Search results for: Arda Ozkurt
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17

Search results for: Arda Ozkurt

17 Brain-Computer Interfaces That Use Electroencephalography

Authors: Arda Ozkurt, Ozlem Bozkurt

Abstract:

Brain-computer interfaces (BCIs) are devices that output commands by interpreting the data collected from the brain. Electroencephalography (EEG) is a non-invasive method to measure the brain's electrical activity. Since it was invented by Hans Berger in 1929, it has led to many neurological discoveries and has become one of the essential components of non-invasive measuring methods. Despite the fact that it has a low spatial resolution -meaning it is able to detect when a group of neurons fires at the same time-, it is a non-invasive method, making it easy to use without possessing any risks. In EEG, electrodes are placed on the scalp, and the voltage difference between a minimum of two electrodes is recorded, which is then used to accomplish the intended task. The recordings of EEGs include, but are not limited to, the currents along dendrites from synapses to the soma, the action potentials along the axons connecting neurons, and the currents through the synaptic clefts connecting axons with dendrites. However, there are some sources of noise that may affect the reliability of the EEG signals as it is a non-invasive method. For instance, the noise from the EEG equipment, the leads, and the signals coming from the subject -such as the activity of the heart or muscle movements- affect the signals detected by the electrodes of the EEG. However, new techniques have been developed to differentiate between those signals and the intended ones. Furthermore, an EEG device is not enough to analyze the data from the brain to be used by the BCI implication. Because the EEG signal is very complex, to analyze it, artificial intelligence algorithms are required. These algorithms convert complex data into meaningful and useful information for neuroscientists to use the data to design BCI devices. Even though for neurological diseases which require highly precise data, invasive BCIs are needed; non-invasive BCIs - such as EEGs - are used in many cases to help disabled people's lives or even to ease people's lives by helping them with basic tasks. For example, EEG is used to detect before a seizure occurs in epilepsy patients, which can then prevent the seizure with the help of a BCI device. Overall, EEG is a commonly used non-invasive BCI technique that has helped develop BCIs and will continue to be used to detect data to ease people's lives as more BCI techniques will be developed in the future.

Keywords: BCI, EEG, non-invasive, spatial resolution

Procedia PDF Downloads 42
16 Torsional Vibration of Carbon Nanotubes via Nonlocal Gradient Theories

Authors: Mustafa Arda, Metin Aydogdu

Abstract:

Carbon nanotubes (CNTs) have many possible application areas because of their superior physical properties. Nonlocal Theory, which unlike the classical theories, includes the size dependency. Nonlocal Stress and Strain Gradient approaches can be used in nanoscale static and dynamic analysis. In the present study, torsional vibration of CNTs was investigated according to nonlocal stress and strain gradient theories. Effects of the small scale parameters to the non-dimensional frequency were obtained. Results were compared with the Molecular Dynamics Simulation and Lattice Dynamics. Strain Gradient Theory has shown more weakening effect on CNT according to the Stress Gradient Theory. Combination of both theories gives more acceptable results rather than the classical and stress or strain gradient theory according to Lattice Dynamics.

Keywords: torsional vibration, carbon nanotubes, nonlocal gradient theory, stress, strain

Procedia PDF Downloads 359
15 The Effect of Compensating Filter on Image Quality in Lateral Projection of Thoracolumbar Radiography

Authors: Noor Arda Adrina Daud, Mohd Hanafi Ali

Abstract:

The compensating filter is placed between the patient and X-ray tube to compensate various density and thickness of human body. The main purpose of this project is to study the effect of compensating filter on image quality in lateral projection of thoracolumbar radiography. The study was performed by an X-ray unit where different thicknesses of aluminum were used as compensating filter. Specifically the relationship between thickness of aluminum, density and noise were evaluated. Results show different thickness of aluminum compensating filter improved the image quality of lateral projection thoracolumbar radiography. The compensating filter of 8.2 mm was considered as the optimal filter to compensate the thoracolumbar junction (T12-L1), 1 mm to compensate lumbar region and 5.9 mm to compensate thorax region. The aluminum wedge compensating filter was designed resulting in an acceptable image quality.

