Search results for: Jacob Green
224 Sustainability from Ecocity to Ecocampus: An Exploratory Study on Spanish Universities' Water Management
Authors: Leyla A. Sandoval Hamón, Fernando Casani
Abstract:
Sustainability has been integrated into the cities’ agenda due to the impact that they generate. The dimensions of greater proliferation of sustainability, which are taken as a reference, are economic, social and environmental. Thus, the decisions of management of the sustainable cities search a balance between these dimensions in order to provide environment-friendly alternatives. In this context, urban models (where water consumption, energy consumption, waste production, among others) that have emerged in harmony with the environment, are known as Ecocity. A similar model, but on a smaller scale, is ‘Ecocampus’ that is developed in universities (considered ‘small cities’ due to its complex structure). So, sustainable practices are being implemented in the management of university campus activities, following different relevant lines of work. The universities have a strategic role in society, and their activities can strengthen policies, strategies, and measures of sustainability, both internal and external to the organization. Because of their mission in knowledge creation and transfer, these institutions can promote and disseminate more advanced activities in sustainability. This model replica also implies challenges in the sustainable management of water, energy, waste, transportation, among others, inside the campus. The challenge that this paper focuses on is the water management, taking into account that the universities consume big amounts of this resource. The purpose of this paper is to analyze the sustainability experience, with emphasis on water management, of two different campuses belonging to two different Spanish universities - one urban campus in a historic city and the other a suburban campus in the outskirts of a large city. Both universities are in the top hundred of international rankings of sustainable universities. The methodology adopts a qualitative method based on the technique of in-depth interviews and focus-group discussions with administrative and academic staff of the ‘Ecocampus’ offices, the organizational units for sustainability management, from the two Spanish universities. The hypotheses indicate that sustainable policies in terms of water management are best in campuses without big green spaces and where the buildings are built or rebuilt with modern style. The sustainability efforts of the university are independent of the kind of (urban – suburban) campus but an important aspect to improve is the degree of awareness of the university community about water scarcity. In general, the paper suggests that higher institutions adapt their sustainability policies depending on the location and features of the campus and their engagement with the water conservation. Many Spanish universities have proposed policies, good practices, and measures of sustainability. In fact, some offices or centers of Ecocampus have been founded. The originality of this study is to learn from the different experiences of sustainability policies of universities.Keywords: ecocampus, ecocity, sustainability, water management
Procedia PDF Downloads 223223 Freshwater Cyanobacterial Bioactive Insights: Planktothricoides raciorskii Compounds vs. Green Synthesized Silver Nanoparticles: Characterization, in vitro Cytotoxicity, and Antibacterial Exploration
Authors: Sujatha Edla
Abstract:
Introduction: New compounds and possible uses for the bioactive substances produced by freshwater cyanobacteria are constantly being discovered through research. Certain molecules are hazardous to the environment and human health, but others have potential applications in industry, biotechnology, and pharmaceuticals. These discoveries advance our knowledge of the varied functions these microbes perform in different ecosystems. Cyanobacterial silver nanoparticles (AgNPs) have special qualities and possible therapeutic advantages, which make them very promising for a range of medicinal uses. Aim: In our study; the attention was focused on the analysis and characterization of bioactive compounds extracted from freshwater cyanobacteria Planktothricoides raciorskii and its comparative study on Cyanobacteria-mediated silver nanoparticles synthesized by cell-free extract of Planktothricoides raciorskii. Material and Methods: A variety of bioactive secondary metabolites have been extracted, purified, and identified from cyanobacterial species using column chromatography, FTIR, and GC-MS/MS chromatography techniques and evaluated for antibacterial and cytotoxic studies, where the Cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis and were further tested for antibacterial and cytotoxic efficiency. Results: The synthesis of CSNPs was confirmed through visible color change and shift of peaks at 430–445 nm by UV-Vis spectroscopy. The size of CSNPs was between 22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a new peak at the range of 3,400–3,460 cm−1 compared to the control, confirming the reduction of silver nitrate. The antibacterial activity of both crude bioactive compound extract and CSNPs showed remarkable activity with Zone of inhibition against E. coli with 9.5mm and 10.2mm, 13mm and 14.5mm against S. paratyphi, 9.2mm and 9.8mm zone of inhibition against K. pneumonia by both crude extract and CSNPs, respectively. The cytotoxicity as evaluated by extracts of Planktothricoides raciorskii against MCF7-Human Breast Adenocarcinoma cell line and HepG2- Human Hepatocellular Carcinoma cell line employing MTT assay gave IC50 value of 47.18ug/ml, 110.81ug/ml against MCF7cell line and HepG2 cell line, respectively. The cytotoxic evaluation of Planktothricoides raciorskii CSNPs against the MCF7cell line was 43.37 ug/ml and 20.88 ug/ml against the HepG2 cell line. Our ongoing research in this field aims to uncover the full therapeutic potential of cyanobacterial silver nanoparticles and address any associated challenges.Keywords: cyanobacteria, silvernanoparticles, pharmaceuticals, bioactive compounds, cytotoxic
Procedia PDF Downloads 63222 Field Synergy Analysis of Combustion Characteristics in the Afterburner of Solid Oxide Fuel Cell System
Authors: Shing-Cheng Chang, Cheng-Hao Yang, Wen-Sheng Chang, Chih-Chia Lin, Chun-Han Li
Abstract:
The solid oxide fuel cell (SOFC) is a promising green technology which can achieve a high electrical efficiency. Due to the high operating temperature of SOFC stack, the off-gases at high temperature from anode and cathode outlets are introduced into an afterburner to convert the chemical energy into thermal energy by combustion. The heat is recovered to preheat the fresh air and fuel gases before they pass through the stack during the SOFC power generation system operation. For an afterburner of the SOFC system, the temperature control with a good thermal uniformity is important. A burner with a well-designed geometry usually can achieve a satisfactory performance. To design an afterburner for an SOFC system, the computational fluid dynamics (CFD) simulation is adoptable. In this paper, the hydrogen combustion characteristics in an afterburner with simple geometry are studied by using CFD. The burner is constructed by a cylinder chamber with the configuration of a fuel gas inlet, an air inlet, and an exhaust outlet. The flow field and temperature distributions inside the afterburner under different fuel and air flow rates are analyzed. To improve the temperature uniformity of the afterburner during the SOFC system operation, the flow paths of anode/cathode off-gases are varied by changing the positions of fuels and air inlet channel to improve the heat and flow field synergy in the burner furnace. Because the air flow rate is much larger than the fuel gas, the flow structure and heat transfer in the afterburner is dominated by the air flow path. The present work studied the effects of fluid flow structures on the combustion characteristics of an SOFC afterburner by three simulation models with a cylindrical combustion chamber and a tapered outlet. All walls in the afterburner are assumed to be no-slip and adiabatic. In each case, two set of parameters are simulated to study the transport phenomena of hydrogen combustion. The equivalence ratios are in the range of 0.08 to 0.1. Finally, the pattern factor for the simulation cases is calculated to investigate the effect of gas inlet locations on the temperature uniformity of the SOFC afterburner. The results show that the temperature uniformity of the exhaust gas can be improved by simply adjusting the position of the gas inlet. The field synergy analysis indicates the design of the fluid flow paths should be in the way that can significantly contribute to the heat transfer, i.e. the field synergy angle should be as small as possible. In the study cases, the averaged synergy angle of the burner is about 85̊, 84̊, and 81̊ respectively.Keywords: afterburner, combustion, field synergy, solid oxide fuel cell
Procedia PDF Downloads 137221 Toxicity and Biodegradability of Veterinary Antibiotic Tiamulin
Authors: Gabriela Kalcikova, Igor Bosevski, Ula Rozman, Andreja Zgajnar Gotvajn
Abstract:
Antibiotics are extensively used in human medicine and also in animal husbandry to prevent or control infections. Recently, a lot of attention has been put on veterinary antibiotics, because their global consumption is increasing and it is expected to be 106.600 tons in 2030. Most of veterinary antibiotics are introduced into the environment via animal manure, which is used as fertilizer. One of such veterinary antibiotics is tiamulin. It is used the form of fumarate for treatment of pig and poultry. It is used against prophylaxis of dysentery, pneumonia and mycroplasmal infections, but its environmental impact is practically unknown. Tiamulin has been found very persistent in animal manure and thus it is expected that can be, during rainfalls, transported into the aquatic environment and affect various organisms. For assessment of its environmental impact, it is necessary to evaluate its biodegradability and toxicity to various organisms from different levels of a food chain. Therefore, the aim of our study was to evaluate ready biodegradability and toxicity of tiamulin fumarate to various organisms. Bioassay used included luminescent bacterium Vibrio fischeri heterotrophic and nitrifying microorganisms of activated sludge, water flea Daphnia magna and duckweed Lemna minor. For each species, EC₅₀ values were calculated. Biodegradability test was used for determination of ready biodegradability and it provides information about biodegradability of tiamulin under the most common environmental conditions. Results of our study showed that tiamulin differently affects selected organisms. The most sensitive organisms were water fleas with 48hEC₅₀ = 14.2 ± 4.8 mg/L and duckweed with 168hEC₅₀ = 22.6 ± 0.8 mg/L. Higher concentrations of tiamulin (from 10 mg/L) significantly affected photosynthetic pigments content in duckweed and concentrations above 80 mg/L cause visible chlorosis. It is in agreement with previous studies showing significant effect of tiamulin on green algae and cyanobacteria. Tiamuline has a low effect on microorganisms. The lower toxicity was observed for heterotrophic microorganisms (30minEC₅₀ = 1656 ± 296 mg/L), than Vibrio fisheri (30minEC₅₀ = 492 ± 21) and the most sensitive organisms were nitrifying microorganisms (30minEC₅₀ = 183 ± 127 mg/L). The reason is most probably the mode of action of tiamulin being effective to gram-positive bacteria while gram-negative (e.g., Vibrio fisheri) are more tolerant to tiamulin. Biodegradation of tiamulin was very slow with a long lag-phase being 20 days. The maximal degradation reached 40 ± 2 % in 43 days of the test and tiamulin as other antibiotics (e.g. ciprofloxacin) are not easily biodegradable. Tiamulin is widely used antibiotic in veterinary medicine and thus present in the environment. According to our results, tiamulin can have negative effect on water fleas and duckweeds, but the concentrations are several magnitudes higher than that found in any environmental compartment. Tiamulin is low toxic to tested microorganisms, but it is very low biodegradable and thus possibly persistent in the environment.Keywords: antibiotics, biodegradability, tiamulin, toxicity
Procedia PDF Downloads 187220 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria
Authors: Amina Naidja, Zedira Khammar, Ines Soltani
Abstract:
This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception
Procedia PDF Downloads 43219 Renewable Natural Gas Production from Biomass and Applications in Industry
Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis
Abstract:
For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel
Procedia PDF Downloads 122218 A Study on Relationship between Firm Managers Environmental Attitudes and Environment-Friendly Practices for Textile Firms in India
Authors: Anupriya Sharma, Sapna Narula
Abstract:
Over the past decade, sustainability has gone mainstream as more people are worried about environment-related issues than ever before. These issues are of even more concern for industries which leave a significant impact on the environment. Following these ecological issues, corporates are beginning to comprehend the impact on their business. Many such initiatives have been made to address these emerging issues in the consumer-driven textile industry. Demand from customers, local communities, government regulations, etc. are considered some of the major factors affecting environmental decision-making. Research also shows that motivations to go green are inevitably determined by the way top managers perceive environmental issues as managers personal values and ethical commitment act as a motivating factor towards corporate social responsibility. Little empirical research has been conducted to examine the relationship between top managers’ personal environmental attitudes and corporate environmental behaviors for the textile industry in the Indian context. The primary purpose of this study is to determine the current state of environmental management in textile industry and whether the attitude of textile firms’ top managers is significantly related to firm’s response to environmental issues and their perceived benefits of environmental management. To achieve the aforesaid objectives of the study, authors used structured questionnaire based on literature review. The questionnaire consisted of six sections with a total length of eight pages. The first section was based on background information on the position of the respondents in the organization, annual turnover, year of firm’s establishment and so on. The other five sections of the questionnaire were based upon (drivers, attitude, and awareness, sustainable business practices, barriers to implementation and benefits achieved). To test the questionnaire, a pretest was conducted with the professionals working in corporate sustainability and had knowledge about the textile industry and was then mailed to various stakeholders involved in textile production thereby covering firms top manufacturing officers, EHS managers, textile engineers, HR personnel and R&D managers. The results of the study showed that most of the textile firms were implementing some type of environmental management practice, even though the magnitude of firm’s involvement in environmental management practices varied. The results also show that textile firms with a higher level of involvement in environmental management were more involved in the process driven technical environmental practices. It also identified that firm’s top managers environmental attitudes were correlated with perceived advantages of environmental management as textile firm’s top managers are the ones who possess managerial discretion on formulating and deciding business policies such as environmental initiatives.Keywords: attitude and awareness, Environmental management, sustainability, textile industry
Procedia PDF Downloads 236217 The Growth Role of Natural Gas Consumption for Developing Countries
Authors: Tae Young Jin, Jin Soo Kim
Abstract:
Carbon emissions have emerged as global concerns. Intergovernmental Panel of Climate Change (IPCC) have published reports about Green House Gases (GHGs) emissions regularly. United Nations Framework Convention on Climate Change (UNFCCC) have held a conference yearly since 1995. Especially, COP21 held at December 2015 made the Paris agreement which have strong binding force differently from former COP. The Paris agreement was ratified as of 4 November 2016, they finally have legal binding. Participating countries set up their own Intended Nationally Determined Contributions (INDC), and will try to achieve this. Thus, carbon emissions must be reduced. The energy sector is one of most responsible for carbon emissions and fossil fuels particularly are. Thus, this paper attempted to examine the relationship between natural gas consumption and economic growth. To achieve this, we adopted the Cobb-Douglas production function that consists of natural gas consumption, economic growth, capital, and labor using dependent panel analysis. Data were preprocessed with Principal Component Analysis (PCA) to remove cross-sectional dependency which can disturb the panel results. After confirming the existence of time-trended component of each variable, we moved to cointegration test considering cross-sectional dependency and structural breaks to describe more realistic behavior of volatile international indicators. The cointegration test result indicates that there is long-run equilibrium relationship between selected variables. Long-run cointegrating vector and Granger causality test results show that while natural gas consumption can contribute economic growth in the short-run, adversely affect in the long-run. From these results, we made following policy implications. Since natural gas has positive economic effect in only short-run, the policy makers in developing countries must consider the gradual switching of major energy source, from natural gas to sustainable energy source. Second, the technology transfer and financing business suggested by COP must be accelerated. Acknowledgement—This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20152510101880) and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-205S1A3A2046684).Keywords: developing countries, economic growth, natural gas consumption, panel data analysis
Procedia PDF Downloads 235216 Study of the Impact of Synthesis Method and Chemical Composition on Photocatalytic Properties of Cobalt Ferrite Catalysts
Authors: Katerina Zaharieva, Vicente Rives, Martin Tsvetkov, Raquel Trujillano, Boris Kunev, Ivan Mitov, Maria Milanova, Zara Cherkezova-Zheleva
Abstract:
The nanostructured cobalt ferrite-type materials Sample A - Co0.25Fe2.75O4, Sample B - Co0.5Fe2.5O4, and Sample C - CoFe2O4 were prepared by co-precipitation in our previous investigations. The co-precipitated Sample B and Sample C were mechanochemically activated in order to produce Sample D - Co0.5Fe2.5O4 and Sample E- CoFe2O4. The PXRD, Moessbauer and FTIR spectroscopies, specific surface area determination by the BET method, thermal analysis, element chemical analysis and temperature-programmed reduction were used to investigate the prepared nano-sized samples. The changes of the Malachite green dye concentration during reaction of the photocatalytic decolorization using nanostructured cobalt ferrite-type catalysts with different chemical composition are included. The photocatalytic results show that the increase in the degree of incorporation of cobalt ions in the magnetite host structure for co-precipitated cobalt ferrite-type samples results in an increase of the photocatalytic activity: Sample A (4 х10-3 min-1) < Sample B (5 х10-3 min-1) < Sample C (7 х10-3 min-1). Mechanochemically activated photocatalysts showed a higher activity than the co-precipitated ferrite materials: Sample D (16 х10-3 min-1) > Sample E (14 х10-3 min-1) > Sample C (7 х10-3 min-1) > Sample B (5 х10-3 min-1) > Sample A (4 х10-3 min-1). On decreasing the degree of substitution of iron ions by cobalt ones a higher sorption ability of the dye after the dark period for the co-precipitated cobalt ferrite materials was observed: Sample C (72 %) < Sample B (78 %) < Sample A (80 %). Mechanochemically treated ferrite catalysts and co-precipitated Sample B possess similar sorption capacities, Sample D (78 %) ~ Sample E (78 %) ~ Sample B (78 %). The prepared nano-sized cobalt ferrite-type materials demonstrate good photocatalytic and sorption properties. Mechanochemically activated Sample D - Co0.5Fe2.5O4 (16х10-3 min-1) and Sample E-CoFe2O4 (14х10-3 min-1) possess higher photocatalytic activity than that of the most common used UV-light catalyst Degussa P25 (12х10-3 min-1). The dependence of the photo-catalytic activity and sorption properties on the preparation method and different degree of substitution of iron ions by cobalt ions in synthesized cobalt ferrite samples is established. The mechanochemical activation leads to formation of nano-structured cobalt ferrite-type catalysts (Sample D and Sample E) with higher rate constants than those of the ferrite materials (Sample A, Sample B, and Sample C) prepared by the co-precipitation procedure. The increase in the degree of substitution of iron ions by cobalt ones leads to improved photocatalytic properties and lower sorption capacities of the co-precipitated ferrite samples. The good sorption properties between 72 and 80% of the prepared ferrite-type materials show that they could be used as potential cheap absorbents for purification of polluted waters.Keywords: nanodimensional cobalt ferrites, photocatalyst, synthesis, mechanochemical activation
Procedia PDF Downloads 264215 Systematic Review of Digital Interventions to Reduce the Carbon Footprint of Primary Care
Authors: Anastasia Constantinou, Panayiotis Laouris, Stephen Morris
Abstract:
Background: Climate change has been reported as one of the worst threats to healthcare. The healthcare sector is a significant contributor to greenhouse gas emissions with primary care being responsible for 23% of the NHS’ total carbon footprint. Digital interventions, primarily focusing on telemedicine, offer a route to change. This systematic review aims to quantify and characterize the carbon footprint savings associated with the implementation of digital interventions in the setting of primary care. Methods: A systematic review of published literature was conducted according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) guidelines. MEDLINE, PubMed, and Scopus databases as well as Google scholar were searched using key terms relating to “carbon footprint,” “environmental impact,” “sustainability”, “green care”, “primary care,”, and “general practice,” using citation tracking to identify additional articles. Data was extracted and analyzed in Microsoft Excel. Results: Eight studies were identified conducted in four different countries between 2010 and 2023. Four studies used interventions to address primary care services, three studies focused on the interface between primary and specialist care, and one study addressed both. Digital interventions included the use of mobile applications, online portals, access to electronic medical records, electronic referrals, electronic prescribing, video-consultations and use of autonomous artificial intelligence. Only one study carried out a complete life cycle assessment to determine the carbon footprint of the intervention. It estimate that digital interventions reduced the carbon footprint at primary care level by 5.1 kgCO2/visit, and at the interface with specialist care by 13.4 kg CO₂/visit. When assessing the relationship between travel-distance saved and savings in emissions, we identified a strong correlation, suggesting that most of the carbon footprint reduction is attributed to reduced travel. However, two studies also commented on environmental savings associated with reduced use of paper. Patient savings in the form of reduced fuel cost and reduced travel time were also identified. Conclusion: All studies identified significant reductions in carbon footprint following implementation of digital interventions. In the future, controlled, prospective studies incorporating complete life cycle assessments and accounting for double-consulting effects, use of additional resources, technical failures, quality of care and cost-effectiveness are needed to fully appreciate the sustainable benefit of these interventionsKeywords: carbon footprint, environmental impact, primary care, sustainable healthcare
Procedia PDF Downloads 63214 Phytomining for Rare Earth Elements: A Comparative Life Cycle Assessment
Authors: Mohsen Rabbani, Trista McLaughlin, Ehsan Vahidi
Abstract:
the remediation of polluted sites with heavy metals, such as rare earth elements (REEs), has been a primary concern of researchers to decontaminate the soil. Among all developed methods to address this concern, phytoremediation has been established as efficient, cost-effective, easy-to-use, and environmentally friendly way, providing a long-term solution for addressing this global concern. Furthermore, this technology has another great potential application in the metals production sector through returning metals buried in soil via metals cropping. Considering the significant metal concentration in hyper-accumulators, the utilization of bioaccumulated metals to extract metals from plant matter has been proposed as a sub-economic area called phytomining. As a recent, more advanced technology to eliminate such pollutants from the soil and produce critical metals, bioharvesting (phytomining/agromining) has been considered another compromising way to produce metals and meet the global demand for critical/target metals. The bio-ore obtained from phytomining can be safely disposed of or introduced to metal production pathways to obtain the most demanded metals, such as REEs. It is well-known that some hyperaccumulators, e.g., fern Dicranopteris linearis, can be used to absorb REE metals from the polluted soils and accumulate them in plant organs, such as leaves and stems. After soil remediation, the plant species can be harvested and introduced to the downstream steps, namely crushing/grinding, leaching, and purification processes, to extract REEs from plant matter. This novel interdisciplinary field can fill the gap between agriculture, mining, metallurgy, and the environment. Despite the advantages of agromining for the REEs production industry, key issues related to the environmental sustainability of the entire life cycle of this new concept have not been assessed yet. Hence, a comparative life cycle assessment (LCA) study was conducted to quantify the environmental footprints of REEs phytomining. The current LCA study aims to estimate and calculate environmental effects associated with phytomining by considering critical factors, such as climate change, land use, and ozone depletion. The results revealed that phytomining is an easy-to-use and environmentally sustainable approach to either eliminate REEs from polluted sites or produce REEs, offering a new source of such metals production. This LCA research provides guidelines for researchers active in developing a reliable relationship between agriculture, mining, metallurgy, and the environment to encounter soil pollution and keep the earth green and clean.Keywords: phytoremediation, phytomining, life cycle assessment, environmental impacts, rare earth elements, hyperaccumulator
Procedia PDF Downloads 69213 Cross-Sectional Analysis of the Health Product E-Commerce Market in Singapore
Authors: Andrew Green, Jiaming Liu, Kellathur Srinivasan, Raymond Chua
Abstract:
Introduction: The size of Singapore’s online health product (HP) market (e-commerce) is largely unknown. However, it is recognized that a large majority comes from overseas and thus, unregulated. As buying HP from unauthorized sources significantly compromises public health safety, understanding e-commerce users’ demographics and their perceptions on online HP purchasing becomes a pivotal first step to form a basis for recommendations in Singapore’s pharmacovigilance efforts. Objective: To assess the prevalence of online HP purchasing behaviour among Singaporean e-commerce users. Methodology: This is a cross-sectional study targeting Singaporean e-commerce users recruited from various local websites and online forums. Participants were not randomized into study arms but instead stratified by random sampling method based on participants’ age. A self-administered anonymous questionnaire was used to explore participants' demographics, online HP purchasing behaviour, knowledge and attitude. The association of different variables with online HP purchasing behaviour was analysed using logistic regression statistics. Main outcome measures: Prevalence of HP e-commerce users in Singapore (%) and variables that contribute to the prevalence (adjusted prevalent ratio). Results: The study recruited 372 complete and valid responses. The prevalence of online HP consumers among e-commerce users in Singapore is estimated to be 55.9% (1.7 million consumers). Online purchasing of complementary HP (46.9%) was the most prevalent, followed by medical devices (21.6%) and Western medicine (20.5%). Multivariate analysis showed that age is an independent variable that correlates with the likelihood of buying HP online. The prevalence of HP e-commerce users is highest in the 35-44 age group (64.1%) and lowest among the 16-24 age group (36.4%). The most bought HP through the internet are vitamins and minerals (21.5%), non-herbal (15.9%), herbal (13.9%), weight loss (8.7%) and sports (8.4%) supplements. While the top 3 products are distributed equally between the genders, there is a skew towards female respondents (12.4% in females vs. 4.9% in males) for weight loss supplements and towards males (13.2% in males vs. 3.7% in females) for sports supplements. Even though online consumers are in the younger age brackets, our study found that up to 72.0% of HP bought online are bought for others (buyer’s family and/or friends). Multivariate analysis showed a statistically significant association between purchasing HP through online means and the perceptions that 'internet is safe' (adjusted Prevalence Ratio=1.15, CI 1.03-1.28), 'buying HP online is time saving' (PR=1.17, CI 1.01-1.36), and 'recognition of HP brand' (PR=1.21 CI 1.06-1.40). Conclusions: This study has provided prevalence data for online HP market in Singapore, and has allowed the country’s regulatory body to formulate a targeted pharmacovigilance approach to this growing problem.Keywords: e-commerce, pharmaceuticals, pharmacovigilance, Singapore
