Search results for: vulnerability intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2259

Search results for: vulnerability intelligence

279 The Impact of Artificial Intelligence on Student’s Behavior and Mind

Authors: Makarios Mosaad Thabet Ibrahim

Abstract:

the existing context paper targets to give the important position of ‘scholar voice’ and the track trainer inside the study room, which contributes to greater scholar-focused song training. The goal is to consciousness at the capabilities of the scholar voice via the tune spectrum, which has been born in the music school room, and the instructor’s methodologies and techniques used within the song classroom. The tune curriculum, the principles of pupil-centered song schooling, and the function of students and teachers as tune ambassadors have been taken into consideration the essential song parameters of scholar voice. The scholar- voice is a well worth-mentioning factor of a scholar-focused training, and all instructors have to take into account and sell its life in their lecture room. student affairs services play a critical function in contributing to the wholistic development and success of college students as they progress through their educational careers. The examine incorporates a multifaceted examination of student affairs carrier offerings among 10 personal and three public Baghdad universities. scholar affairs administrators (thirteen) have been surveyed together with over 300 students to determine university-subsidized services and pupil pride and attention. The pupil affairs service studies findings various drastically among non-public and public establishments and people that observed a country wide and international curriculum. Universities need to persist to conform to changing demographics and technological improvements to enhance students' private and academic successes, and pupil affairs services are key to preparing graduates to thrive in a diverse international world.

Keywords: college student-athletes, self-concept, use of social media training, social networking student affairs, student success, higher education, Iraq, universities, Baghdad student's voice, student-centered education, music ambassadors, music teachers

Procedia PDF Downloads 37
278 CD97 and Its Role in Glioblastoma Stem Cell Self-Renewal

Authors: Niklas Ravn-Boess, Nainita Bhowmick, Takamitsu Hattori, Shohei Koide, Christopher Park, Dimitris Placantonakis

Abstract:

Background: Glioblastoma (GBM) is the most common and deadly primary brain malignancy in adults. Tumor propagation, brain invasion, and resistance to therapy critically depend on GBM stem-like cells (GSCs); however, the mechanisms that regulate GSC self-renewal are incompletely understood. Given the aggressiveness and poor prognosis of GBM, it is imperative to find biomarkers that could also translate into novel drug targets. Along these lines, we have identified a cell surface antigen, CD97 (ADGRE5), an adhesion G protein-coupled receptor (GPCR), that is expressed on GBM cells but is absent from non-neoplastic brain tissue. CD97 has been shown to promote invasiveness, angiogenesis, and migration in several human cancers, but its frequency of expression and functional role in regulating GBM growth and survival, and its potential as a therapeutic target has not been investigated. Design: We assessed CD97 mRNA and protein expression in patient derived GBM samples and cell lines using publicly available RNA-sequencing datasets and flow cytometry, respectively. To assess CD97 function, we generated shRNA lentiviral constructs that target a sequence in the CD97 extracellular domain (ECD). A scrambled shRNA (scr) with no predicted targets in the genome was used as a control. We evaluated CD97 shRNA lentivirally transduced GBM cells for Ki67, Annexin V, and DAPI. We also tested CD97 KD cells for their ability to self-renew using clonogenic tumorsphere formation assays. Further, we utilized synthetic Abs (sAbs) generated against the ECD of CD97 to test for potential antitumor effects using patient-derived GBM cell lines. Results: CD97 mRNA expression was expressed at high levels in all GBM samples available in the TCGA cohort. We found high levels of surface CD97 protein expression in 6/6 patient-derived GBM cell cultures, but not human neural stem cells. Flow cytometry confirmed downregulation of CD97 in CD97 shRNA lentivirally transduced cells. CD97 KD induced a significant reduction in cell growth in 3 independent GBM cell lines representing mesenchymal and proneural subtypes, which was accompanied by reduced (~20%) Ki67 staining and increased (~30%) apoptosis. Incubation of GBM cells with sAbs (20 ug/ ml) against the ECD of CD97 for 3 days induced GSC differentiation, as determined by the expression of GFAP and Tubulin. Using three unique GBM patient derived cultures, we found that CD97 KD attenuated the ability of GBM cells to initiate sphere formation by over 300 fold, consistent with an impairment in GSC self-renewal. Conclusion: Loss of CD97 expression in patient-derived GBM cells markedly decreases proliferation, induces cell death, and reduces tumorsphere formation. sAbs against the ECD of CD97 reduce tumorsphere formation, recapitulating the phenotype of CD97 KD, suggesting that sAbs that inhibit CD97 function exhibit anti-tumor activity. Collectively, these findings indicate that CD97 is necessary for the proliferation and survival of human GBM cells and identify CD97 as a promising therapeutically targetable vulnerability in GBM.

Keywords: adhesion GPCR, CD97, GBM stem cell, glioblastoma

Procedia PDF Downloads 138
277 Intrusion Detection in SCADA Systems

Authors: Leandros A. Maglaras, Jianmin Jiang

Abstract:

The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.

Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection

Procedia PDF Downloads 555
276 Disinformation’s Threats to Democracy in Central Africa: Case Studies from Cameroon and Central African Republic

Authors: Simont Toussi

Abstract:

Cameroon and the Central African Republic arebound by the provisions of many regional and international charters, which condemn the manipulation of information, obstacles to access reliable information, or the limitation of freedoms of expression and opinion. These two countries also have constitutional guarantees for free speech and access to true and liable information. However, they are yet to define specific policies and regulations for access to information, disinformation, or misinformation. Yet, certain countries’ laws and regulations related to information and communication technologies, to criminal procedures, to terrorism, or intelligence services contain provisions that rather hider human rights by condemning false information. Like many other African countries, Cameroon and the Central African Republic face a profound democratic regression, and governments use multiple methods to stifle online discourse and digital rights. Despite the increased uptake of digital tools for political participation, there is a lack of interactivity and adoption of these tools. This enables a scarcity of information and creates room for the spreading of disinformation in the public space, hamperingdemocracy and the respect for human rights. This research aims to analyse the adequacy of stakeholders’ responses to disinformation in Cameroon and the Central African Republic in periods of political contestation, such as elections and anti-government protests, to highlight the nature, perpetrators, strategies, and channels of disinformation, as well as its effects on democratic actors, including civil society, bloggers, government critics, activists, and other human rights defenders. The study follows a qualitative method with literature review, content analysis, andkey informant’sinterviews with stakeholders’ representatives, emphasized crowdsourcing as a data and information collecting method in the two countries.