Keywords: compensating filter, aluminum, image quality, lateral, thoracolumbar

Procedia PDF Downloads 483
14 The Investigation of Bodily-Kinesthetic Intelligence Levels in Adolescents

Authors: Arda Ozturk, Turgay Ozgur, Mursit Aksoy, Bahar O. Ozgur, Ozan Yilmaz

Abstract:

The purpose of this study was to investigate the effect of 8 weeks of basic basketball and volleyball exercises to Bodily-Kinesthetic Intelligence (BKI) levels in 245 (92 girls and 154 boys) adolescents aged between 12 and 14 years. Data collected via Bodily-Kinesthetic Intelligence scale as a subdimension of Multiple Intelligences Inventory. BKI levels were not different between basketball and volleyball groups. Statistical analyses were made based on gender, age groups (12, 13, 14 years) and exercise type. Independent samples t-test revealed that there was no significant difference between boy’s and girl’s BKI levels. One way ANOVA test revealed that there was significant difference between age group’s (12, 13, 14) BKI levels in post-test. However, Paired samples t-test revealed no significant differences between pre-post test results of adolescent’s BKI levels. In conclusion, despite the relatively long-term (8 weeks) physical activity. BKI levels have not shown significant differences.

Keywords: bodily-kinesthetic intelligence, adolescent, basketball, volleyball

Procedia PDF Downloads 352
13 Spectrophotometric Determination of Photohydroxylated Products of Humic Acid in the Presence of Salicylate Probe

Authors: Julide Hizal Yucesoy, Batuhan Yardimci, Aysem Arda, Resat Apak

Abstract:

Humic substances produce reactive oxygene species such as hydroxyl, phenoxy and superoxide radicals by oxidizing in a wide pH and reduction potential range. Hydroxyl radicals, produced by reducing agents such as antioxidants and/or peroxides, attack on salicylate probe, and form 2,3-dihydroxybenzoate, 2,4-dihydroxybenzoate and 2,5-dihydroxybenzoate species. These species are quantitatively determined by using HPLC Method. Humic substances undergo photodegradation by UV radiation. As a result of their antioxidant properties, they produce hydroxyl radicals. In the presence of salicylate probe, these hydroxyl radicals react with salicylate molecules to form hydroxylated products (dihidroxybenzoate isomers). In this study, humic acid was photodegraded in a photoreactor at 254 nm (400W), formed hydroxyl radicals were caught by salicylate probe. The total concentration of hydroxylated salicylate species was measured by using spectrophotometric CUPRAC Method. And also, using results of time dependent experiments, kinetic of photohydroxylation was determined at different pHs. This method has been applied for the first time to measure the concentration of hydroxylated products. It allows to achieve the results easier than HPLC Method.

Keywords: CUPRAC method, humic acid, photohydroxylation, salicylate probe

Procedia PDF Downloads 175
12 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Eylem Koç, Hasan Arda Burhan

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: analytic network process (ANP), BOCR, multi-actor decision making, multi-criteria decision making, real-life problem, location selection

Procedia PDF Downloads 436
11 Developing Drought and Heat Stress Tolerant Chickpea Genotypes

Authors: Derya Yucel, Nigar Angın, Dürdane Mart, Meltem Turkeri, Volkan Catalkaya, Celal Yucel

Abstract:

Chickpea (Cicer arietinum L.) with high protein content is a vital food, especially in under-developed and developing countries for the people who do not consume enough meat due to low-income level. The objective of the proposed study is to evaluate growing, yield and yield components of chickpea genotypes under Mediterranean condition so determine tolerance of chickpea genotypes against drought and heat stress. For this purpose, a total of 34 chickpea genotypes were used as material. The experiment was conducted according to factorial randomized complete block design with 3 reps at the Eastern Mediterranean Research Institute, Adana, TURKEY for 2014-15 growing season under three different growing conditions (Winter sowing, irrigated-late sowing and non-irrigated- late sowing). According to results of this experiment, vegetative period, flowering time, poding time, maturity time, plant height, height of first pod, seed yield and 100 seed weight were ranged between 68.33 to 78.77 days, 94.22 to 85.00 days, 94.11 to 106.44 days, 198.56 to 214.44 days, 37.18 to 64.89 cm, 18.33 to 34.83 cm, 417.1 to 1746.4 kg/ha and 14.02 to 45.02 g, respectively. Among the chickpea genotypes, the Aksu, Arda, Çakır, F4 09 (X 05 TH 21-16189), FLIP 03-108 were least affected by drought and heat stress. Therefore, these genotypes can be used as sources of drought and heat tolerance in further breeding programme for evolving the drought and heat tolerant genotypes in chickpea.

Keywords: chickpea, drought stress, heat stress, yield

Procedia PDF Downloads 186
10 Airflow Characteristics and Thermal Comfort of Air Diffusers: A Case Study

Authors: Tolga Arda Eraslan

Abstract:

The quality of the indoor environment is significant to occupants’ health, comfort, and productivity, as Covid-19 spread throughout the world, people started spending most of their time indoors. Since buildings are getting bigger, mechanical ventilation systems are widely used where natural ventilation is insufficient. Four primary tasks of a ventilation system have been identified indoor air quality, comfort, contamination control, and energy performance. To fulfill such requirements, air diffusers, which are a part of the ventilation system, have begun to enter our lives in different airflow distribution systems. Detailed observations are needed to assure that such devices provide high levels of comfort effectiveness and energy efficiency. This study addresses these needs. The objective of this article is to observe air characterizations of different air diffusers at different angles and their effect on people by the thermal comfort model in CFD simulation and to validate the outputs with the help of data results based on a simulated office room. Office room created to provide validation; Equipped with many thermal sensors, including head height, tabletop, and foot level. In addition, CFD simulations were carried out by measuring the temperature and velocity of the air coming out of the supply diffuser. The results considering the flow interaction between diffusers and surroundings showed good visual illustration.

Keywords: computational fluid dynamics, fanger’s model, predicted mean vote, thermal comfort

Procedia PDF Downloads 76
9 Analysis of Ozone Episodes in the Forest and Vegetation Areas with Using HYSPLIT Model: A Case Study of the North-West Side of Biga Peninsula, Turkey

Authors: Deniz Sari, Selahattin İncecik, Nesimi Ozkurt

Abstract:

Surface ozone, which named as one of the most critical pollutants in the 21th century, threats to human health, forest and vegetation. Specifically, in rural areas surface ozone cause significant influences on agricultural productions and trees. In this study, in order to understand to the surface ozone levels in rural areas we focus on the north-western side of Biga Peninsula which covers by the mountainous and forested area. Ozone concentrations were measured for the first time with passive sampling at 10 sites and two online monitoring stations in this rural area from 2013 and 2015. Using with the daytime hourly O3 measurements during light hours (08:00–20:00) exceeding the threshold of 40 ppb over the 3 months (May, June and July) for agricultural crops, and over the six months (April to September) for forest trees AOT40 (Accumulated hourly O3 concentrations Over a Threshold of 40 ppb) cumulative index was calculated. AOT40 is defined by EU Directive 2008/50/EC to evaluate whether ozone pollution is a risk for vegetation, and is calculated by using hourly ozone concentrations from monitoring systems. In the present study, we performed the trajectory analysis by The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to follow the long-range transport sources contributing to the high ozone levels in the region. The ozone episodes observed between 2013 and 2015 were analysed using the HYSPLIT model developed by the NOAA-ARL. In addition, the cluster analysis is used to identify homogeneous groups of air mass transport patterns can be conducted through air trajectory clustering by grouping similar trajectories in terms of air mass movement. Backward trajectories produced for 3 years by HYSPLIT model were assigned to different clusters according to their moving speed and direction using a k-means clustering algorithm. According to cluster analysis results, northerly flows to study area cause to high ozone levels in the region. The results present that the ozone values in the study area are above the critical levels for forest and vegetation based on EU Directive 2008/50/EC.

