Search results for: H₂-optimal model reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20764

Search results for: H₂-optimal model reduction

18754 A Fuzzy Multiobjective Model for Bed Allocation Optimized by Artificial Bee Colony Algorithm

Authors: Jalal Abdulkareem Sultan, Abdulhakeem Luqman Hasan

Abstract:

With the development of health care systems competition, hospitals face more and more pressures. Meanwhile, resource allocation has a vital effect on achieving competitive advantages in hospitals. Selecting the appropriate number of beds is one of the most important sections in hospital management. However, in real situation, bed allocation selection is a multiple objective problem about different items with vagueness and randomness of the data. It is very complex. Hence, research about bed allocation problem is relatively scarce under considering multiple departments, nursing hours, and stochastic information about arrival and service of patients. In this paper, we develop a fuzzy multiobjective bed allocation model for overcoming uncertainty and multiple departments. Fuzzy objectives and weights are simultaneously applied to help the managers to select the suitable beds about different departments. The proposed model is solved by using Artificial Bee Colony (ABC), which is a very effective algorithm. The paper describes an application of the model, dealing with a public hospital in Iraq. The results related that fuzzy multi-objective model was presented suitable framework for bed allocation and optimum use.

Keywords: bed allocation problem, fuzzy logic, artificial bee colony, multi-objective optimization

Procedia PDF Downloads 324
18753 A Study of the Adaptive Reuse for School Land Use Strategy: An Application of the Analytic Network Process and Big Data

Authors: Wann-Ming Wey

Abstract:

In today's popularity and progress of information technology, the big data set and its analysis are no longer a major conundrum. Now, we could not only use the relevant big data to analysis and emulate the possible status of urban development in the near future, but also provide more comprehensive and reasonable policy implementation basis for government units or decision-makers via the analysis and emulation results as mentioned above. In this research, we set Taipei City as the research scope, and use the relevant big data variables (e.g., population, facility utilization and related social policy ratings) and Analytic Network Process (ANP) approach to implement in-depth research and discussion for the possible reduction of land use in primary and secondary schools of Taipei City. In addition to enhance the prosperous urban activities for the urban public facility utilization, the final results of this research could help improve the efficiency of urban land use in the future. Furthermore, the assessment model and research framework established in this research also provide a good reference for schools or other public facilities land use and adaptive reuse strategies in the future.

Keywords: adaptive reuse, analytic network process, big data, land use strategy

Procedia PDF Downloads 203
18752 The Six 'P' Model: Principles of Inclusive Practice for Inclusion Coaches

Authors: Tiffany Gallagher, Sheila Bennett

Abstract:

Based on data from a larger study, this research is based in a small school district in Ontario, Canada, that has made a transition from self-contained classes for students with exceptionalities to inclusive classroom placements for all students with their age-appropriate peers. The school board aided this transition by hiring Inclusion Coaches with a background in special education to work alongside teachers as partners and inform their inclusive practice. Based on qualitative data from four focus groups conducted with Inclusion Coaches, as well as four blog-style reflections collected at various points over two years, six principles of inclusive practice were identified for coaches. The six principles form a model during transition: pre-requisite, process, precipice, promotion, proof, and promise. These principles are encapsulated in a visual model of a spiraling staircase displaying the conditions that exist prior to coaching, during coaching interactions and considerations for the sustainability of coaching. These six principles are re-iterative and should be re-visited each time a coaching interaction is initiated. Exploring inclusion coaching as a model emulates coaching in other contexts and allows us to examine an established process through a new lens. This research becomes increasingly important as more school boards transition toward inclusive classrooms, The Six ‘P’ Model: Principles of Inclusive Practice for Inclusion Coaches allows for a unique look into a scaffolding model of building educator capacity in an inclusive setting.