Keywords: disinformation, democracy, political manipulation, social media, media, fake news, central Africa, cameroon, misinformation, free speech

Procedia PDF Downloads 109
275 Brilliant Candy Consists of Centella asiatica Extract and Soy Milk to Safe Nutrition Child of Indonesia

Authors: Hesti Ghassani, Tessa Septiadi

Abstract:

In the world we live on today, young generation highly influences the future of a nation. We have to concern that the condition of the country in 20 years later depending by the character of young adults these days. Therefore, it is important that we have to support and control the teenagers especially in one of developing countries in which I live in: Indonesia. Indonesia is a home to 240 million people. It diverse in languages, cultures, as well as attitudes. The differences among each individual lead us to think that there is something we have to take care of. It is necessary to pay attention to the nutrition consumed by the nation. We initiate to control the food consumed by young generation as early as a primary students. Nutrition affects the immune of the body, neuron system, and, most importantly brain. One of the nutrition that has to be fulfilled is milk. However, most of the population in Indonesia isn’t aware of the importance of consuming milk as their daily basis. We’ve formed an innovation called the Brilliant Candy which is affordable and rich in nutrition. So that is why the paper made by literature study to solve the problem with effective ways using available resources, practice and cheap. Brilliant Candy consists of Centella asiatica extract mixed with Soy milk. Centella asiatica contains of alkaloid which give the energy to brain and circulate oxygen. Based on the research of Sathya and Ganga, Centella asiatica can increase the intelligence. Indeed, Centella asiatica can relieve stress, and help us in staying focus. Soy milk is a kind of milk which come from extracted soybean. Soybean is rich in flafonoid. It has various advantages for our body. Which can also support child nutrition consumed. Soybean boosts immune system, helps digestive system, and in terms of food, soy bean exists as a source of nutrition. A method to get extraction of Centella asiatica is namely maserasi using ethanol. While making soybean milk with got the pollen of soybean. Both materials get mixed processed into hard candy with congelation of.

Keywords: Indonesia, Centella asiatica, Soy milk, alkaloid, flafonoid

Procedia PDF Downloads 302
274 Application and Aspects of Biometeorology in Inland Open Water Fisheries Management in the Context of Changing Climate: Status and Research Needs

Authors: U.K. Sarkar, G. Karnatak, P. Mishal, Lianthuamluaia, S. Kumari, S.K. Das, B.K. Das

Abstract:

Inland open water fisheries provide food, income, livelihood and nutritional security to millions of fishers across the globe. However, the open water ecosystem and fisheries are threatened due to climate change and anthropogenic pressures, which are more visible in the recent six decades, making the resources vulnerable. Understanding the interaction between meteorological parameters and inland fisheries is imperative to develop mitigation and adaptation strategies. As per IPCC 5th assessment report, the earth is warming at a faster rate in recent decades. Global mean surface temperature (GMST) for the decade 2006–2015 (0.87°C) was 6 times higher than the average over the 1850–1900 period. The direct and indirect impacts of climatic parameters on the ecology of fisheries ecosystem have a great bearing on fisheries due to alterations in fish physiology. The impact of meteorological factors on ecosystem health and fish food organisms brings about changes in fish diversity, assemblage, reproduction and natural recruitment. India’s average temperature has risen by around 0.7°C during 1901–2018. The studies show that the mean air temperature in the Ganga basin has increased in the range of 0.20 - 0.47 °C and annual rainfall decreased in the range of 257-580 mm during the last three decades. The studies clearly indicate visible impacts of climatic and environmental factors on inland open water fisheries. Besides, a significant reduction in-depth and area (37.20–57.68% reduction), diversity of natural indigenous fish fauna (ranging from 22.85 to 54%) in wetlands and progression of trophic state from mesotrophic to eutrophic were recorded. In this communication, different applications of biometeorology in inland fisheries management with special reference to the assessment of ecosystem and species vulnerability to climatic variability and change have been discussed. Further, the paper discusses the impact of climate anomaly and extreme climatic events on inland fisheries and emphasizes novel modeling approaches for understanding the impact of climatic and environmental factors on reproductive phenology for identification of climate-sensitive/resilient fish species for the adoption of climate-smart fisheries in the future. Adaptation and mitigation strategies to enhance fish production and the role of culture-based fisheries and enclosure culture in converting sequestered carbon into blue carbon have also been discussed. In general, the type and direction of influence of meteorological parameters on fish biology in open water fisheries ecosystems are not adequately understood. The optimum range of meteorological parameters for sustaining inland open water fisheries is yet to be established. Therefore, the application of biometeorology in inland fisheries offers ample scope for understanding the dynamics in changing climate, which would help to develop a database on such least, addressed research frontier area. This would further help to project fisheries scenarios in changing climate regimes and develop adaptation and mitigation strategies to cope up with adverse meteorological factors to sustain fisheries and to conserve aquatic ecosystem and biodiversity.