Keywords: AOT40, Biga Peninsula, HYSPLIT, surface ozone

Procedia PDF Downloads 220
8 Methodology of the Turkey’s National Geographic Information System Integration Project

Authors: Buse A. Ataç, Doğan K. Cenan, Arda Çetinkaya, Naz D. Şahin, Köksal Sanlı, Zeynep Koç, Akın Kısa

Abstract:

With its spatial data reliability, interpretation and questioning capabilities, Geographical Information Systems make significant contributions to scientists, planners and practitioners. Geographic information systems have received great attention in today's digital world, growing rapidly, and increasing the efficiency of use. Access to and use of current and accurate geographical data, which are the most important components of the Geographical Information System, has become a necessity rather than a need for sustainable and economic development. This project aims to enable sharing of data collected by public institutions and organizations on a web-based platform. Within the scope of the project, INSPIRE (Infrastructure for Spatial Information in the European Community) data specifications are considered as a road-map. In this context, Turkey's National Geographic Information System (TUCBS) Integration Project supports sharing spatial data within 61 pilot public institutions as complied with defined national standards. In this paper, which is prepared by the project team members in the TUCBS Integration Project, the technical process with a detailed methodology is explained. In this context, the main technical processes of the Project consist of Geographic Data Analysis, Geographic Data Harmonization (Standardization), Web Service Creation (WMS, WFS) and Metadata Creation-Publication. In this paper, the integration process carried out to provide the data produced by 61 institutions to be shared from the National Geographic Data Portal (GEOPORTAL), have been trying to be conveyed with a detailed methodology.

Keywords: data specification, geoportal, GIS, INSPIRE, Turkish National Geographic Information System, TUCBS, Turkey's national geographic information system

Procedia PDF Downloads 115
7 Treatment of Drug-Induced Oral Ulceration with Hyaluronic Acid Gel: A Case Report

Authors: Meltem Koray, Arda Ozgon, Duygu Ofluoglu, Mehmet Yaltirik

Abstract:

Oral ulcerations can be seen as a side effect of different drugs. These ulcers usually appear within a few weeks following drug treatment. In most of cases, these ulcers resist to conventional treatments, such as anesthetics, antiseptics, anti-inflammatory agents, cauterization, topical tetracycline and corticosteroid treatment. The diagnosis is usually difficult, especially in patients receiving multiple drug therapies. Hyaluronan or hyaluronic acid (HA) is a biomaterial that has been introduced as an alternative approach to enhance wound healing and also used for oral ulcer treatment. The aim of this report is to present the treatment of drug-induced oral ulceration on maxillary mucosa with HA gel. 60-year-old male patient was referred to Department of Oral and Maxillofacial Surgery complaining of oral ulcerations during few weeks. He had received chemotherapy and radiotherapy in 2014 with the diagnosis of nasopharyngeal carcinoma, and he has accompanying systemic diseases such as; cardiological, neurological diseases and gout. He is medicated with Escitalopram (Cipralex® 20mg), Quetiapine (Seroquel® 100mg), Mirtazapine (Zestat® 15mg), Acetylsalicylic acid (Coraspin® 100mg), Ramipril-hydrochlorothiazide (Delix® 2.5mg), Theophylline anhydrous (Teokap Sr® 200mg), Colchicine (Colchicum Dispert® 0.5mg), Spironolactone (Aldactone® 100mg), Levothyroxine sodium (Levotiron® 50mg). He had painful oral ulceration on the right side of maxillary mucosa. The diagnosis was 'drug-induced oral ulceration' and HA oral gel (Aftamed® Oral gel) was prescribed 3 times a day for 2 weeks. Complete healing was achieved within 3 weeks without any side effect and discomfort. We suggest that HA oral gel is a potentially useful local drug which can be an alternative for management of drug-induced oral ulcerations.

