads 44722694 The Genotoxic Effect of Coal Fly Ash of Thermal Power Plant on Raphanus sativus L. (Radish)
Authors: Patel Kailash P, Patel Parimal M
Abstract:
The effect of coal fly ash treatment on the chromosomes of Raphanus sativus L. was investigated. The seeds of Raphanus sativusL. were placed in petri dishes in three replicates and allowed to germinate for five days in different concentration of coal fly ash solution. The root was treated with the diluted, semidiluted, and concentrated solution of fly ash while the control group had distilled water.The total aberration were examined. The mitotic index was calculated and the results were statically evaluated by the analysis of variance 5% significant level. The mitotic index decreased as the concentration increased. The highest mitotic index value was diluted fly ash solution while the least was concentrated fly ash treatment. The results show the most frequent chromosomal abnormalities observed included: chromatid bridge, c-mitosis, and stickiness. Concentrated fly ash solution is much more genotoxic than semidiluted fly ash solution, as it induced more aberrations having percentage abnormalities for the highest concentration tested. Increased fly ash pollution can lead to some irreversible cytogenetic effect in plants. The study is an attempt to corroborate the toxic effect of coal fly ash of thermal power plant on the chromosome of plants. These results will be useful in environmental monitoring of the cytotoxicity of coal fly ash.Keywords: coal fly-ash, genotoxic, cytogenetic, mitotic index, Raphanus sativus L.
Procedia PDF Downloads 31122693 Assessing the Nutritional Characteristics and Habitat Modeling of the Comorian’s Yam (Dioscorea comorensis) in a Fragmented Landscape
Authors: Mounir Soule, Hindatou Saidou, Razafimahefa, Mohamed Thani Ibouroi
Abstract:
High levels of habitat fragmentation and loss are the main drivers of plant species extinction. They reduce the habitat quality, which is a determining factor for the reproduction of plant species, and generate strong selective pressures for habitat selection, with impacts on the reproduction and survival of individuals. The Comorian’s yam (Dioscorea comorensis) is one of the most threatened plant species of the Comoros archipelago. The species faces one of the highest rates of habitat loss worldwide (9.3 % per year) and is classified as Endangered in the IUCN red list. Despite the nutritional potential of this tuber, the Comorian’s yam cultivation remains neglected by local populations due probably to lack of knowledge on its nutritional importance and the factors driving its spatial distribution and development. In this study, we assessed the nutritional characteristics of Dioscorea comorensis and the drivers of spatial distribution and abundance to propose conservation measures and improve crop yields. To determine the nutritional characteristics, the Kjeldahl method, the Soxhlet method, and Atwater's specific calorific coefficients methods were applied for analyzing proteins, lipids, and caloric energy respectively. In addition, atomic absorption spectrometry was used to measure mineral particles. By combining species occurrences with ecological (habitat types), climatic (temperature, rainfall, etc.), and physicochemical (soil types and quality) variables, we assessed habitat suitability and spatial distribution of the species and the factors explaining the origin, persistence, distribution and competitive capacity of a species using a Species Distribution Modeling (SDM) method. The results showed that the species contains 83.37% carbohydrates, 6.37% protein, and 0.45% lipids. In 100 grams, the quantities of Calcium, Sodium, Zinc, Iron, Copper, Potassium, Phosphorus, Magnesium, and Manganese are respectively 422.70, 599.41, 223.11, 252.32, 332.20, 780.41, 444.17, 287.71 and 220.73 mg. Its PRAL index is negative (- 9.80 mEq/100 g), and its Ca/P (0.95) and Na/K (0.77) ratios are less than 1. This species provides an energy value of 357.46 Kcal per 100 g, thanks to its carbohydrates and minerals and is distinguished from others by its high protein content, offering benefits for cardiovascular health. According to our SDM, the species has a very limited distribution, restricted to forests with higher biomass, humidity, and clay. Our findings highlight how distribution patterns are related to ecological and environmental factors. They also emphasize how the Comoros yam is beneficial in terms of nutritional quality. Our results represent a basic knowledge that will help scientists and decision-makers to develop conservation strategies and to improve crop yields.Keywords: Dioscorea comorensis, nutritional characteristics, species distribution modeling, conservation strategies, crop yields improvement