Keywords: biometeorology, inland fisheries, aquatic ecosystem, modeling, India

Procedia PDF Downloads 196
273 Provision of Different Layers of Activities for Different Iranian Intermediate English as a Foreign Language Learners for the Beneficial Use of Films within Speaking Classes

Authors: Zahra Ebrahimi, Abbas Moradan

Abstract:

This study investigated the effect of applying different layers of activity for different Iranian intermediate EFL learner’s oral proficiency and two of its components (fluency and accura-cy) for the beneficial use of films within speaking classes. For this purpose, thirty Iranian EFL intermediate learners were selected based on availability sampling, they were divided into one experimental group and one control group, each consisting of 15 participants, who were proved to be homogeneous based on the results obtained from IELTS oral proficien-cy test prior to the treatment. Experimental Group received the treatment which was apply-ing different layers of speaking tasks according to learners’ level of fluency and accuracy. Control group received ordinal treatment of speaking classrooms. The materials for this study consisted of 11 English movies for each session, voice-recorder device, and IELTS oral proficiency tests as well as two interviews based on Ur’s oral scale for measuring fluen-cy and accuracy. The treatment was run for 12 sessions in six weeks. At the end of the treatment, all the students both in experimental and control group were given a post-test interview based on Ur’s scale. To compare and contrast the amount of progress of the learners in different groups the results of the pre-test and post-test of speaking were analysed by using T-tests. Moreover, Multivariate analysis of variance was also used to check the hypotheses. Results showed that application of different layers of activity with regard to students’ level, led to a significantly superior performance in experimental group. Thus, this study verified the positive effect of implementation of different layers of activity and tasks to achieve progress in speaking skill. It can also help to create a less stressful at-mosphere of learning in which all the students will be given specific time to speak and lead them to be autonomous learners.

Keywords: differentiated instruction, learners’ style, multiple intelligence, speaking skill, task-based activities

Procedia PDF Downloads 142
272 Epidemiological Patterns of Pediatric Fever of Unknown Origin

Authors: Arup Dutta, Badrul Alam, Sayed M. Wazed, Taslima Newaz, Srobonti Dutta

Abstract:

Background: In today's world, with modern science and contemporary technology, a lot of diseases may be quickly identified and ruled out, but children's fever of unknown origin (FUO) still presents diagnostic difficulties in clinical settings. Any fever that reaches 38 °C and lasts for more than seven days without a known cause is now classified as a fever of unknown origin (FUO). Despite tremendous progress in the medical sector, fever of unknown origin, or FOU, persists as a major health issue and a major contributor to morbidity and mortality, particularly in children, and its spectrum is sometimes unpredictable. The etiology is influenced by geographic location, age, socioeconomic level, frequency of antibiotic resistance, and genetic vulnerability. Since there are currently no known diagnostic algorithms, doctors are forced to evaluate each patient one at a time with extreme caution. A persistent fever poses difficulties for both the patient and the doctor. This prospective observational study was carried out in a Bangladeshi tertiary care hospital from June 2018 to May 2019 with the goal of identifying the epidemiological patterns of fever of unknown origin in pediatric patients. Methods: It was a hospital-based prospective observational study carried out on 106 children (between 2 months and 12 years) with prolonged fever of >38.0 °C lasting for more than 7 days without a clear source. Children with additional chronic diseases or known immunodeficiency problems were not allowed. Clinical practices that helped determine the definitive etiology were assessed. Initial testing included a complete blood count, a routine urine examination, PBF, a chest X-ray, CRP measurement, blood cultures, serology, and additional pertinent investigations. The analysis focused mostly on the etiological results. The standard program SPSS 21 was used to analyze all of the study data. Findings: A total of 106 patients identified as having FUO were assessed, with over half (57.5%) being female and the majority (40.6%) falling within the 1 to 3-year age range. The study categorized the etiological outcomes into five groups: infections, malignancies, connective tissue conditions, miscellaneous, and undiagnosed. In the group that was being studied, infections were found to be the main cause in 44.3% of cases. Undiagnosed cases came in at 31.1%, cancers at 10.4%, other causes at 8.5%, and connective tissue disorders at 4.7%. Hepato-splenomegaly was seen in people with enteric fever, malaria, acute lymphoid leukemia, lymphoma, and hepatic abscesses, either by itself or in combination with other conditions. About 53% of people who were not diagnosed also had hepato-splenomegaly at the same time. Conclusion: Infections are the primary cause of PUO (pyrexia of unknown origin) in children, with undiagnosed cases being the second most common cause. An incremental approach is beneficial in the process of diagnosing a condition. Non-invasive examinations are used to diagnose infections and connective tissue disorders, while invasive investigations are used to diagnose cancer and other ailments. According to this study, the prevalence of undiagnosed diseases is still remarkable, so extensive historical analysis and physical examinations are necessary in order to provide a precise diagnosis.

Keywords: children, diagnostic challenges, fever of unknown origin, pediatric fever, undiagnosed diseases

Procedia PDF Downloads 31
271 The Effect of Artificial Intelligence on Digital Factory

Authors: Sherif Fayez Lewis Ghaly

Abstract:

up to datefacupupdated planning has the mission of designing merchandise, plant life, procedures, enterprise, regions, and the development of a up to date. The requirements for up-to-date planning and the constructing of a updated have changed in recent years. everyday restructuring is turning inupupdated greater essential up-to-date hold the competitiveness of a manufacturing facilityupdated. restrictions in new regions, shorter existence cycles of product and manufacturing generation up-to-date a VUCA global (Volatility, Uncertainty, Complexity & Ambiguity) up-to-date greater frequent restructuring measures inside a manufacturing facilityupdated. A virtual up-to-date model is the making plans basis for rebuilding measures and up-to-date an fundamental up-to-date. short-time period rescheduling can now not be handled through on-web site inspections and manual measurements. The tight time schedules require 3177227fc5dac36e3e5ae6cd5820dcaa making plans fashions. updated the high variation fee of facup-to-dateries defined above, a method for rescheduling facupdatedries on the idea of a modern-day digital up to datery dual is conceived and designed for sensible software in updated restructuring projects. the point of interest is on rebuild approaches. The purpose is up-to-date preserve the planning basis (virtual up-to-date model) for conversions within a up to datefacupupdated updated. This calls for the application of a methodology that reduces the deficits of present techniques. The goal is up-to-date how a digital up to datery version may be up to date up to date during ongoing up to date operation. a method up-to-date on phoup to dategrammetry technology is presented. the focus is on developing a easy and fee-powerful up to date tune the numerous adjustments that arise in a manufacturing unit constructing in the course of operation. The method is preceded with the aid of a hardware and software assessment up-to-date become aware of the most cost effective and quickest version.