Keywords: drug-induced, hyaluronic acid, oral ulceration, maxillary mucosa

Procedia PDF Downloads 238
6 Evaluation on Heat and Drought Tolerance Capacity of Chickpea

Authors: Derya Yucel, Nigar Angın, Dürdane Mart, Meltem Turkeri, Volkan Catalkaya, Celal Yucel

Abstract:

Chickpea (Cicer arietinum L.) is one of the important legumes widely grown for dietery proteins in semi-arid Mediteranean climatic conditions. To evaluate the genetic diversity with improved heat and drought tolerance capacity in chickpea, thirty-four selected chickpea genotypes were tested under different field-growing conditions (rainfed winter sowing, irrigated-late sowing and rainfed-late sowing) in 2015 growing season. A factorial experiment in randomized complete block design with 3 reps was conducted at the Eastern Mediterranean Research Institute Adana, Turkey. Based on grain yields under different growing conditions, several indices were calculated to identify economically higher-yielding chickpea genotypes with greater heat and drought tolerance capacity. Average across chickpea genotypes, the values of tolerance index, mean productivity, yield index, yield stability index, stress tolerance index, stress susceptibility index, and geometric mean productivity were ranged between 1.1 to 218, 38 to 202, 0.3 to 1.7, 0.2 to 1, 0.1 to 1.2, 0.02 to 1.4, and 36 to 170 for drought stress and 3 to 54, 23 to 118, 0.3 to 1.7, 0.4 to 0.9, 0.2 to 2, 0.2to 2.3, and 23 to 118 for heat stress, respectively. There were highly significant differences observed among the tested chickpea genotypes response to drought and heat stresses. Among the chickpea genotypes, the Aksu, Arda, Çakır, F4 09 (X 05 TH 21-16189), FLIP 03-108 were identified with a higher drought and heat tolerance capacity. Based on our field studies, it is suggested that the drought and heat tolerance indicators of plants can be used by breeders to select stress-resistant economically productive chickpea genotypes suitable to grow under Mediteranean climatic conditions.

Keywords: irrigation, rainfed, stress susceptibility, tolerance indice

Procedia PDF Downloads 210
5 The Potential of Southern Malang as Geotourism Site: The Distribution of Geodiversity and Geotrek in Southern Malang, Indonesia

Authors: Arda Bagus M, Yehezkiel Festian P, Budianto Santoso

Abstract:

The Tourism Area of Southern Malang is administratively located in the Regency of Malang, East Java Province, Indonesia and geographically is in a position between 112o17' - 112o57' E dan 7o44' - 8o26' S. Southern Malang consists of several sub-districts that directly borders with the Indian Ocean, such as Donomulyo, Bantur, Gedangan, Sumbermanjing, Tirto Yudo, and Ampel Gading. This area has a high geotourism potential because of the existence of geodiversity such as beaches, waterfalls, caves, and karst area. However, to the best of the authors’ knowledge, there is still no systematic data that informs the geotourism potentials to the public. The aim of this research is to complete the lack of data and then arrange it systematically so it can be used for both tourism and research purposes. Research methods such as field observation, literature study, and depth interview to local people have been implemented. Aspects reviewed by visiting the field are accommodation, transportation, and the feasibility of a place to be geotourism object. The primary data was taken in Sumbermanjing, Gedangan, Bantur, and Donomulyo sub-district. A literature study is needed to determine the regional geology of Southern Malang and as a comparison to new data obtained in the field. The results of the literature study show that southern Malang consists of three formations: Wonosari Formation, Mandalaka Formation, and River-swamps Sediment Formation with the age range of Oligocene to Quaternary. Depth interviews have been conducted by involving local people with the aim of knowing cultural-history in the research area. From this research, the geotourism object distribution map has been made. The map also includes Geotrek and basic geological information of each object. The results of this research can support the development of geotourism in Southern Malang.