Procedia PDF Downloads 364212 Bioinformatic Strategies for the Production of Glycoproteins in Algae
Authors: Fadi Saleh, Çığdem Sezer Zhmurov
Abstract:
Biopharmaceuticals represent one of the wildest developing fields within biotechnology, and the biological macromolecules being produced inside cells have a variety of applications for therapies. In the past, mammalian cells, especially CHO cells, have been employed in the production of biopharmaceuticals. This is because these cells can achieve human-like completion of PTM. These systems, however, carry apparent disadvantages like high production costs, vulnerability to contamination, and limitations in scalability. This research is focused on the utilization of microalgae as a bioreactor system for the synthesis of biopharmaceutical glycoproteins in relation to PTMs, particularly N-glycosylation. The research points to a growing interest in microalgae as a potential substitute for more conventional expression systems. A number of advantages exist in the use of microalgae, including rapid growth rates, the lack of common human pathogens, controlled scalability in bioreactors, and the ability of some PTMs to take place. Thus, the potential of microalgae to produce recombinant proteins with favorable characteristics makes this a promising platform in order to produce biopharmaceuticals. The study focuses on the examination of the N-glycosylation pathways across different species of microalgae. This investigation is important as N-glycosylation—the process by which carbohydrate groups are linked to proteins—profoundly influences the stability, activity, and general performance of glycoproteins. Additionally, bioinformatics methodologies are employed to explain the genetic pathways implicated in N-glycosylation within microalgae, with the intention of modifying these organisms to produce glycoproteins suitable for human consumption. In this way, the present comparative analysis of the N-glycosylation pathway in humans and microalgae can be used to bridge both systems in order to produce biopharmaceuticals with humanized glycosylation profiles within the microalgal organisms. The results of the research underline microalgae's potential to help improve some of the limitations associated with traditional biopharmaceutical production systems. The study may help in the creation of a cost-effective and scale-up means of producing quality biopharmaceuticals by modifying microalgae genetically to produce glycoproteins with N-glycosylation that is compatible with humans. Improvements in effectiveness will benefit biopharmaceutical production and the biopharmaceutical sector with this novel, green, and efficient expression platform. This thesis, therefore, is thorough research into the viability of microalgae as an efficient platform for producing biopharmaceutical glycoproteins. Based on the in-depth bioinformatic analysis of microalgal N-glycosylation pathways, a platform for their engineering to produce human-compatible glycoproteins is set out in this work. The findings obtained in this research will have significant implications for the biopharmaceutical industry by opening up a new way of developing safer, more efficient, and economically more feasible biopharmaceutical manufacturing platforms.Keywords: microalgae, glycoproteins, post-translational modification, genome
Procedia PDF Downloads 29211 Challenges beyond the Singapore Future-Ready School ‘LEADER’ Qualities
Authors: Zoe Boon Suan Loy
Abstract:
An exploratory research undertaken in 2000 at the beginning of the COVID-19 pandemic examined the changing roles of Singapore school leaders as they lead teachers in developing future-ready learners. While it is evident that ‘LEADER’ qualities epitomize the knowledge, competencies, and skills required, recent events in an increasing VUCA and BANI world characterized by massively disruptive Ukraine -Russian war, unabating tense US-Sino relations, issues related to sustainability, and rapid ageing will have an impact on school leadership. As an increasingly complex endeavour, this requires a relook as they lead teachers in nurturing holistically-developed future-ready students. Digitalisation, new technology, and the push for a green economy will be the key driving forces that will have an impact on job availability. Similarly, the rapid growth of artificial intelligence (AI) capabilities, including ChatGPT, will aggravate and add tremendous stress to the work of school leaders. This paper seeks to explore the key school leadership shifts required beyond the ‘LEADER’ qualities as school leaders respond to the changes, challenges, and opportunities in the 21st C new normal. The research findings for this paper are based on an exploratory qualitative study on the perceptions of 26 school leaders (vice-principals) who were attending a milestone educational leadership course at the National Institute of Education, Nanyang Technological University, Singapore. A structured questionnaire is designed to collect the data, which is then analysed using coding methodology. Broad themes on key competencies and skills of future-ready leaders in the Singapore education system are then identified. Key Findings: In undertaking their leadership roles as leaders of future-ready learners, school leaders need to demonstrate the ‘LEADER’ qualities. They need to have a long-term view, understand the educational imperatives, have a good awareness of self and the dispositions of a leader, be effective in optimizing external leverages and are clear about their role expectations. These ‘LEADER’ qualities are necessary and relevant in the post-Covid era. Beyond this, school leaders with ‘LEADER’ qualities are well supported by the Ministry of Education, which takes cognizance of emerging trends and continually review education policies to address related issues. Concluding Statement: Discussions within the education ecosystem and among other stakeholders on the implications of the use of artificial intelligence and ChatGPT on the school curriculum, including content knowledge, pedagogy, and assessment, are ongoing. This augurs well for school leaders as they undertake their responsibilities as leaders of future-ready learners.Keywords: Singapore education system, ‘LEADER’ qualities, school leadership, future-ready leaders, future-ready learners
Procedia PDF Downloads 72210 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages
Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong
Abstract:
Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale
Procedia PDF Downloads 66209 Evaluation of Different Cropping Systems under Organic, Inorganic and Integrated Production Systems
Authors: Sidramappa Gaddnakeri, Lokanath Malligawad
Abstract:
Any kind of research on production technology of individual crop / commodity /breed has not brought sustainability or stability in crop production. The sustainability of the system over years depends on the maintenance of the soil health. Organic production system includes use of organic manures, biofertilizers, green manuring for nutrient supply and biopesticides for plant protection helps to sustain the productivity even under adverse climatic condition. The study was initiated to evaluate the performance of different cropping systems under organic, inorganic and integrated production systems at The Institute of Organic Farming, University of Agricultural Sciences, Dharwad (Karnataka-India) under ICAR Network Project on Organic Farming. The trial was conducted for four years (2013-14 to 2016-17) on fixed site. Five cropping systems viz., sequence cropping of cowpea – safflower, greengram– rabi sorghum, maize-bengalgram, sole cropping of pigeonpea and intercropping of groundnut + cotton were evaluated under six nutrient management practices. The nutrient management practices are NM1 (100% Organic farming (Organic manures equivalent to 100% N (Cereals/cotton) or 100% P2O5 (Legumes), NM2 (75% Organic farming (Organic manures equivalent to 75% N (Cereals/cotton) or 100% P2O5 (Legumes) + Cow urine and Vermi-wash application), NM3 (Integrated farming (50% Organic + 50% Inorganic nutrients, NM4 (Integrated farming (75% Organic + 25% Inorganic nutrients, NM5 (100% Inorganic farming (Recommended dose of inorganic fertilizers)) and NM6 (Recommended dose of inorganic fertilizers + Recommended rate of farm yard manure (FYM). Among the cropping systems evaluated for different production systems indicated that the Groundnut + Hybrid cotton (2:1) intercropping system found more remunerative as compared to Sole pigeonpea cropping system, Greengram-Sorghum sequence cropping system, Maize-Chickpea sequence cropping system and Cowpea-Safflower sequence cropping system irrespective of the production systems. Production practices involving application of recommended rates of fertilizers + recommended rates of organic manures (Farmyard manure) produced higher net monetary returns and higher B:C ratio as compared to integrated production system involving application of 50 % organics + 50 % inorganic and application of 75 % organics + 25 % inorganic and organic production system only Both the two organic production systems viz., 100 % Organic production system (Organic manures equivalent to 100 % N (Cereals/cotton) or 100 % P2O5 (Legumes) and 75 % Organic production system (Organic manures equivalent to 75 % N (Cereals) or 100 % P2O5 (Legumes) + Cow urine and Vermi-wash application) are found to be on par. Further, integrated production system involving application of organic manures and inorganic fertilizers found more beneficial over organic production systems.Keywords: cropping systems, production systems, cowpea, safflower, greengram, pigeonpea, groundnut, cotton