Keywords: building information modeling, digital factory model, factory planning, maintenance digital factory model, photogrammetry, restructuring

Procedia PDF Downloads 29
270 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 26
269 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second

Authors: P. V. Pramila , V. Mahesh

Abstract:

Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.

Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest

Procedia PDF Downloads 311
268 Analysis of Elastic-Plastic Deformation of Reinforced Concrete Shear-Wall Structures under Earthquake Excitations

Authors: Oleg Kabantsev, Karomatullo Umarov

Abstract:

The engineering analysis of earthquake consequences demonstrates a significantly different level of damage to load-bearing systems of different types. Buildings with reinforced concrete columns and separate shear-walls receive the highest level of damage. Traditional methods for predicting damage under earthquake excitations do not provide an answer to the question about the reasons for the increased vulnerability of reinforced concrete frames with shear-walls bearing systems. Thus, the study of the problem of formation and accumulation of damages in the structures reinforced concrete frame with shear-walls requires the use of new methods of assessment of the stress-strain state, as well as new approaches to the calculation of the distribution of forces and stresses in the load-bearing system based on account of various mechanisms of elastic-plastic deformation of reinforced concrete columns and walls. The results of research into the processes of non-linear deformation of structures with a transition to destruction (collapse) will allow to substantiate the characteristics of limit states of various structures forming an earthquake-resistant load-bearing system. The research of elastic-plastic deformation processes of reinforced concrete structures of frames with shear-walls is carried out on the basis of experimentally established parameters of limit deformations of concrete and reinforcement under dynamic excitations. Limit values of deformations are defined for conditions under which local damages of the maximum permissible level are formed in constructions. The research is performed by numerical methods using ETABS software. The research results indicate that under earthquake excitations, plastic deformations of various levels are formed in various groups of elements of the frame with the shear-wall load-bearing system. During the main period of seismic effects in the shear-wall elements of the load-bearing system, there are insignificant volumes of plastic deformations, which are significantly lower than the permissible level. At the same time, plastic deformations are formed in the columns and do not exceed the permissible value. At the final stage of seismic excitations in shear-walls, the level of plastic deformations reaches values corresponding to the plasticity coefficient of concrete , which is less than the maximum permissible value. Such volume of plastic deformations leads to an increase in general deformations of the bearing system. With the specified parameters of the deformation of the shear-walls in concrete columns, plastic deformations exceeding the limiting values develop, which leads to the collapse of such columns. Based on the results presented in this study, it can be concluded that the application seismic-force-reduction factor, common for the all load-bearing system, does not correspond to the real conditions of formation and accumulation of damages in elements of the load-bearing system. Using a single coefficient of seismic-force-reduction factor leads to errors in predicting the seismic resistance of reinforced concrete load-bearing systems. In order to provide the required level of seismic resistance buildings with reinforced concrete columns and separate shear-walls, it is necessary to use values of the coefficient of seismic-force-reduction factor differentiated by types of structural groups.1

Keywords: reinforced concrete structures, earthquake excitation, plasticity coefficients, seismic-force-reduction factor, nonlinear dynamic analysis

Procedia PDF Downloads 207
267 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh

Abstract:

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications

Procedia PDF Downloads 318
266 Enhancing Seismic Resilience in Colombia's Informal Housing: A Low-cost Retrofit Strategy with Buckling-restrained Braces to Protect Vulnerable Communities in Earthquake-prone Regions

Authors: Luis F. Caballero-castro, Dirsa Feliciano, Daniela Novoa, Orlando Arroyo, Jesús D. Villalba-morales

Abstract:

Colombia faces a critical challenge in seismic resilience due to the prevalence of informal housing, which constitutes approximately 70% of residential structures. More than 10 million Colombians (20% of the population), live in homes susceptible to collapse in the event of an earthquake. This, combined with the fact that 83% of the population is in intermediate and high seismic hazard areas, has brought serious consequences to the country. These consequences became evident during the 1999 Armenia earthquake, which affected nearly 100,000 properties and represented economic losses equivalent to 1.88% of that year's Gross Domestic Product (GDP). Despite previous efforts to reinforce informal housing through methods like externally reinforced masonry walls, alternatives related to seismic protection systems (SPDs), such as Buckling-Restrained Braces (BRB), have not yet been explored in the country. BRBs are reinforcement elements capable of withstanding both compression and tension, making them effective in enhancing the lateral stiffness of structures. In this study, the use of low-cost and easily installable BRBs for the retrofit of informal housing in Colombia was evaluated, considering the economic limitations of the communities. For this purpose, a case study was selected involving an informally constructed dwelling in the country, from which field information on its structural characteristics and construction materials was collected. Based on the gathered information, nonlinear models with and without BRBs were created, and their seismic performance was analyzed and compared through incremental static (pushover) and nonlinear dynamic analyses. In the first analysis, the capacity curve was identified, showcasing the sequence of failure events occurring from initial yielding to structural collapse. In the second case, the model underwent nonlinear dynamic analyses using a set of seismic records consistent with the country's seismic hazard. Based on the results, fragility curves were calculated to evaluate the probability of failure of the informal housings before and after the intervention with BRBs, providing essential information about their effectiveness in reducing seismic vulnerability. The results indicate that low-cost BRBs can significantly increase the capacity of informal housing to withstand earthquakes. The dynamic analysis revealed that retrofit structures experienced lower displacements and deformations, enhancing the safety of residents and the seismic performance of informally constructed houses. In other words, the use of low-cost BRBs in the retrofit of informal housing in Colombia is a promising strategy for improving structural safety in seismic-prone areas. This study emphasizes the importance of seeking affordable and practical solutions to address seismic risk in vulnerable communities in earthquake-prone regions in Colombia and serves as a model for addressing similar challenges of informal housing worldwide.