Keywords: geodiversity, geology, geotourism, geotrek, southern Malang

Procedia PDF Downloads 147
4 The Utility of Sonographic Features of Lymph Nodes during EBUS-TBNA for Predicting Malignancy

Authors: Atefeh Abedini, Fatemeh Razavi, Mihan Pourabdollah Toutkaboni, Hossein Mehravaran, Arda Kiani

Abstract:

In countries with the highest prevalence of tuberculosis, such as Iran, the differentiation of malignant tumors from non-malignant is very important. In this study, which was conducted for the first time among the Iranian population, the utility of the ultrasonographic morphological characteristics in patients undergoing EBUS was used to distinguish the non-malignant versus malignant lymph nodes. The morphological characteristics of lymph nodes, which consist of size, shape, vascular pattern, echogenicity, margin, coagulation necrosis sign, calcification, and central hilar structure, were obtained during Endobronchial Ultrasound-Guided Trans-Bronchial Needle Aspiration and were compared with the final pathology results. During this study period, a total of 253 lymph nodes were evaluated in 93 cases. Round shape, non-hilar vascular pattern, heterogeneous echogenicity, hyperechogenicity, distinct margin, and the presence of necrosis sign were significantly higher in malignant nodes. On the other hand, the presence of calcification and also central hilar structure were significantly higher in the benign nodes (p-value ˂ 0.05). Multivariate logistic regression showed that size>1 cm, heterogeneous echogenicity, hyperechogenicity, the presence of necrosis signs and, the absence of central hilar structure are independent predictive factors for malignancy. The accuracy of each of the aforementioned factors is 42.29 %, 71.54 %, 71.90 %, 73.51 %, and 65.61 %, respectively. Of 74 malignant lymph nodes, 100% had at least one of these independent factors. According to our results, the morphological characteristics of lymph nodes based on Endobronchial Ultrasound-Guided Trans-Bronchial Needle Aspiration can play a role in the prediction of malignancy.

Keywords: EBUS-TBNA, malignancy, nodal characteristics, pathology

Procedia PDF Downloads 104
3 Black-Hole Dimension: A Distinct Methodology of Understanding Time, Space and Data in Architecture

Authors: Alp Arda

Abstract:

Inspired by Nolan's ‘Interstellar’, this paper delves into speculative architecture, asking, ‘What if an architect could traverse time to study a city?’ It unveils the ‘Black-Hole Dimension,’ a groundbreaking concept that redefines urban identities beyond traditional boundaries. Moving past linear time narratives, this approach draws from the gravitational dynamics of black holes to enrich our understanding of urban and architectural progress. By envisioning cities and structures as influenced by black hole-like forces, it enables an in-depth examination of their evolution through time and space. The Black-Hole Dimension promotes a temporal exploration of architecture, treating spaces as narratives of their current state interwoven with historical layers. It advocates for viewing architectural development as a continuous, interconnected journey molded by cultural, economic, and technological shifts. This approach not only deepens our understanding of urban evolution but also empowers architects and urban planners to create designs that are both adaptable and resilient. Echoing themes from popular culture and science fiction, this methodology integrates the captivating dynamics of time and space into architectural analysis, challenging established design conventions. The Black-Hole Dimension champions a philosophy that welcomes unpredictability and complexity, thereby fostering innovation in design. In essence, the Black-Hole Dimension revolutionizes architectural thought by emphasizing space-time as a fundamental dimension. It reimagines our built environments as vibrant, evolving entities shaped by the relentless forces of time, space, and data. This groundbreaking approach heralds a future in architecture where the complexity of reality is acknowledged and embraced, leading to the creation of spaces that are both responsive to their temporal context and resilient against the unfolding tapestry of time.