Keywords: capacity building, coaching, inclusion, special education

Procedia PDF Downloads 250
18751 Space Tourism Pricing Model Revolution from Time Independent Model to Time-Space Model

Authors: Kang Lin Peng

Abstract:

Space tourism emerged in 2001 and became famous in 2021, following the development of space technology. The space market is twisted because of the excess demand. Space tourism is currently rare and extremely expensive, with biased luxury product pricing, which is the seller’s market that consumers can not bargain with. Spaceship companies such as Virgin Galactic, Blue Origin, and Space X have been charged space tourism prices from 200 thousand to 55 million depending on various heights in space. There should be a reasonable price based on a fair basis. This study aims to derive a spacetime pricing model, which is different from the general pricing model on the earth’s surface. We apply general relativity theory to deduct the mathematical formula for the space tourism pricing model, which covers the traditional time-independent model. In the future, the price of space travel will be different from current flight travel when space travel is measured in lightyear units. The pricing of general commodities mainly considers the general equilibrium of supply and demand. The pricing model considers risks and returns with the dependent time variable as acceptable when commodities are on the earth’s surface, called flat spacetime. Current economic theories based on the independent time scale in the flat spacetime do not consider the curvature of spacetime. Current flight services flying the height of 6, 12, and 19 kilometers are charging with a pricing model that measures time coordinate independently. However, the emergence of space tourism is flying heights above 100 to 550 kilometers that have enlarged the spacetime curvature, which means tourists will escape from a zero curvature on the earth’s surface to the large curvature of space. Different spacetime spans should be considered in the pricing model of space travel to echo general relativity theory. Intuitively, this spacetime commodity needs to consider changing the spacetime curvature from the earth to space. We can assume the value of each spacetime curvature unit corresponding to the gradient change of each Ricci or energy-momentum tensor. Then we know how much to spend by integrating the spacetime from the earth to space. The concept is adding a price p component corresponding to the general relativity theory. The space travel pricing model degenerates into a time-independent model, which becomes a model of traditional commodity pricing. The contribution is that the deriving of the space tourism pricing model will be a breakthrough in philosophical and practical issues for space travel. The results of the space tourism pricing model extend the traditional time-independent flat spacetime mode. The pricing model embedded spacetime as the general relativity theory can better reflect the rationality and accuracy of space travel on the universal scale. The universal scale from independent-time scale to spacetime scale will bring a brand-new pricing concept for space traveling commodities. Fair and efficient spacetime economics will also bring to humans’ travel when we can travel in lightyear units in the future.

Keywords: space tourism, spacetime pricing model, general relativity theory, spacetime curvature

Procedia PDF Downloads 129
18750 Biostabilisation of Sediments for the Protection of Marine Infrastructure from Scour

Authors: Rob Schindler

Abstract:

Industry-standard methods of mitigating erosion of seabed sediments rely on ‘hard engineering’ approaches which have numerous environmental shortcomings: (1) direct loss of habitat by smothering of benthic species, (2) disruption of sediment transport processes, damaging geomorphic and ecosystem functionality (3) generation of secondary erosion problems, (4) introduction of material that may propagate non-local species, and (5) provision of pathways for the spread of invasive species. Recent studies have also revealed the importance of biological cohesion, the result of naturally occurring extra-cellular polymeric substances (EPS), in stabilizing natural sediments. Mimicking the strong bonding kinetics through the deliberate addition of EPS to sediments – henceforth termed ‘biostabilisation’ - offers a means in which to mitigate against erosion induced by structures or episodic increases in hydrodynamic forcing (e.g. storms and floods) whilst avoiding, or reducing, hard engineering. Here we present unique experiments that systematically examine how biostabilisation reduces scour around a monopile in a current, a first step to realizing the potential of this new method of scouring reduction for a wide range of engineering purposes in aquatic substrates. Experiments were performed in Plymouth University’s recirculating sediment flume which includes a recessed scour pit. The model monopile was 0.048 m in diameter, D. Assuming a prototype monopile diameter of 2.0 m yields a geometric ratio of 41.67. When applied to a 10 m prototype water depth this yields a model depth, d, of 0.24 m. The sediment pit containing the monopile was filled with different biostabilised substrata prepared using a mixture of fine sand (D50 = 230 μm) and EPS (Xanthan gum). Nine sand-EPS mixtures were examined spanning EPS contents of 0.0% < b0 < 0.50%. Scour development was measured using a laser point gauge along a 530 mm centreline at 10 mm increments at regular periods over 5 h. Maximum scour depth and excavated area were determined at different time steps and plotted against time to yield equilibrium values. After 5 hours the current was stopped and a detailed scan of the final scour morphology was taken. Results show that increasing EPS content causes a progressive reduction in the equilibrium depth and lateral extent of scour, and hence excavated material. Very small amounts equating to natural communities (< 0.1% by mass) reduce scour rate, depth and extent of scour around monopiles. Furthermore, the strong linear relationships between EPS content, equilibrium scour depth, excavation area and timescales of scouring offer a simple index on which to modify existing scour prediction methods. We conclude that the biostabilisation of sediments with EPS may offer a simple, cost-effective and ecologically sensitive means of reducing scour in a range of contexts including OWFs, bridge piers, pipeline installation, and void filling in rock armour. Biostabilisation may also reduce economic costs through (1) Use of existing site sediments, or waste dredged sediments (2) Reduced fabrication of materials, (3) Lower transport costs, (4) Less dependence on specialist vessels and precise sub-sea assembly. Further, its potential environmental credentials may allow sensitive use of the seabed in marine protection zones across the globe.