Keywords: buckling-restrained braces, fragility curves, informal housing, incremental dynamic analysis, seismic retrofit

Procedia PDF Downloads 96
265 The Impact of Artificial Intelligence on Pharmacology

Authors: Ramy Reda Morgan Kamel

Abstract:

generation-greater education gear are being unexpectedly included into health packages globally. these gadget provide an interactive platform for students and may be used to deliver topics in various modes which include video games and simulations. Simulations are of particular hobby to healthcare education, wherein they are hired to enhance clinical know-how and help to bridge the distance among precept and exercise. Simulations will regularly test talents for practical responsibilities, but restrained research examines the effects of simulation on student perceptions of their getting to know. The aim of this observe become to determine the effects of an interactive virtual patient simulation for pharmacology schooling and clinical workout on scholar know-how, skills and confidence. Ethics popularity of the examine end up received from Griffith college studies Ethics Committee (PHM/eleven/14/HREC). The simulation became intended to duplicate the pharmacy surroundings and affected man or woman interaction. The content material material come to be designed to beautify know-how of proton-pump inhibitor pharmacology, role in therapeutics and secure deliver to sufferers. The tool changed into deployed into a 3rd-year scientific pharmacology and therapeutics course. a number of core exercise regions were examined along with the competency domains of wondering, counselling, referral and product provision. Baseline measures of pupil self-stated knowledge, capabilities and self warranty were taken preceding to the simulation using a especially designed questionnaire. A greater substantial questionnaire became deployed following the virtual affected character simulation, which moreover blanketed measures of scholar engagement with the hobby. A quiz assessing scholar proper and conceptual understanding of proton-pump inhibitor pharmacology and associated counselling statistics changed into also included in both questionnaires.

Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theoryclinical simulation, education, pharmacology, simulation, clinical pharmacology, pharmacometrics, career development pathways

Procedia PDF Downloads 13
264 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection

Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young

Abstract:

Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.

Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving

Procedia PDF Downloads 252
263 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)

Procedia PDF Downloads 22
262 Perception of Mass Media Usage in Educational Development of Rural Communities in Nigeria

Authors: Aniekan James Akpan, Inemesit Akpan Umoren, Uduak Iwok

Abstract:

From prehistoric and primitive cultures, education was seen as a process of culture transmission by way of guiding children into becoming good members of their local communities. Even in modern cultures, education is seen as a systematic discipline aimed at cultivating genuine values to improve oneself and society. Without education, the chances of realizing the desired vision are marred as it is believed that nations that invest much in education are able to reap the desired benefits technologically, economically, socially, politically, and otherwise. In this sense, the moulding of character is considered the primary purpose of education, and until the audience of mass media through its various vehicles is seen as tools for improving the overall development of society. It is believed that a media-friendly person is likely to perform better than someone who is less friendly. This work, therefore, examines the role media play in educational development. As highlighted by the study, a summary of the functions of media shows that they widen horizon by acting as a liberating force, breaking distance, bonds, and transforming a traditional society into a modern one. With the use of technological development theory, agenda-setting theory as well as uses and gratification theory and multiple intelligence theory, the work identifies different ways in which mass media help in educational development and draws attention to the audience’s perception of media functions in terms of educational development. With a survey method and a population of 6,903,321 people, the work sampled 220 respondents using purposive technique drawn from rural communities in the South-South region of Nigeria. The work concludes that mass media are potent vehicles for teaching and learning and therefore recommends that government should provide basic infrastructures to the rural communities to aid full utilization of media potentials in educational development and equally urge media owners and practitioners to as a matter of urgency increase coverage time on issues bordering on education as it is done for political and other issues.

Keywords: educational, development, media usage, perception

Procedia PDF Downloads 131
261 Brain-Computer Interfaces That Use Electroencephalography

Authors: Arda Ozkurt, Ozlem Bozkurt

Abstract:

Brain-computer interfaces (BCIs) are devices that output commands by interpreting the data collected from the brain. Electroencephalography (EEG) is a non-invasive method to measure the brain's electrical activity. Since it was invented by Hans Berger in 1929, it has led to many neurological discoveries and has become one of the essential components of non-invasive measuring methods. Despite the fact that it has a low spatial resolution -meaning it is able to detect when a group of neurons fires at the same time-, it is a non-invasive method, making it easy to use without possessing any risks. In EEG, electrodes are placed on the scalp, and the voltage difference between a minimum of two electrodes is recorded, which is then used to accomplish the intended task. The recordings of EEGs include, but are not limited to, the currents along dendrites from synapses to the soma, the action potentials along the axons connecting neurons, and the currents through the synaptic clefts connecting axons with dendrites. However, there are some sources of noise that may affect the reliability of the EEG signals as it is a non-invasive method. For instance, the noise from the EEG equipment, the leads, and the signals coming from the subject -such as the activity of the heart or muscle movements- affect the signals detected by the electrodes of the EEG. However, new techniques have been developed to differentiate between those signals and the intended ones. Furthermore, an EEG device is not enough to analyze the data from the brain to be used by the BCI implication. Because the EEG signal is very complex, to analyze it, artificial intelligence algorithms are required. These algorithms convert complex data into meaningful and useful information for neuroscientists to use the data to design BCI devices. Even though for neurological diseases which require highly precise data, invasive BCIs are needed; non-invasive BCIs - such as EEGs - are used in many cases to help disabled people's lives or even to ease people's lives by helping them with basic tasks. For example, EEG is used to detect before a seizure occurs in epilepsy patients, which can then prevent the seizure with the help of a BCI device. Overall, EEG is a commonly used non-invasive BCI technique that has helped develop BCIs and will continue to be used to detect data to ease people's lives as more BCI techniques will be developed in the future.