Procedia PDF Downloads 201208 Spare Part Carbon Footprint Reduction with Reman Applications
Authors: Enes Huylu, Sude Erkin, Nur A. Özdemir, Hatice K. Güney, Cemre S. Atılgan, Hüseyin Y. Altıntaş, Aysemin Top, Muammer Yılman, Özak Durmuş
Abstract:
Remanufacturing (reman) applications allow manufacturers to contribute to the circular economy and help to introduce products with almost the same quality, environment-friendly, and lower cost. The objective of this study is to present that the carbon footprint of automotive spare parts used in vehicles could be reduced by reman applications based on Life Cycle Analysis which was framed with ISO 14040 principles. In that case, it was aimed to investigate reman applications for 21 parts in total. So far, research and calculations have been completed for the alternator, turbocharger, starter motor, compressor, manual transmission, auto transmission, and DPF (diesel particulate filter) parts, respectively. Since the aim of Ford Motor Company and Ford OTOSAN is to achieve net zero based on Science-Based Targets (SBT) and the Green Deal that the European Union sets out to make it climate neutral by 2050, the effects of reman applications are researched. In this case, firstly, remanufacturing articles available in the literature were searched based on the yearly high volume of spare parts sold. Paper review results related to their material composition and emissions released during incoming production and remanufacturing phases, the base part has been selected to take it as a reference. Then, the data of the selected base part from the research are used to make an approximate estimation of the carbon footprint reduction of the relevant part used in Ford OTOSAN. The estimation model is based on the weight, and material composition of the referenced paper reman activity. As a result of this study, it was seen that remanufacturing applications are feasible to apply technically and environmentally since it has significant effects on reducing the emissions released during the production phase of the vehicle components. For this reason, the research and calculations of the total number of targeted products in yearly volume have been completed to a large extent. Thus, based on the targeted parts whose research has been completed, in line with the net zero targets of Ford Motor Company and Ford OTOSAN by 2050, if remanufacturing applications are preferred instead of recent production methods, it is possible to reduce a significant amount of the associated greenhouse gas (GHG) emissions of spare parts used in vehicles. Besides, it is observed that remanufacturing helps to reduce the waste stream and causes less pollution than making products from raw materials by reusing the automotive components.Keywords: greenhouse gas emissions, net zero targets, remanufacturing, spare parts, sustainability
Procedia PDF Downloads 82207 Improved Functions For Runoff Coefficients And Smart Design Of Ditches & Biofilters For Effective Flow detention
Authors: Thomas Larm, Anna Wahlsten
Abstract:
An international literature study has been carried out for comparison of commonly used methods for the dimensioning of transport systems and stormwater facilities for flow detention. The focus of the literature study regarding the calculation of design flow and detention has been the widely used Rational method and its underlying parameters. The impact of chosen design parameters such as return time, rain intensity, runoff coefficient, and climate factor have been studied. The parameters used in the calculations have been analyzed regarding how they can be calculated and within what limits they can be used. Data used within different countries have been specified, e.g., recommended rainfall return times, estimated runoff times, and climate factors used for different cases and time periods. The literature study concluded that the determination of runoff coefficients is the most uncertain parameter that also affects the calculated flow and required detention volume the most. Proposals have been developed for new runoff coefficients, including a new proposed method with equations for calculating runoff coefficients as a function of return time (years) and rain intensity (l/s/ha), respectively. Suggestions have been made that it is recommended not to limit the use of the Rational Method to a specific catchment size, contrary to what many design manuals recommend, with references to this. The proposed relationships between return time or rain intensity and runoff coefficients need further investigation and to include the quantification of uncertainties. Examples of parameters that have not been considered are the influence on the runoff coefficients of different dimensioning rain durations and the degree of water saturation of green areas, which will be investigated further. The influence of climate effects and design rain on the dimensioning of the stormwater facilities grassed ditches and biofilters (bio retention systems) has been studied, focusing on flow detention capacity. We have investigated how the calculated runoff coefficients regarding climate effect and the influence of changed (increased) return time affect the inflow to and dimensioning of the stormwater facilities. We have developed a smart design of ditches and biofilters that results in both high treatment and flow detention effects and compared these with the effect from dry and wet ponds. Studies of biofilters have generally before focused on treatment of pollutants, but their effect on flow volume and how its flow detention capability can improve is only rarely studied. For both the new type of stormwater ditches and biofilters, it is required to be able to simulate their performance in a model under larger design rains and future climate, as these conditions cannot be tested in the field. The stormwater model StormTac Web has been used on case studies. The results showed that the new smart design of ditches and biofilters had similar flow detention capacity as dry and wet ponds for the same facility area.Keywords: runoff coefficients, flow detention, smart design, biofilter, ditch
Procedia PDF Downloads 88206 Necessity for a Standardized Occupational Health and Safety Management System: An Exploratory Study from the Danish Offshore Wind Sector
Authors: Dewan Ahsan
Abstract:
Denmark is well ahead in generating electricity from renewable sources. The offshore wind sector is playing the pivotal role to achieve this target. Though there is a rapid growth of offshore wind sector in Denmark, still there is a dearth of synchronization in OHS (occupational health and safety) regulation and standards. Therefore, this paper attempts to ascertain: i) what are the major challenges of the company specific OHS standards? ii) why does the offshore wind industry need a standardized OHS management system? and iii) who can play the key role in this process? To achieve these objectives, this research applies the interview and survey techniques. This study has identified several key challenges in OHS management system which are; gaps in coordination and communication among the stakeholders, gaps in incident reporting systems, absence of a harmonized OHS standard and blame culture. Furthermore, this research has identified eleven key stakeholders who are actively involve with the offshore wind business in Denmark. As noticed, the relationships among these stakeholders are very complex specially between operators and sub-contractors. The respondent technicians are concerned with the compliance of various third-party OHS standards (e.g. ISO 31000, ISO 29400, Good practice guidelines by G+) which are applying by various offshore companies. On top of these standards, operators also impose their own OHS standards. From the technicians point of angle, many of these standards are not even specific for the offshore wind sector. So, it is a big challenge for the technicians and sub-contractors to comply with different company specific standards which also elevate the price of their services offer to the operators. For instance, when a sub-contractor is competing for a bidding, it must fulfill a number of OHS requirements (which demands many extra documantions) set by the individual operator and/the turbine supplier. According to sub-contractors’ point of view these extra works consume too much time to prepare the bidding documents and they also need to train their employees to pass the specific OHS certification courses to accomplish the demand for individual clients and individual project. The sub-contractors argued that in many cases these extra documentations and OHS certificates are inessential to ensure the quality service. So, a standardized OHS management procedure (which could be applicable for all the clients) can easily solve this problem. In conclusion, this study highlights that i) development of a harmonized OHS standard applicable for all the operators and turbine suppliers, ii) encouragement of technicians’ active participation in the OHS management, iii) development of a good safety leadership, and, iv) sharing of experiences among the stakeholders (specially operators-operators-sub contractors) are the most vital strategies to overcome the existing challenges and to achieve the goal of 'zero accident/harm' in the offshore wind industry.Keywords: green energy, offshore, safety, Denmark
Procedia PDF Downloads 215205 Determinants of Healthcare Team Effectiveness in Subterranean Settings: A Mixed-Methods Study