Keywords: biostabilisation, EPS, marine, scour

Procedia PDF Downloads 166
18749 Invasive Ranges of Gorse (Ulex europaeus) in South Australia and Sri Lanka Using Species Distribution Modelling

Authors: Champika S. Kariyawasam

Abstract:

The distribution of gorse (Ulex europaeus) plants in South Australia has been modelled using 126 presence-only location data as a function of seven climate parameters. The predicted range of U. europaeus is mainly along the Mount Lofty Ranges in the Adelaide Hills and on Kangaroo Island. Annual precipitation and yearly average aridity index appeared to be the highest contributing variables to the final model formulation. The Jackknife procedure was employed to identify the contribution of different variables to gorse model outputs and response curves were used to predict changes with changing environmental variables. Based on this analysis, it was revealed that the combined effect of one or more variables could make a completely different impact to the original variables on their own to the model prediction. This work also demonstrates the need for a careful approach when selecting environmental variables for projecting correlative models to climatically distinct area. Maxent acts as a robust model when projecting the fitted species distribution model to another area with changing climatic conditions, whereas the generalized linear model, bioclim, and domain models to be less robust in this regard. These findings are important not only for predicting and managing invasive alien gorse in South Australia and Sri Lanka but also in other countries of the invasive range.

Keywords: invasive species, Maxent, species distribution modelling, Ulex europaeus

Procedia PDF Downloads 134
18748 Elastoplastic and Ductile Damage Model Calibration of Steels for Bolt-Sphere Joints Used in China’s Space Structure Construction

Authors: Huijuan Liu, Fukun Li, Hao Yuan

Abstract:

The bolted spherical node is a common type of joint in space steel structures. The bolt-sphere joint portion almost always controls the bearing capacity of the bolted spherical node. The investigation of the bearing performance and progressive failure in service often requires high-fidelity numerical models. This paper focuses on the constitutive models of bolt steel and sphere steel used in China’s space structure construction. The elastoplastic model is determined by a standard tensile test and calibrated Voce saturated hardening rule. The ductile damage is found dominant based on the fractography analysis. Then Rice-Tracey ductile fracture rule is selected and the model parameters are calibrated based on tensile tests of notched specimens. These calibrated material models can benefit research or engineering work in similar fields.

Keywords: bolt-sphere joint, steel, constitutive model, ductile damage, model calibration

Procedia PDF Downloads 137
18747 De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution

Authors: Saroj Poudel, Joshua Mancini, Douglas Pike, Jennifer Timm, Alexei Tyryshkin, Vikas Nanda, Paul Falkowski

Abstract:

On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolism

Keywords: hydrogenase, prebiotic enzyme, metalloenzyme, computational design

Procedia PDF Downloads 217
18746 Sustainable Urban Sewer Systems as Stormwater Management and Control Mechanisms

Authors: Ezequiel Garcia-Rodriguez, Lenin Hernandez-Ferreyra, Luis Ochoa-Franco

Abstract:

The Sustainable Sewer Urban Systems (SSUS) are mechanisms integrated into the cities for manage rain water, reducing its runoff volume and velocity, enhancing the rain water quality and preventing flooding and other catastrophes associated to the rain, as well as improving the energy efficiency. The objective of SSUS is to mimic or to equal the runoff and infiltration natural conditions of the land before its urbanization, reducing runoff that may cause troubles within the houses, as well as flooding. At the same time, energy for warming homes and for pumping and treating water is reduced, contributing to the reduction of CO₂ emissions and therefore contributing to reduce the climate change. This paper contains an evaluation of the advantages that SSUS may offer within a zone of Morelia City, Mexico, applying support tools for decision making. The hydrological conditions prior to and after the urbanization of the study area were analyzed to propose the recommended SSUS. Different types of SSUS were proposed in this case study, assessing their effect on the rainwater flow behavior within the study area. SSUS usage in this case resulted, positively, in an important reduction of the magnitude and velocity of runoff, reducing therefore the risk of flooding. So that, it is recommended the implementation of SSUS in this case.

Keywords: energy efficiency, morelia, sustainablesewer, urban systems

Procedia PDF Downloads 63
18745 A Conceptual Study for Investigating the Creation of Energy and Understanding the Properties of Nothing

Authors: Mahmoud Reza Hosseini

Abstract:

The universe is in a continuous expansion process, resulting in the reduction of its density and temperature. Also, by extrapolating back from its current state, the universe at its early times is studied, known as the big bang theory. According to this theory, moments after creation, the universe was an extremely hot and dense environment. However, its rapid expansion due to nuclear fusion led to a reduction in its temperature and density. This is evidenced through the cosmic microwave background and the universe structure at a large scale. However, extrapolating back further from this early state reaches singularity, which cannot be explained by modern physics, and the big bang theory is no longer valid. In addition, one can expect a nonuniform energy distribution across the universe from a sudden expansion. However, highly accurate measurements reveal an equal temperature mapping across the universe, which is contradictory to the big bang principles. To resolve this issue, it is believed that cosmic inflation occurred at the very early stages of the birth of the universe. According to the cosmic inflation theory, the elements which formed the universe underwent a phase of exponential growth due to the existence of a large cosmological constant. The inflation phase allows the uniform distribution of energy so that an equal maximum temperature can be achieved across the early universe. Also, the evidence of quantum fluctuations of this stage provides a means for studying the types of imperfections the universe would begin with. Although well-established theories such as cosmic inflation and the big bang together provide a comprehensive picture of the early universe and how it evolved into its current state, they are unable to address the singularity paradox at the time of universe creation. Therefore, a practical model capable of describing how the universe was initiated is needed. This research series aims at addressing the singularity issue by introducing a state of energy called a "neutral state," possessing an energy level that is referred to as the "base energy." The governing principles of base energy are discussed in detail in our second paper in the series "A Conceptual Study for Addressing the Singularity of the Emerging Universe," which is discussed in detail. To establish a complete picture, the origin of the base energy should be identified and studied. In this research paper, the mechanism which led to the emergence of this natural state and its corresponding base energy is proposed. In addition, the effect of the base energy in the space-time fabric is discussed. Finally, the possible role of the base energy in quantization and energy exchange is investigated. Therefore, the proposed concept in this research series provides a road map for enhancing our understating of the universe's creation from nothing and its evolution and discusses the possibility of base energy as one of the main building blocks of this universe.

Keywords: big bang, cosmic inflation, birth of universe, energy creation, universe evolution

Procedia PDF Downloads 99
18744 Age and Population Structure of the Goby Parapocryptes Serperaster in the Mekong Delta, Vietnam, Based on Length-Frequency and Otolith Analyses

Authors: Quang Minh Dinh, Jian Guang Qin, Sabine Dittmann, Dinh Dac Tran

Abstract:

The age and population structure the dermal gopy Parapocryptes serperaster were studied using length distributions, otolith and von Bertalanffy model in the Mekong Delta over a whole year through monthly sampling. The sex ratio of P. serperaster was near 1:1, and von Bertalanffy growth parameters were L∞= 25.2 cm, K = 0.74 yr-1, and t0 = -0.22 yr-1. Fish size at first entry to fishery was 14.6 cm, and fishing mortality (1.57 yr-1) and natural mortality (1.51 yr-1) accounted for 51% and 49% of the total mortality (3.07 yr-1), respectively. Relative yield-per-recruit and biomass-per-recruit analyses revealed the levels of maximum exploitation yield (Emax = 0.83), maximum economic yield (E0.1 = 0.71) and the yield at 50% reduction of exploitation (E0.5 = 0.37). Otoliths from 164 female and 196 male gobies were readable, and the otolith morphometry data were used for age identification. The mean age estimated by reading otolith annual rings and by analysing length frequency distribution was consistent. This study shows that the otolith morphometry is a reliable method for aging this goby and possibly also applicable for other tropical gobies. The fishery analysis indicates that this goby stock has not been overexploited in the Mekong Delta.

Keywords: Parapcryptes serperaster, otolith, age, pulation structure, Vietnam

Procedia PDF Downloads 656
18743 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)

Authors: Longqing Li

Abstract:

The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.

Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting

Procedia PDF Downloads 321
18742 Sound Performance of a Composite Acoustic Coating With Embedded Parallel Plates Under Hydrostatic Pressure

Authors: Bo Hu, Shibo Wang, Haoyang Zhang, Jie Shi

Abstract:

With the development of sonar detection technology, the acoustic stealth technology of underwater vehicles is facing severe challenges. The underwater acoustic coating is developing towards the direction of low-frequency absorption capability and broad absorption frequency bandwidth. In this paper, an acoustic model of underwater acoustic coating of composite material embedded with periodical steel structure is presented. The model has multiple high absorption peaks in the frequency range of 1kHz-8kHz, where achieves high sound absorption and broad bandwidth performance. It is found that the frequencies of the absorption peaks are related to the classic half-wavelength transmission principle. The sound absorption performance of the acoustic model is investigated by the finite element method using COMSOL software. The sound absorption mechanism of the proposed model is explained by the distributions of the displacement vector field. The influence of geometric parameters of periodical steel structure, including thickness and distance, on the sound absorption ability of the proposed model are further discussed. The acoustic model proposed in this study provides an idea for the design of underwater low-frequency broadband acoustic coating, and the results shows the possibility and feasibility for practical underwater application.

Keywords: acoustic coating, composite material, broad frequency bandwidth, sound absorption performance

Procedia PDF Downloads 174
18741 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG

Procedia PDF Downloads 182
18740 The Effect of Lande G-Factors on the Quantum and Thermal Entanglement in the Mixed Spin-(1/2,S) Heisenberg Dimer

Authors: H. Vargova, J. Strecka, N. Tomasovicova

Abstract:

A rigorous analytical treatment, with the help of a concept of negativity, is used to study the quantum and thermal entanglement in an isotropic mixed spin-(1/2,S) Heisenberg dimer. The effect of the spin-S magnitude, as well as the effect of diversity between Landé g-factors of magnetic constituents on system entanglement, is exhaustively analyzed upon the variation of the external magnetic and electric field, respectively. It was identified that the increasing magnitude of the spin-S species in a mixed spin-(1/2,S) Heisenberg dimer with comparative Landé g-factors have always a reduction effect on a degree of the quantum entanglement, but it strikingly shifts the thermal entanglement to the higher temperatures. Surprisingly, out of the limit of identical Landé g-factors, the increasing magnitude of spin-S entities can enhance the system entanglement in both low and high magnetic fields. Besides this, we identify that the analyzed dimer with a high-enough magnitude of the spin-S entities at a sufficiently high magnetic field can exhibit unconventional thermally driven re-entrance between the entangled and unentangled mixed state. The importance of the electric-field stimuli is also discussed in detail.