Keywords: BCI, EEG, non-invasive, spatial resolution

Procedia PDF Downloads 73
260 Regulatory Governance as a De-Parliamentarization Process: A Contextual Approach to Global Constitutionalism and Its Effects on New Arab Legislatures

Authors: Abderrahim El Maslouhi

Abstract:

The paper aims to analyze an often-overlooked dimension of global constitutionalism, which is the rise of the regulatory state and its impact on parliamentary dynamics in transition regimes. In contrast to Majone’s technocratic vision of convergence towards a single regulatory system based on competence and efficiency, national transpositions of regulatory governance and, in general, the relationship to global standards primarily depend upon a number of distinctive parameters. These include policy formation process, speed of change, depth of parliamentary tradition and greater or lesser vulnerability to the normative conditionality of donors, interstate groupings and transnational regulatory bodies. Based on a comparison between three post-Arab Spring countries -Morocco, Tunisia, and Egypt, whose constitutions have undergone substantive review in the period 2011-2014- and some European Union state members, the paper intends, first, to assess the degree of permeability to global constitutionalism in different contexts. A noteworthy divide emerges from this comparison. Whereas European constitutions still seem impervious to the lexicon of global constitutionalism, the influence of the latter is obvious in the recently drafted constitutions in Morocco, Tunisia, and Egypt. This is evidenced by their reference to notions such as ‘governance’, ‘regulators’, ‘accountability’, ‘transparency’, ‘civil society’, and ‘participatory democracy’. Second, the study will provide a contextual account of internal and external rationales underlying the constitutionalization of regulatory governance in the cases examined. Unlike European constitutionalism, where parliamentarism and the tradition of representative government function as a structural mechanism that moderates the de-parliamentarization effect induced by global constitutionalism, Arab constitutional transitions have led to a paradoxical situation; contrary to the public demands for further parliamentarization, the 2011 constitution-makers have opted for a de-parliamentarization pattern. This is particularly reflected in the procedures established by constitutions and regular legislation, to handle the interaction between lawmakers and regulatory bodies. Once the ‘constitutional’ and ‘independent’ nature of these agencies is formally endorsed, the birth of these ‘fourth power’ entities, which are neither elected nor directly responsible to elected officials, will raise the question of their accountability. Third, the paper shows that, even in the three selected countries, the de-parliamentarization intensity is significantly variable. By contrast to the radical stance of the Moroccan and Egyptian constituents who have shown greater concern to shield regulatory bodies from legislatures’ scrutiny, the Tunisian case indicates a certain tendency to provide lawmakers with some essential control instruments (e. g. exclusive appointment power, adversarial discussion of regulators’ annual reports, dismissal power, later held unconstitutional). In sum, the comparison reveals that the transposition of the regulatory state model and, more generally, sensitivity to the legal implications of global conditionality essentially relies on the evolution of real-world power relations at both national and international levels.

Keywords: Arab legislatures, de-parliamentarization, global constitutionalism, normative conditionality, regulatory state

Procedia PDF Downloads 139
259 AI for Efficient Geothermal Exploration and Utilization

Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson

Abstract:

Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.

Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal

Procedia PDF Downloads 56
258 Human Factors Interventions for Risk and Reliability Management of Defence Systems

Authors: Chitra Rajagopal, Indra Deo Kumar, Ila Chauhan, Ruchi Joshi, Binoy Bhargavan

Abstract:

Reliability and safety are essential for the success of mission-critical and safety-critical defense systems. Humans are part of the entire life cycle of defense systems development and deployment. The majority of industrial accidents or disasters are attributed to human errors. Therefore, considerations of human performance and human reliability are critical in all complex systems, including defense systems. Defense systems are operating from the ground, naval and aerial platforms in diverse conditions impose unique physical and psychological challenges to the human operators. Some of the safety and mission-critical defense systems with human-machine interactions are fighter planes, submarines, warships, combat vehicles, aerial and naval platforms based missiles, etc. Human roles and responsibilities are also going through a transition due to the infusion of artificial intelligence and cyber technologies. Human operators, not accustomed to such challenges, are more likely to commit errors, which may lead to accidents or loss events. In such a scenario, it is imperative to understand the human factors in defense systems for better systems performance, safety, and cost-effectiveness. A case study using Task Analysis (TA) based methodology for assessment and reduction of human errors in the Air and Missile Defense System in the context of emerging technologies were presented. Action-oriented task analysis techniques such as Hierarchical Task Analysis (HTA) and Operator Action Event Tree (OAET) along with Critical Action and Decision Event Tree (CADET) for cognitive task analysis was used. Human factors assessment based on the task analysis helps in realizing safe and reliable defense systems. These techniques helped in the identification of human errors during different phases of Air and Missile Defence operations, leading to meet the requirement of a safe, reliable and cost-effective mission.

Keywords: defence systems, reliability, risk, safety

Procedia PDF Downloads 136
257 Artificial Intelligence Protecting Birds against Collisions with Wind Turbines

Authors: Aleksandra Szurlej-Kielanska, Lucyna Pilacka, Dariusz Górecki

Abstract:

The dynamic development of wind energy requires the simultaneous implementation of effective systems minimizing the risk of collisions between birds and wind turbines. Wind turbines are installed in more and more challenging locations, often close to the natural environment of birds. More and more countries and organizations are defining guidelines for the necessary functionality of such systems. The minimum bird detection distance, trajectory tracking, and shutdown time are key factors in eliminating collisions. Since 2020, we have continued the survey on the validation of the subsequent version of the BPS detection and reaction system. Bird protection system (BPS) is a fully automatic camera system which allows one to estimate the distance of the bird to the turbine, classify its size and autonomously undertake various actions depending on the bird's distance and flight path. The BPS was installed and tested in a real environment at a wind turbine in northern Poland and Central Spain. The performed validation showed that at a distance of up to 300 m, the BPS performs at least as well as a skilled ornithologist, and large bird species are successfully detected from over 600 m. In addition, data collected by BPS systems installed in Spain showed that 60% of the detections of all birds of prey were from individuals approaching the turbine, and these detections meet the turbine shutdown criteria. Less than 40% of the detections of birds of prey took place at wind speeds below 2 m/s while the turbines were not working. As shown by the analysis of the data collected by the system over 12 months, the system classified the improved size of birds with a wingspan of more than 1.1 m in 90% and the size of birds with a wingspan of 0.7 - 1 m in 80% of cases. The collected data also allow the conclusion that some species keep a certain distance from the turbines at a wind speed of over 8 m/s (Aquila sp., Buteo sp., Gyps sp.), but Gyps sp. and Milvus sp. remained active at this wind speed on the tested area. The data collected so far indicate that BPS is effective in detecting and stopping wind turbines in response to the presence of birds of prey with a wingspan of more than 1 m.