Authors: Nasra Idilbi, Jalal Tarabeia, Layalleh Masalha, Heiam Shoufani Kassis, Gizell Green
Abstract:
Background: Healthcare professionals working in underground facilities face unique challenges affecting their physical and mental health and team effectiveness. We aimed to examine how an underground work environment affects the physical and mental health and effectiveness of a multi-professional medical team in a medical center under continuous war threats and the contribution of various demographic and professional characteristics. Methods: A cross-sectional survey was disseminated electronically. The questionnaire assessed team effectiveness, the quality of the work, and the health symptoms reported by the team while working in the underground complex. Results: In total, 270 healthcare workers (mean age 40 years, 75.6% females, 88.4% nurses) completed the questionnaire. Women reported statistically significantly higher mean scores of physical strain, fatigue, and eye irritation associated with the work environment compared to men. Multiple regression analysis revealed that psychological distress, noise, and lighting in the underground compound significantly influenced team effectiveness. The qualitative analysis revealed two key themes: the mental health impact of working in an underground environment and the effects of noise and lighting on staff performance. Nurses reported feelings of suffocation, claustrophobia, and difficulty concentrating due to the enclosed space, with some expressing heightened stress levels that impaired their ability to work effectively and safely. Female staff reported more pronounced symptoms of physical strain, fatigue, and eye irritation. Additionally, the underground complex’s poor noise absorption created a highly disruptive work environment, while inadequate lighting hindered accurate patient assessments, leading to potential errors. These challenges were exacerbated by physical symptoms like headaches and nausea, which further impacted job performance. The findings underscore the significant role of environmental factors in influencing both mental health and operational effectiveness, aligning with quantitative data on the predictors of team performance. Conclusions: The underground work environment is crucial in influencing healthcare team effectiveness, with psychological distress, noise, and lighting as key factors. The study highlights the importance of creating a comfortable work environment to foster team efficiency. The findings provide valuable insights for managers in underground healthcare facilities to optimize team performance and well-being.Keywords: team effectiveness, underground settings, healthcare, environmental factors, a mixed-methods study
Procedia PDF Downloads 11204 Humic Acid and Azadirachtin Derivatives for the Management of Crop Pests
Authors: R. S. Giraddi, C. M. Poleshi
Abstract:
Organic cultivation of crops is gaining importance consumer awareness towards pesticide residue free foodstuffs is increasing globally. This is also because of high costs of synthetic fertilizers and pesticides, making the conventional farming non-remunerative. In India, organic manures (such as vermicompost) are an important input in organic agriculture. Though vermicompost obtained through earthworm and microbe-mediated processes is known to comprise most of the crop nutrients, but they are in small amounts thus necessitating enrichment of nutrients so that crop nourishment is complete. Another characteristic of organic manures is that the pest infestations are kept under check due to induced resistance put up by the crop plants. In the present investigation, deoiled neem cake containing azadirachtin, copper ore tailings (COT), a source of micro-nutrients and microbial consortia were added for enrichment of vermicompost. Neem cake is a by-product obtained during the process of oil extraction from neem plant seeds. Three enriched vermicompost blends were prepared using vermicompost (at 70, 65 and 60%), deoiled neem cake (25, 30 and 35%), microbial consortia and COTwastes (5%). Enriched vermicompost was thoroughly mixed, moistened (25+5%), packed and incubated for 15 days at room temperature. In the crop response studies, the field trials on chili (Capsicum annum var. longum) and soybean, (Glycine max cv JS 335) were conducted during Kharif 2015 at the Main Agricultural Research Station, UAS, Dharwad-Karnataka, India. The vermicompost blend enriched with neem cake (known to possess higher amounts of nutrients) and vermicompost were applied to the crops and at two dosages and at two intervals of crop cycle (at sowing and 30 days after sowing) as per the treatment plan along with 50% recommended dose of fertilizer (RDF). 10 plants selected randomly in each plot were studied for pest density and plant damage. At maturity, crops were harvested, and the yields were recorded as per the treatments, and the data were analyzed using appropriate statistical tools and procedures. In the crops, chili and soybean, crop nourishment with neem enriched vermicompost reduced insect density and plant damage significantly compared to other treatments. These treatments registered as much yield (16.7 to 19.9 q/ha) as that realized in conventional chemical control (18.2 q/ha) in soybean, while 72 to 77 q/ha of green chili was harvested in the same treatments, being comparable to the chemical control (74 q/ha). The yield superiority of the treatments was of the order neem enriched vermicompost>conventional chemical control>neem cake>vermicompost>untreated control. The significant features of the result are that it reduces use of inorganic manures by 50% and synthetic chemical insecticides by 100%.Keywords: humic acid, azadirachtin, vermicompost, insect-pest
Procedia PDF Downloads 277203 Qualitative and Quantitative Screening of Biochemical Compositions for Six Selected Marine Macroalgae from Mediterranean Coast of Egypt
Authors: Madelyn N. Moawad, Hermine R. Z. Tadros, Mary G. Ghobrial, Ahmad R. Bassiouny, Kamal M. Kandeel, Athar Ata
Abstract:
Seaweeds are potential renewable resources in marine environment. They provide an excellent source of bioactive substances such as dietary fibers and various functional polysaccharides that could potentially be used as ingredients for both human and animal health applications. The observations suggested that these bioactive compounds have strong antioxidant properties, which have beneficial effects on human health. The present research aimed at finding new chemical products from local marine macroalgae for natural medicinal uses and consumption for their nutritional values. Macroalgae samples were collected manually mainly from the Mediterranean Sea at shallow subtidal zone of Abu Qir Bay, Alexandria, Egypt. The chemical compositions of lyophilized materials of six selected macroalgal species; Colpomenia sinuosa, Sargassum linifolium, Padina pavonia, Pterocladiella capillacea, Laurencia pinnatifidia, and Caulerpa racemosa, were investigated for proteins using bovine serum albumin, and carbohydrates were assayed by phenol-sulfuric acid reaction. The macroalgae lipid was extracted with chloroform, methanol and phosphate buffer. Vitamins were extracted using trichloroacetic acid. Chlorophylls and total carotenoids were determined spectrophotometrically and total phenols were extracted with methanol. In addition, lipid-soluble, and water-soluble antioxidant, and anti α-glucosidase activities were measured spectrophotometrically. The antioxidant activity of hexane extracts was investigated using phosphomolybdenum reagent. The anti-α-glucosidase effect measurement was initiated by mixing α-glucosidase solution with p-nitrophenyl α-D-glucopyranoside. The results showed that the ash contents varied from 11.2 to 35.4 % on dry weight basis for P. capillacea and Laurencia pinnatifidia, respectively. The protein contents ranged from 5.63 % in brown macroalgae C. sinuosa to 8.73 % in P. pavonia. A relative wide range in carbohydrate contents was observed (20.06–46.75 %) for the test algal species. The highest lipid percentage was found in green alga C. racemosa (5.91%) followed by brown algae P. pavonia (3.57%) and C. sinuosa (2.64%). The phenolic contents varied from 1.32 mg GAE/g for C. sinuosa to 4.00 mg GAE/g in P. pavonia. The lipid-soluble compounds exhibited higher antioxidant capacity (73.18-145.95 µM/g) than that of the water-soluble ones ranging from 24.83 µM/g in C. racemosa to 74.07 µM/g in S. linifolium. The most potent anti-α-glucosidase activity was observed for P. pavonia with IC50 of 17.12 μg/ml followed by S. linifolium (IC50 = 71.75 μg/ml), C. racemosa (IC50 = 84.73 μg/ml), P. capillacea (IC50 = 92.16 μg/ml), C. sinuosa (IC50 = 112.44 μg/ml), and L. pinnatifida (IC50 = 115.11 μg/ml).Keywords: α-glucosidase, lyophilized, macroalgae, spectrophotometrically
Procedia PDF Downloads 303202 Combination Therapies Targeting Apoptosis Pathways in Pediatric Acute Myeloid Leukemia (AML)
Authors: Ahlam Ali, Katrina Lappin, Jaine Blayney, Ken Mills
Abstract:
Leukaemia is the most frequently (30%) occurring type of paediatric cancer. Of these, approximately 80% are acute lymphoblastic leukaemia (ALL) with acute myeloid leukaemia (AML) cases making up the remaining 20% alongside other leukaemias. Unfortunately, children with AML do not have promising prognosis with only 60% surviving 5 years or longer. It has been highlighted recently the need for age-specific therapies for AML patients, with paediatric AML cases having a different mutational landscape compared with AML diagnosed in adult patients. Drug Repurposing is a recognized strategy in drug discovery and development where an already approved drug is used for diseases other than originally indicated. We aim to identify novel combination therapies with the promise of providing alternative more effective and less toxic induction therapy options. Our in-silico analysis highlighted ‘cell death and survival’ as an aberrant, potentially targetable pathway in paediatric AML patients. On this basis, 83 apoptotic inducing compounds were screened. A preliminary single agent screen was also performed to eliminate potentially toxic chemicals, then drugs were constructed into a pooled library with 10 drugs per well over 160 wells, with 45 possible pairs and 120 triples in each well. Seven cell lines were used during this study to represent the clonality of AML in paediatric patients (Kasumi-1, CMK, CMS, MV11-14, PL21, THP1, MOLM-13). Cytotoxicity was assessed up to 72 hours using CellTox™ Green reagent. Fluorescence readings were normalized to a DMSO control. Z-Score was assigned to each well based on the mean and standard deviation of all the data. Combinations with a Z-Score <2 were eliminated and the remaining wells were taken forward for further analysis. A well was considered ‘successful’ if each drug individually demonstrated a Z-Score <2, while the combination exhibited a Z-Score >2. Each of the ten compounds in one well (155) had minimal or no effect as single agents on cell viability however, a combination of two or more of the compounds resulted in a substantial increase in cell death, therefore the ten compounds were de-convoluted to identify a possible synergistic pair/triple combinations. The screen identified two possible ‘novel’ drug pairing, with BCL2 inhibitor ABT-737, combined with either a CDK inhibitor Purvalanol A, or AKT/ PI3K inhibitor LY294002. (ABT-737- 100 nM+ Purvalanol A- 1 µM) (ABT-737- 100 nM+ LY294002- 2 µM). Three possible triple combinations were identified (LY2409881+Akti-1/2+Purvalanol A, SU9516+Akti-1/2+Purvalanol A, and ABT-737+LY2409881+Purvalanol A), which will be taken forward for examining their efficacy at varying concentrations and dosing schedules, across multiple paediatric AML cell lines for optimisation of maximum synergy. We believe that our combination screening approach has potential for future use with a larger cohort of drugs including FDA approved compounds and patient material.Keywords: AML, drug repurposing, ABT-737, apoptosis
Procedia PDF Downloads 205201 Implementation of the Circular Economy Concept in Greenhouse Production Systems: Microalgae and Biostimulant Production Using Soilless Crops’ Drainage Nutrient Solution
Authors: Nikolaos Katsoulas, Sofia Faliagka, George Kountrias, Eleni Dimitriou, Eleftheria Pechlivani
Abstract:
The challenges to feed the world in 2050 are becoming more and more apparent. This calls for producing more with fewer inputs (most of them under scarcity), higher resource efficiency, minimum or zero effect on the environment, and higher sustainability. Therefore, increasing the circularity of production systems is highly significant for their sustainability. Protected horticulture offers opportunities for maximum resource efficiency across various levels within and between farms and at the regional level), high-quality production, and contributes significantly to the nutrition security as part of the world food production. In greenhouses, closed soilless cultivation systems give the opportunity to increase the water and nutrient use efficiency and reduce the environmental impact of the cultivation system by the reuse of the drained water and nutrients. However, due to the low quality of the water used in the Mediterranean countries, a completely closed system is not feasible. Partial discharge of the drainage nutrient solution when the levels of electrical conductivity (EC) or of the toxic ions in the system are reached is still a necessity. Thus, in the frame of the circular economy concept, this work presents the utilisation of the drainage solution of soilless cultivation systems for microalgae and biofertilisers production. The system includes a greenhouse equipped with a soilless cultivation system, a drainage solution collection tank, a closed bioreactor for microalgae production, and a biocatalysis tank. The bioreactor tested in the frame of this work includes two closed tube loops of a capacity of 1000 L each where, after the initial inoculation, the microalgae is developed using as a growth medium the drainage solution collected from the greenhouse crops. The bioreactor includes light and temperature control while pH is still manually regulated. As soon as the microalgae culture reaches a certain density level, 20% of the culture is harvested, and the culture system is refiled by a drainage nutrient solution. The microalgae produced goes through a biocatalysis process, which leads to the production of a rich aminoacids (and nitrogen) biofertiliser. The produced biofertiliser is then used for the fertilisation of greenhouse crops. The complete production cycle along with the effects of the biofertiliser produced on crop growth and yield are presented and discussed in this manuscript. Acknowledgment: This work was carried out under the PestNu project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Green Deal grant agreement No. 101037128 — PestNu.Keywords: soilless, water use efficiency, nutrients use efficiency, biostimulant
Procedia PDF Downloads 89200 Act Local, Think Global: Superior Institute of Engineering of Porto Campaign for a Sustainable Campus
Authors: R. F. Mesquita Brandão
Abstract:
Act Local, Think Global is the name of a campaign implemented at Superior Institute of Engineering of Porto (ISEP), one of schools of Polytechnic of Porto, with the main objective of increase the sustainability of the campus. ISEP has a campus with 52.000 m2 and more than 7.000 students. The campaign started in 2019 and the results are very clear. In 2019 only 16% of the waste created in the campus was correctly separate for recycling and now almost 50% of waste goes to the correct waste container. Actions to reduce the energy consumption were implemented with significantly results. One of the major problems in the campus are the water leaks. To solve this problem was implemented a methodology for water monitoring during the night, a period of time where consumptions are normally low. If water consumption in the period is higher than a determinate value it may mean a water leak and an alarm is created to the maintenance teams. In terms of energy savings, some measurements were implemented to create savings in energy consumption and in equivalent CO₂ produced. In order to reduce the use of plastics in the campus, was implemented the prohibition of selling 33 cl plastic water bottles and in collaboration with the students association all meals served in the restaurants changed the water plastic bottle for a glass that can be refilled with water in the water dispensers. This measures created a reduction of use of more than 75.000 plastic bottles per year. In parallel was implemented the ISEP water glass bottle to be used in all scientific meetings and events. Has a way of involving all community in sustainability issues was developed and implemented a vertical garden in aquaponic system. In 2019, the first vertical garden without soil was installed inside a large campus building. The system occupies the entire exterior façade (3 floors) of the entrance to ISEP's G building. On each of these floors there is a planter with 42 positions available for plants. Lettuces, strawberries, peppers are examples of some vegetable produced that can be collected by the entire community. Associated to the vertical garden was developed a monitoring system were some parameters of the system are monitored. This project is under development because it will work in a stand-alone energy feeding, with the use of photovoltaic panels for production of energy necessities. All the system was, and still is, developed by students and teachers and is used in class projects of some ISEP courses. These and others measures implemented in the campus, will be more developed in the full paper, as well as all the results obtained, allowed ISEP to be the first Portuguese high school to obtain the certification “Coração Verde” (Green Heart), awarded by LIPOR, a Portuguese company with the mission of transform waste into new resources through the implementation of innovative and circular practices, generating and sharing value.Keywords: aquaponics, energy efficiency, recycling, sustainability, waste separation
Procedia PDF Downloads 96199 The Importance of Urban Pattern and Planting Design in Urban Transformation Projects
Authors: Mustafa Var, Yasin Kültiğin Yaman, Elif Berna Var, Müberra Pulatkan
Abstract:
This study deals with real application of an urban transformation project in Trabzon, Turkey. It aims to highlight the significance of using native species in terms of planting design of transformation projects which will also promote sustainability of urban identity. Urban identity is a phenomenon shaped not only by physical, but also by natural, spatial, social, historical and cultural factors. Urban areas face with continuous change which can be whether positive or negative way. If it occurs in a negative way that may have some destructive effects on urban identity. To solve this problematic issue, urban renewal movements initally started after 1840s around the world especially in the cities with ports. This process later followed by the places where people suffered a lot from fires and has expanded to all over the world. In Turkey, those processes have been experienced mostly after 1980s as country experienced the worst effects of unplanned urbanization especially in 1950-1990 period. Also old squares, streets, meeting points, green areas, Ottoman bazaars have changed slowly. This change was resulted in alienation of inhabitants to their environments. As a solution, several actions were taken like Mass Housing Laws which was enacted in 1981 and 1984 or urban transformation projects. Although projects between 1990-2000 were tried to satisfy the expectations of local inhabitants by the help of several design solutions to promote cultural identity; unfortunately those modern projects has also been resulted in alienation of urban environments to the inhabitants. Those projects were initially done by TOKI (Housing Development Administration of Turkey) and later followed by the Ministry of Environment and Urbanization after 2011. Although they had significant potentials to create healthy urban environments, they could not use this opportunity in an effective way. The reason for their failure is that their architectural styles and planting designs are unrespectful to local identity and environments. Generally, it can be said that the most of the urban transformation projects implementing in Turkey nearly have no concerns about the locality. However, those projects can be used as a positive tool for enhanching the urban identity of cities by means of local planting material. For instance, Kyoto can be identified by Japanese Maple trees or Seattle can be specified by Dahlia. In the same way, in Turkey, Istanbul city can be identified by Judas and Stone Pine trees or Giresun city can be identified by Cherry trees. Thus, in this paper, the importance of conserving urban identity is discussed specificly with the help of using local planting elements. After revealing the mistakes that are made during urban transformation projects, the techniques and design criterias for preserving and promoting urban identity are examined. In the end, it is emphasized that every city should have their own original, local character and specific planting design which can be used for highlighting its identity as well as architectural elements.Keywords: urban identity, urban transformation, planting design, landscape architecture