Keywords: black-hole, timeline, urbanism, space and time, speculative architecture

Procedia PDF Downloads 14
2 Monitoring the Thin Film Formation of Carrageenan and PNIPAm Microgels

Authors: Selim Kara, Ertan Arda, Fahrettin Dolastir, Önder Pekcan

Abstract:

Biomaterials and thin film coatings play a fundamental role in medical, food and pharmaceutical industries. Carrageenan is a linear sulfated polysaccharide extracted from algae and seaweeds. To date, such biomaterials have been used in many smart drug delivery systems due to their biocompatibility and antimicrobial activity properties. Poly (N-isopropylacrylamide) (PNIPAm) gels and copolymers have also been used in medical applications. PNIPAm shows lower critical solution temperature (LCST) property at about 32-34 °C which is very close to the human body temperature. Below and above the LCST point, PNIPAm gels exhibit distinct phase transitions between swollen and collapsed states. A special class of gels are microgels which can react to environmental changes significantly faster than microgels due to their small sizes. Quartz crystal microbalance (QCM) measurement technique is one of the attractive techniques which has been used for monitoring the thin-film formation process. A sensitive QCM system was designed as to detect 0.1 Hz difference in resonance frequency and 10-7 change in energy dissipation values, which are the measures of the deposited mass and the film rigidity, respectively. PNIPAm microgels with the diameter around few hundred nanometers in water were produced via precipitation polymerization process. 5 MHz quartz crystals with functionalized gold surfaces were used for the deposition of the carrageenan molecules and microgels in the solutions which were slowly pumped through a flow cell. Interactions between charged carrageenan and microgel particles were monitored during the formation of the film layers, and the Sauerbrey masses of the deposited films were calculated. The critical phase transition temperatures around the LCST were detected during the heating and cooling cycles. It was shown that it is possible to monitor the interactions between PNIPAm microgels and biopolymer molecules, and it is also possible to specify the critical phase transition temperatures by using a QCM system.

Keywords: carrageenan, phase transitions, PNIPAm microgels, quartz crystal microbalance (QCM)

Procedia PDF Downloads 202
1 Double Wishbone Pushrod Suspension Systems Co-Simulation for Racing Applications

Authors: Suleyman Ogul Ertugrul, Ilkin Arda Gurel, Serkan Inandı, Mustafa Gorkem Coban, Mustafa Turgut, Mustafa Kıgılı, Ali Mert, Oguzhan Kesmez, Murad Ozan, Caglar Uyulan

Abstract:

In high-performance automotive engineering, the realistic simulation of suspension systems is crucial for enhancing vehicle dynamics and handling. This study focuses on the double wishbone suspension system, prevalent in racing vehicles due to its superior control and stability characteristics. Utilizing MATLAB and Adams Car simulation software, we conduct a comprehensive analysis of displacement behaviors and damper sizing under various dynamic conditions. The initial phase involves using MATLAB to simulate the entire suspension system, allowing for the preliminary determination of damper size based on the system's response under simulated conditions. Following this, manual calculations of wheel loads are performed to assess the forces acting on the front and rear suspensions during scenarios such as braking, cornering, maximum vertical loads, and acceleration. Further dynamic force analysis is carried out using MATLAB Simulink, focusing on the interactions between suspension components during key movements such as bumps and rebounds. This simulation helps in formulating precise force equations and in calculating the stiffness of the suspension springs. To enhance the accuracy of our findings, we focus on a detailed kinematic and dynamic analysis. This includes the creation of kinematic loops, derivation of relevant equations, and computation of Jacobian matrices to accurately determine damper travel and compression metrics. The calculated spring stiffness is crucial in selecting appropriate springs to ensure optimal suspension performance. To validate and refine our results, we replicate the analyses using the Adams Car software, renowned for its detailed handling of vehicular dynamics. The goal is to achieve a robust, reliable suspension setup that maximizes performance under the extreme conditions encountered in racing scenarios. This study exemplifies the integration of theoretical mechanics with advanced simulation tools to achieve a high-performance suspension setup that can significantly improve race car performance, providing a methodology that can be adapted for different types of racing vehicles.

Keywords: Racing Car, Pushrod Suspension, Simulation, Dynamic Analysis, Kinematic Analysis

Procedia PDF Downloads 9