Keywords: quantum and thermal entantanglement, mixed spin Heisenberg model, negativity, reentrant phase transition

Procedia PDF Downloads 99
18739 Schiff Bases of Isatin and Admantane-1-Carbohydrazide: Synthesis, Characterization, and Anticonvulsant Activity

Authors: Hind O. Osman, Tilal Elsaman, Bashir A. Yousef, Esraa Elhadi, Aimun A. E. Ahmed, Eyman Mohamed Eltayib, Malik Suliman Mohamed, Magdi Awadalla Mohamed

Abstract:

Epilepsy is the most common neurological condition and cause of substantial morbidity and mortality. In the present study, the molecular hybridization tool was adopted to obtain six Schiff bases of isatin and adamantane-1-carbohydrazide (18–23). Then, their anticonvulsant activity was evaluated using a pentylenetetrazole- (PTZ-) induced seizure model using phenobarbitone as a positive control. Our findings showed that compounds 18–23 provided significant protection against PTZ-induced seizure, and maximum activities were associated with compound 23. Moreover, all investigated compounds increased the latency of induced convulsion and reduced the duration of epilepsy, with compound 23 being the best. Interestingly, most of the synthesized molecules showed a reduction in neurological symptoms and severity of the seizure. Molecular docking studies suggest GABA-A receptor as a potential target, and in silico ADME screening revealed that the pharmaceutical properties of compound 23 are within the specified limit. Thus, compound 23 was identified as a promising candidate that warrants further drug discovery processes.

Keywords: isatin and adamantane, anticonvulsant activity, PTZ-induced seizure, molecular docking

Procedia PDF Downloads 207
18738 Machine Learning Data Architecture

Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap

Abstract:

Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.

Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning

Procedia PDF Downloads 64
18737 Data-Driven Dynamic Overbooking Model for Tour Operators

Authors: Kannapha Amaruchkul

Abstract:

We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.

Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator

Procedia PDF Downloads 134
18736 PM Air Quality of Windsor Regional Scale Transport’s Impact and Climate Change

Authors: Moustafa Osman Mohammed

Abstract:

This paper is mapping air quality model to engineering the industrial system that ultimately utilized in extensive range of energy systems, distribution resources, and end-user technologies. The model is determining long-range transport patterns contribution as area source can either traced from 48 hrs backward trajectory model or remotely described from background measurements data in those days. The trajectory model will be run within stable conditions and quite constant parameters of the atmospheric pressure at the most time of the year. Air parcel trajectory is necessary for estimating the long-range transport of pollutants and other chemical species. It provides a better understanding of airflow patterns. Since a large amount of meteorological data and a great number of calculations are required to drive trajectory, it will be very useful to apply HYPSLIT model to locate areas and boundaries influence air quality at regional location of Windsor. 2–days backward trajectories model at high and low concentration measurements below and upward the benchmark which was areas influence air quality measurement levels. The benchmark level will be considered as 30 (μg/m3) as the moderate level for Ontario region. Thereby, air quality model is incorporating a midpoint concept between biotic and abiotic components to broaden the scope of quantification impact. The later outcomes’ theories of environmental obligation suggest either a recommendation or a decision of what is a legislative should be achieved in mitigation measures of air emission impact ultimately.

Keywords: air quality, management systems, environmental impact assessment, industrial ecology, climate change

Procedia PDF Downloads 247
18735 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines

Authors: Mustafa Sahin, İlkay Yavrucuk

Abstract:

This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.

Keywords: adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control

Procedia PDF Downloads 136
18734 Modeling and Statistical Analysis of a Soap Production Mix in Bejoy Manufacturing Industry, Anambra State, Nigeria

Authors: Okolie Chukwulozie Paul, Iwenofu Chinwe Onyedika, Sinebe Jude Ebieladoh, M. C. Nwosu

Abstract:

The research work is based on the statistical analysis of the processing data. The essence is to analyze the data statistically and to generate a design model for the production mix of soap manufacturing products in Bejoy manufacturing company Nkpologwu, Aguata Local Government Area, Anambra state, Nigeria. The statistical analysis shows the statistical analysis and the correlation of the data. T test, Partial correlation and bi-variate correlation were used to understand what the data portrays. The design model developed was used to model the data production yield and the correlation of the variables show that the R2 is 98.7%. However, the results confirm that the data is fit for further analysis and modeling. This was proved by the correlation and the R-squared.