Procedia PDF Downloads 548198 ePAM: Advancing Sustainable Mobility through Digital Parking, AI-Driven Vehicle Recognition, and CO₂ Reporting
Authors: Robert Monsberger
Abstract:
The increasing scarcity of resources and the pressing challenge of climate change demand transformative technological, economic, and societal approaches. In alignment with the European Green Deal's goal to achieve net-zero greenhouse gas emissions by 2050, this paper presents the development and implementation of an electronic parking and mobility system (ePAM). This system offers a distinct, integrated solution aimed at promoting climate-positive mobility, reducing individual vehicle use, and advancing the digital transformation of off-street parking. The core objectives include the accurate recognition of electric vehicles and occupant counts using advanced camera-based systems, achieving a very high accuracy. This capability enables the dynamic categorization and classification of vehicles to provide fair and automated tariff adjustments. The study also seeks to replace physical barriers with virtual ‘digital gates’ using augmented reality, significantly improving user acceptance as shown in studies conducted. The system is designed to operate as an end-to-end software solution, enabling a fully digital and paperless parking management system by leveraging license plate recognition (LPR) and metadata processing. By eliminating physical infrastructure like gates and terminals, the system significantly reduces resource consumption, maintenance complexity, and operational costs while enhancing energy efficiency. The platform also integrates CO₂ reporting tools to support compliance with upcoming EU emission trading schemes and to incentivize eco-friendly transportation behaviors. By fostering the adoption of electric vehicles and ride-sharing models, the system contributes to the optimization of traffic flows and the minimization of search traffic in urban centers. The platform's open data interfaces enable seamless integration into multimodal transport systems, facilitating a transition from individual to public transportation modes. This study emphasizes sustainability, data privacy, and compliance with the AI Act, aiming to achieve a market share of at least 4.5% in the DACH region by 2030. ePAM sets a benchmark for innovative mobility solutions, driving significant progress toward climate-neutral urban mobility.Keywords: sustainable mobility, digital parking, AI-driven vehicle recognition, license plate recognition, virtual gates, multimodal transport integration
Procedia PDF Downloads 3197 Isolation of Clitorin and Manghaslin from Carica papaya L. Leaves by CPC and Its Quantitative Analysis by QNMR
Authors: Norazlan Mohmad Misnan, Maizatul Hasyima Omar, Mohd Isa Wasiman
Abstract:
Papaya (Carica papaya L., Caricaceae) is a tree which mainly cultivated for its fruits in many tropical regions including Australia, Brazil, China, Hawaii, and Malaysia. Beside of fruits, its leaves, seeds, and latex have also been traditionally used for treating diseases, which also reported to possess anti-cancer and anti- malaria properties. Its leaves have been reported to consist of various chemical compounds such as alkaloids, flavonoids and phenolics. Clitorin and manghaslin are among major flavonoids presence. Thus, the aim of this study is to quantify the purity of these isolated compounds (clitorin and manghsalin) by using quantitative Nuclear Magnetic Resonance (qNMR) analysis. Only fresh C. papaya leaves were used for juice extraction procedure and subsequently was freeze-dried to obtain a dark green powdered form of the extract prior to Centrifugal Partition Chromatography (CPC) separation. The CPC experiments were performed using a two-phase solvent system comprising ethyl acetate/butanol/water (1:4:5, v/v/v/v) solvent. The upper organic phase was used as the stationary phase, and the lower aqueous phase was employed as the mobile phase. Ten fractions were obtained after an hour runtime analysis. Fraction 6 and fraction 8 has been identified as clitorin (m/z 739.21 [M-H]-) and manghaslin (m/z 755.21 [M-H]-), respectively, based on LCMS data and full analysis of NMR (1H NMR, 13C NMR, HMBC, and HSQC). The 1H-qNMR measurements were carried out using a 400 MHz NMR spectrometer (JEOL ECS 400MHz, Japan) and deuterated methanol was used as a solvent. Quantification was performed using the AQARI method (Accurate Quantitative NMR) with deuterated 1,4-Bis(trimethylsilyl)benzene (BTMSB) as an internal reference substances. This AQARI protocol includes not only NMR measurement but also sample preparation that provide highest precision and accuracy than other qNMR methods. The 90° pulse length and the T1 relaxation times for compounds and BTMSB were determined prior to the quantification to give the best signal-to-noise ratio. Regions containing the two downfield signals from aromatic part (6.00–6.89 ppm), and the singlet signal, (18H) arising from BTMSB (0.63-1.05ppm) were selected for integration. The purity of clitorin and manghaslin were calculated to be 52.22% and 43.36%, respectively. Further purification is needed in order to increase its purity. This finding has demonstrated the use of qNMR for quality control and standardization of various plant extracts and which can be applied for NMR fingerprinting of other plant-based products with good reproducibility and in the case where commercial standards is not readily available.Keywords: Carica papaya, clitorin, manghaslin, quantitative Nuclear Magnetic Resonance, Centrifugal Partition Chromatography
Procedia PDF Downloads 499196 An Investigation on MgAl₂O₄ Based Mould System in Investment Casting Titanium Alloy
Authors: Chen Yuan, Nick Green, Stuart Blackburn
Abstract:
The investment casting process offers a great freedom of design combined with the economic advantage of near net shape manufacturing. It is widely used for the production of high value precision cast parts in particularly in the aerospace sector. Various combinations of materials have been used to produce the ceramic moulds, but most investment foundries use a silica based binder system in conjunction with fused silica, zircon, and alumino-silicate refractories as both filler and coarse stucco materials. However, in the context of advancing alloy technologies, silica based systems are struggling to keep pace, especially when net-shape casting titanium alloys. Study has shown that the casting of titanium based alloys presents considerable problems, including the extensive interactions between the metal and refractory, and the majority of metal-mould interaction is due to reduction of silica, present as binder and filler phases, by titanium in the molten state. Cleaner, more refractory systems are being devised to accommodate these changes. Although yttria has excellent chemical inertness to titanium alloy, it is not very practical in a production environment combining high material cost, short slurry life, and poor sintering properties. There needs to be a cost effective solution to these issues. With limited options for using pure oxides, in this work, a silica-free magnesia spinel MgAl₂O₄ was used as a primary coat filler and alumina as a binder material to produce facecoat in the investment casting mould. A comparison system was also studied with a fraction of the rare earth oxide Y₂O₃ adding into the filler to increase the inertness. The stability of the MgAl₂O₄/Al₂O₃ and MgAl₂O₄/Y₂O₃/Al₂O₃ slurries was assessed by tests, including pH, viscosity, zeta-potential and plate weight measurement, and mould properties such as friability were also measured. The interaction between the face coat and titanium alloy was studied by both a flash re-melting technique and a centrifugal investment casting method. The interaction products between metal and mould were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). The depth of the oxygen hardened layer was evaluated by micro hardness measurement. Results reveal that introducing a fraction of Y₂O₃ into magnesia spinel can significantly increase the slurry life and reduce the thickness of hardened layer during centrifugal casting.Keywords: titanium alloy, mould, MgAl₂O₄, Y₂O₃, interaction, investment casting
Procedia PDF Downloads 113195 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital
Authors: Esraa A. Khalil, Mohamed N. AbouZeid
Abstract:
Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.Keywords: AAC blocks, building material, environmental impact, modern construction, new Egyptian administrative capital
Procedia PDF Downloads 121