Keywords: protecting birds, birds monitoring, wind farms, green energy, sustainable development

Procedia PDF Downloads 76
256 Towards a Reinvented Cash Management Function: Mobilising Innovative Advances for Enhanced Performance and Optimised Cost Management: Insights from Large Moroccan Companies in the Casablanca-Settat Region

Authors: Badrane Nohayla, Bamousse Zineb

Abstract:

Financial crises, exchange rate volatility, fluctuations in commodity prices, increased competitive pressures, and environmental issues are all threats that businesses face. In light of these diverse challenges, proactive, agile, and innovative cash management becomes an indispensable financial shield, allowing companies to thrive despite the adverse conditions of the global environment. In the same spirit, uncertainty, turbulence, volatility, and competitiveness continue to disrupt economic environments, compelling companies to swiftly master innovative breakthroughs that provide added value. In such a context, innovation emerges as a catalytic vector for performance, aiming to reduce costs, strengthen growth, and ultimately ensure the sustainability of Moroccan companies in the national arena. Moreover, innovation in treasury management promises to be one of the key pillars of financial stability, enabling companies to navigate the tumultuous waters of a globalized environment. Therefore, the objective of this study is to better understand the impact of innovative treasury management on cost optimization and, by extension, performance improvement. To elucidate this relationship, we conducted an exploratory qualitative study with 20 large Moroccan companies operating in the Casablanca-Settat region. The results highlight that innovation at the heart of treasury management is a guarantee of sustainability against the risks of failure and stands as a true pivot of the performance of Moroccan companies, an important parameter of their financial balance and a catalytic vector of their growth in the national economic landscape. In this regard, the present study aims to explore the extent to which innovation at the core of the treasury function serves as an indispensable tool for boosting performance while optimising costs in large Moroccan companies.

Keywords: innovative cash management, artificial intelligence, financial performance, risk management, cost savings

Procedia PDF Downloads 30
255 Big Data Analytics and Public Policy: A Study in Rural India

Authors: Vasantha Gouri Prathapagiri

Abstract:

Innovations in ICT sector facilitate qualitative life style for citizens across the globe. Countries that facilitate usage of new techniques in ICT, i.e., big data analytics find it easier to fulfil the needs of their citizens. Big data is characterised by its volume, variety, and speed. Analytics involves its processing in a cost effective way in order to draw conclusion for their useful application. Big data also involves into the field of machine learning, artificial intelligence all leading to accuracy in data presentation useful for public policy making. Hence using data analytics in public policy making is a proper way to march towards all round development of any country. The data driven insights can help the government to take important strategic decisions with regard to socio-economic development of her country. Developed nations like UK and USA are already far ahead on the path of digitization with the support of Big Data analytics. India is a huge country and is currently on the path of massive digitization being realised through Digital India Mission. Internet connection per household is on the rise every year. This transforms into a massive data set that has the potential to improvise the public services delivery system into an effective service mechanism for Indian citizens. In fact, when compared to developed nations, this capacity is being underutilized in India. This is particularly true for administrative system in rural areas. The present paper focuses on the need for big data analytics adaptation in Indian rural administration and its contribution towards development of the country on a faster pace. Results of the research focussed on the need for increasing awareness and serious capacity building of the government personnel working for rural development with regard to big data analytics and its utility for development of the country. Multiple public policies are framed and implemented for rural development yet the results are not as effective as they should be. Big data has a major role to play in this context as can assist in improving both policy making and implementation aiming at all round development of the country.

Keywords: Digital India Mission, public service delivery system, public policy, Indian administration

Procedia PDF Downloads 160
254 Establishing Correlation between Urban Heat Island and Urban Greenery Distribution by Means of Remote Sensing and Statistics Data to Prioritize Revegetation in Yerevan

Authors: Linara Salikhova, Elmira Nizamova, Aleksandra Katasonova, Gleb Vitkov, Olga Sarapulova.

Abstract:

While most European cities conduct research on heat-related risks, there is a research gap in the Caucasus region, particularly in Yerevan, Armenia. This study aims to test the method of establishing a correlation between urban heat islands (UHI) and urban greenery distribution for prioritization of heat-vulnerable areas for revegetation. Armenia has failed to consider measures to mitigate UHI in urban development strategies despite a 2.1°C increase in average annual temperature over the past 32 years. However, planting vegetation in the city is commonly used to deal with air pollution and can be effective in reducing UHI if it prioritizes heat-vulnerable areas. The research focuses on establishing such priorities while considering the distribution of urban greenery across the city. The lack of spatially explicit air temperature data necessitated the use of satellite images to achieve the following objectives: (1) identification of land surface temperatures (LST) and quantification of temperature variations across districts; (2) classification of massifs of land surface types using normalized difference vegetation index (NDVI); (3) correlation of land surface classes with LST. Examination of the heat-vulnerable city areas (in this study, the proportion of individuals aged 75 years and above) is based on demographic data (Census 2011). Based on satellite images (Sentinel-2) captured on June 5, 2021, NDVI calculations were conducted. The massifs of the land surface were divided into five surface classes. Due to capacity limitations, the average LST for each district was identified using one satellite image from Landsat-8 on August 15, 2021. In this research, local relief is not considered, as the study mainly focuses on the interconnection between temperatures and green massifs. The average temperature in the city is 3.8°C higher than in the surrounding non-urban areas. The temperature excess ranges from a low in Norq Marash to a high in Nubarashen. Norq Marash and Avan have the highest tree and grass coverage proportions, with 56.2% and 54.5%, respectively. In other districts, the balance of wastelands and buildings is three times higher than the grass and trees, ranging from 49.8% in Quanaqer-Zeytun to 76.6% in Nubarashen. Studies have shown that decreased tree and grass coverage within a district correlates with a higher temperature increase. The temperature excess is highest in Erebuni, Ajapnyak, and Nubarashen districts. These districts have less than 25% of their area covered with grass and trees. On the other hand, Avan and Norq Marash districts have a lower temperature difference, as more than 50% of their areas are covered with trees and grass. According to the findings, a significant proportion of the elderly population (35%) aged 75 years and above reside in the Erebuni, Ajapnyak, and Shengavit neighborhoods, which are more susceptible to heat stress with an LST higher than in other city districts. The findings suggest that the method of comparing the distribution of green massifs and LST can contribute to the prioritization of heat-vulnerable city areas for revegetation. The method can become a rationale for the formation of an urban greening program.