Keywords: General Linear Model, correlation, variables, pearson, significance, T-test, soap, production mix and statistic

Procedia PDF Downloads 445
18733 Surveying Earthquake Vulnerabilities of District 13 of Kabul City, Afghanistan

Authors: Mohsen Mohammadi, Toshio Fujimi

Abstract:

High population and irregular urban development in Kabul city, Afghanistan's capital, are among factors that increase its vulnerability to earthquake disasters (on top of its location in a high seismic region); this can lead to widespread economic loss and casualties. This study aims to evaluate earthquake risks in Kabul's 13th district based on scientific data. The research data, which include hazard curves of Kabul, vulnerability curves, and a questionnaire survey through sampling in district 13, have been incorporated to develop risk curves. To estimate potential casualties, we used a set of M parameters in a model developed by Coburn and Spence. The results indicate that in the worst case scenario, more than 90% of district 13, which comprises mostly residential buildings, is exposed to high risk; this may lead to nearly 1000 million USD economic loss and 120 thousand casualties (equal to 25.88% of the 13th district's population) for a nighttime earthquake. To reduce risks, we present the reconstruction of the most vulnerable buildings, which are primarily adobe and masonry buildings. A comparison of risk reduction between reconstructing adobe and masonry buildings indicates that rebuilding adobe buildings would be more effective.

Keywords: earthquake risk evaluation, Kabul, mitigation, vulnerability

Procedia PDF Downloads 281
18732 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course

Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu

Abstract:

This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.

Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN

Procedia PDF Downloads 44
18731 Model of Monitoring and Evaluation of Student’s Learning Achievement: Application of Value-Added Assessment

Authors: Jatuphum Ketchatturat

Abstract:

Value-added assessment has been used for developing the model of monitoring and evaluation of student's learning achievement. The steps of model development consist of 1) study and analyisis of the school and the district report system of student achievement and progress, 2) collecting the data of student achievement to develop the value added indicator, 3) developing the system of value-added assessment by participatory action research approach, 4) putting the system of value-added assessment into the educational district of secondary school, 5) determining the quality of the developed system of value-added assessment. The components of the developed model consist of 1) the database of value-added assessment of student's learning achievement, 2) the process of monitoring and evaluation the student's learning achievement, and 3) the reporting system of value-added assessment of student's learning achievement.

Keywords: learning achievement, monitoring and evaluation, value-added assessment

Procedia PDF Downloads 424
18730 Application of Random Forest Model in The Prediction of River Water Quality

Authors: Turuganti Venkateswarlu, Jagadeesh Anmala

Abstract:

Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC.

Keywords: water quality, land use factors, random forest, fecal coliform

Procedia PDF Downloads 197
18729 Variability of Surface Air Temperature in Sri Lanka and Its Relation to El Nino Southern Oscillation and Indian Ocean Dipole

Authors: Athdath Waduge Susantha Janaka Kumara, Xiefei Zhi, Zin Mie Mie Sein

Abstract:

Understanding the air temperature variability is crucially important for disaster risk reduction and management. In this study, we used 15 synoptic meteorological stations to assess the spatiotemporal variability of air temperature over Sri Lanka during 1972–2021. The empirical orthogonal function (EOF), Principal component analysis (PCA), Mann-Kendall test, power spectrum analysis and correlation coefficient analysis were used to investigate the long-term trends of air temperature and their possible relation to sea surface temperature (SST) over the region. The results indicate that an increasing trend in air temperature was observed with the abrupt climate change noted in the year 1994. The spatial distribution of EOF1 (63.5%) shows the positive and negative loading dipole patterns from south to northeast, while EOF2 (23.4%) explains warmer (colder) in some parts of central (south and east) areas. The power spectrum of PC1 (PC2) indicates that there is a significant period of 3-4 years (quasi-2 years). Moreover, Indian Ocean Dipole (IOD) provides a strong positive correlation with the air temperature of Sri Lanka, while the EL Nino Southern Oscillation (ENSO) presents a weak negative correlation. Therefore, IOD events led to higher temperatures in the region. This study’s findings can help disaster risk reduction and management in the country.