Procedia PDF Downloads 3122692 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh
Abstract:
Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing
Procedia PDF Downloads 34122691 Effect of 8-OH-DPAT on the Behavioral Indicators of Stress and on the Number of Astrocytes after Exposure to Chronic Stress
Authors: Ivette Gonzalez-Rivera, Diana B. Paz-Trejo, Oscar Galicia-Castillo, David N. Velazquez-Martinez, Hugo Sanchez-Castillo
Abstract:
Prolonged exposure to stress can cause disorders related with dysfunction in the prefrontal cortex such as generalized anxiety and depression. These disorders involve alterations in neurotransmitter systems; the serotonergic system—a target of the drugs that are commonly used as a treatment to these disorders—is one of them. Recent studies suggest that 5-HT1A receptors play a pivotal role in the serotonergic system regulation and in stress responses. In the same way, there is increasing evidence that astrocytes are involved in the pathophysiology of stress. The aim of this study was to examine the effects of 8-OH-DPAT, a selective agonist of 5-HT1A receptors, in the behavioral signs of anxiety and anhedonia as well as in the number of astrocytes in the medial prefrontal cortex (mPFC) after exposure to chronic stress. They used 50 male Wistar rats of 250-350 grams housed in standard laboratory conditions and treated in accordance with the ethical standards of use and care of laboratory animals. A protocol of chronic unpredictable stress was used for 10 consecutive days during which the presentation of stressors such as motion restriction, water deprivation, wet bed, among others, were used. 40 rats were subjected to the stress protocol and then were divided into 4 groups of 10 rats each, which were administered 8-OH-DPAT (Tocris, USA) intraperitoneally with saline as vehicle in doses 0.0, 0.3, 1.0 and 2.0 mg/kg respectively. Another 10 rats were not subjected to the stress protocol or the drug. Subsequently, all the rats were measured in an open field test, a forced swimming test, sucrose consume, and a cero maze test. At the end of this procedure, the animals were sacrificed, the brain was removed and the tissue of the mPFC (Bregma: 4.20, 3.70, 2.70, 2.20) was processed in immunofluorescence staining for astrocytes (Anti-GFAP antibody - astrocyte maker, ABCAM). Statistically significant differences were found in the behavioral tests of all groups, showing that the stress group with saline administration had more indicators of anxiety and anhedonia than the control group and the groups with administration of 8-OH-DPAT. Also, a dose dependent effect of 8-OH-DPAT was found on the number of astrocytes in the mPFC. The results show that 8-OH-DPAT can modulate the effect of stress in both behavioral and anatomical level. Also they indicate that 5-HT1A receptors and astrocytes play an important role in the stress response and may modulate the therapeutic effect of serotonergic drugs, so they should be explored as a fundamental part in the treatment of symptoms of stress and in the understanding of the mechanisms of stress responses.Keywords: anxiety, prefrontal cortex, serotonergic system, stress
Procedia PDF Downloads 32622690 PhotoRoom App
Authors: Nouf Nasser, Nada Alotaibi, Jazzal Kandiel
Abstract:
This research study is about the use of artificial intelligence in PhotoRoom. When an individual selects a photo, PhotoRoom automagically removes or separates the background from other parts of the photo through the use of artificial intelligence. This will allow an individual to select their desired background and edit it as they wish. The methodology used was an observation, where various reviews and parts of the app were observed. The review section's findings showed that many people actually like the app, and some even rated it five stars. The conclusion was that PhotoRoom is one of the best photo editing apps due to its speed and accuracy in removing backgrounds.Keywords: removing background, app, artificial intelligence, machine learning
Procedia PDF Downloads 199