Keywords: heat-vulnerability, land surface temperature, urban greenery, urban heat island, vegetation

Procedia PDF Downloads 73
253 Smart Signature - Medical Communication without Barrier

Authors: Chia-Ying Lin

Abstract:

This paper explains how to enhance doctor-patient communication and nurse-patient communication through multiple intelligence signing methods and user-centered. It is hoped that through the implementation of the "electronic consent", the problems faced by the paper consent can be solved: storage methods, resource utilization, convenience, correctness of information, integrated management, statistical analysis and other related issues. Make better use and allocation of resources to provide better medical quality. First, invite the medical records department to assist in the inventory of paper consent in the hospital: organising, classifying, merging, coding, and setting. Second, plan the electronic consent configuration file: set the form number, consent form group, fields and templates, and the corresponding doctor's order code. Next, Summarize four types of rapid methods of electronic consent: according to the doctor's order, according to the medical behavior, according to the schedule, and manually generate the consent form. Finally, system promotion and adjustment: form an "electronic consent promotion team" to improve, follow five major processes: planning, development, testing, release, and feedback, and invite clinical units to raise the difficulties faced in the promotion, and make improvements to the problems. The electronic signature rate of the whole hospital will increase from 4% in January 2022 to 79% in November 2022. Use the saved resources more effectively, including: reduce paper usage (reduce carbon footprint), reduce the cost of ink cartridges, re-plan and use the space for paper medical records, and save human resources to provide better services. Through the introduction of information technology and technology, the main spirit of "lean management" is implemented. Transforming and reengineering the process to eliminate unnecessary waste is also the highest purpose of this project.

Keywords: smart signature, electronic consent, electronic medical records, user-centered, doctor-patient communication, nurse-patient communication

Procedia PDF Downloads 126
252 Insecurity and Insurgency on Economic Development of Nigeria

Authors: Uche Lucy Onyekwelu, Uche B. Ugwuanyi

Abstract:

Suffice to say that socio-economic disruptions of any form is likely to affect the wellbeing of the citizenry. The upsurge of social disequilibrium caused by the incessant disruptive tendencies exhibited by youths and some others in Nigeria are not helping matters. In Nigeria the social unrest has caused different forms of draw backs in Socio Economic Development. This study has empirically evaluated the impact of insecurity and insurgency on the Economic Development of Nigeria. The paper noted that the different forms of insecurity in Nigeria are namely: Insurgency and Banditry as witnessed in Northern Nigeria; Militancy: Niger Delta area and self-determination groups pursuing various forms of agenda such as Sit –at- Home Syndrome in the South Eastern Nigeria and other secessionist movements. All these have in one way or the other hampered Economic development in Nigeria. Data for this study were collected through primary and secondary sources using questionnaire and some existing documentations. Cost of investment in different aspects of security outfits in Nigeria represents the independent variable while the differentials in the Gross Domestic Product(GDP) and Human Development Index(HDI) are the measures of the dependent variable. Descriptive statistics and Simple Linear Regression analytical tool were employed in the data analysis. The result revealed that Insurgency/Insecurity negatively affect the economic development of the different parts of Nigeria. Following the findings, a model to analyse the effect of insecurity and insurgency was developed, named INSECUREDEVNIG. It implies that the economic development of Nigeria will continue to deteriorate if insurgency and insecurity continue. The study therefore recommends that the government should do all it could to nurture its human capital, adequately fund the state security apparatus and employ individuals of high integrity to manage the various security outfits in Nigeria. The government should also as a matter of urgency train the security personnel in intelligence cum Information and Communications Technology to enable them ensure the effectiveness of implementation of security policies needed to sustain Gross Domestic Product and Human Capital Index of Nigeria.

Keywords: insecurity, insurgency, gross domestic product, human development index, Nigeria

Procedia PDF Downloads 104
251 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models

Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan

Abstract:

Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.

Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network

Procedia PDF Downloads 31
250 Transforming Data Science Curriculum Through Design Thinking

Authors: Samar Swaid

Abstract:

Today, corporates are moving toward the adoption of Design-Thinking techniques to develop products and services, putting their consumer as the heart of the development process. One of the leading companies in Design-Thinking, IDEO (Innovation, Design, Engineering Organization), defines Design-Thinking as an approach to problem-solving that relies on a set of multi-layered skills, processes, and mindsets that help people generate novel solutions to problems. Design thinking may result in new ideas, narratives, objects or systems. It is about redesigning systems, organizations, infrastructures, processes, and solutions in an innovative fashion based on the users' feedback. Tim Brown, president and CEO of IDEO, sees design thinking as a human-centered approach that draws from the designer's toolkit to integrate people's needs, innovative technologies, and business requirements. The application of design thinking has been witnessed to be the road to developing innovative applications, interactive systems, scientific software, healthcare application, and even to utilizing Design-Thinking to re-think business operations, as in the case of Airbnb. Recently, there has been a movement to apply design thinking to machine learning and artificial intelligence to ensure creating the "wow" effect on consumers. The Association of Computing Machinery task force on Data Science program states that" Data scientists should be able to implement and understand algorithms for data collection and analysis. They should understand the time and space considerations of algorithms. They should follow good design principles developing software, understanding the importance of those principles for testability and maintainability" However, this definition hides the user behind the machine who works on data preparation, algorithm selection and model interpretation. Thus, the Data Science program includes design thinking to ensure meeting the user demands, generating more usable machine learning tools, and developing ways of framing computational thinking. Here, describe the fundamentals of Design-Thinking and teaching modules for data science programs.

Keywords: data science, design thinking, AI, currculum, transformation

Procedia PDF Downloads 82