Keywords: air temperature, interannaul variability, ENSO, IOD

Procedia PDF Downloads 100
18728 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization

Authors: Xiongxiong You, Zhanwen Niu

Abstract:

Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.

Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms

Procedia PDF Downloads 141
18727 Causes and Effects of the 2012 Flood Disaster on Affected Communities in Nigeria

Authors: Abdulquadri Ade Bilau, Richard Ajayi Jimoh, Adejoh Amodu Adaji

Abstract:

The increasing exposures to natural hazards have continued to severely impair on the built environment causing huge fatalities, mass damage and destruction of housing and civil infrastructure while leaving psychosocial impacts on affected communities. The 2012 flood disaster in Nigeria which affected over 7 million inhabitants in 30 of the 36 states resulted in 363 recorded fatalities with about 600,000 houses and a number of civil infrastructure damaged or destroyed. In Kogi State, over 500 thousand people were displaced in 9 out of the 21 local government affected while Ibaji and Lokoja local governments were worst hit. This study identifies the causes and 2012 flood disasters and its effect on housing and livelihood. Personal observation and questionnaire survey were instruments used in carrying out the study and data collected were analysed using descriptive statistical tool. Findings show that the 2012 flood disaster was aided by the gap in hydrological data, sudden dam failure, and inadequate drainage capacity to reduce flood risk. The study recommends that communities residing along the river banks in Lokoja and Ibaji LGAs must be adequately educated on their exposure to flood hazard and mitigation and risk reduction measures such as construction of adequate drainage channel are constructed in affected communities.

Keywords: flood, hazards, housing, risk reduction, vulnerability

Procedia PDF Downloads 265
18726 Hybrid Inventory Model Optimization under Uncertainties: A Case Study in a Manufacturing Plant

Authors: E. Benga, T. Tengen, A. Alugongo

Abstract:

Periodic and continuous inventory models are the two classical management tools used to handle inventories. These models have advantages and disadvantages. The implementation of both continuous (r,Q) inventory and periodic (R, S) inventory models in most manufacturing plants comes with higher cost. Such high inventory costs are due to the fact that most manufacturing plants are not flexible enough. Since demand and lead-time are two important variables of every inventory models, their effect on the flexibility of the manufacturing plant matter most. Unfortunately, these effects are not clearly understood by managers. The reason is that the decision parameters of the continuous (r, Q) inventory and periodic (R, S) inventory models are not designed to effectively deal with the issues of uncertainties such as poor manufacturing performances, delivery performance supplies performances. There is, therefore, a need to come up with a predictive and hybrid inventory model that can combine in some sense the feature of the aforementioned inventory models. A linear combination technique is used to hybridize both continuous (r, Q) inventory and periodic (R, S) inventory models. The behavior of such hybrid inventory model is described by a differential equation and then optimized. From the results obtained after simulation, the continuous (r, Q) inventory model is more effective than the periodic (R, S) inventory models in the short run, but this difference changes as time goes by. Because the hybrid inventory model is more cost effective than the continuous (r,Q) inventory and periodic (R, S) inventory models in long run, it should be implemented for strategic decisions.

Keywords: periodic inventory, continuous inventory, hybrid inventory, optimization, manufacturing plant

Procedia PDF Downloads 382
18725 A Fishery Regulation Model: Bargaining over Fishing Pressure

Authors: Duplan Yves Jamont Junior

Abstract:

The Diamond-Mortensen-Pissarides model widely used in labor economics is tailored to fishery. By this way, a fishing function is defined to depict the fishing technology, and Bellman equations are established to describe the behaviors of fishermen and conservationists. On this basis, a negotiation takes place as a Nash-bargaining over the upper limit of the fishing pressure between both political representative groups of fishermen and conservationists. The existence and uniqueness conditions of the Nash-bargained fishing pressure are established. Given the biomass evolution equation, the dynamics of the model variables (fishing pressure, biomass, fish need) is studied.

Keywords: conservation, fishery, fishing, Nash bargaining

Procedia PDF Downloads 260