Search results for: topic Detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4797

Search results for: topic Detection

2817 A Study on the Relation between Auditor Rotation and Audit Quality in Iranian Firms

Authors: Bita Mashayekhi, Marjan Fayyazi, Parisa Sefati

Abstract:

Audit quality is a popular topic in accounting and auditing research because recent decades’ financial crises reduce the reliability of financial reports to public investors and cause significant doubt about the audit profession. Therefore, doing research to identify effective factors in improving audit quality is necessary for bringing back public investors’ trust to financial statements as well as audit reports. In this study, we explore the relationship between audit rotation and audit quality. For this purpose, we employ the Duff (2009) model of audit quality to measure audit quality and use a questionnaire survey of 27 audit service quality attributes. Our results show that there is a negative relationship between auditor’s rotation and audit quality as we consider the auditor’s reputation, capability, assurance, experience, and responsiveness as surrogates for audit quality. There is no evidence for verifying a same relationship when we use the auditor’s independence and expertise for measuring audit quality.

Keywords: audit quality, auditor’s rotation, reputation, capability, assurance, experience, responsiveness, independence, expertise

Procedia PDF Downloads 231
2816 The Results of Reading Test on Movement Staff Notation System

Authors: Sonay Ödemiş

Abstract:

Movement Staff Notation System (MSNS) is a movement transcription, analyzing method, and it's been constantly improved since it was first developed in 2005. This method is based on human anatomy, is being used and applied in the lessons at The Department of Turkish Folk Dances in Istanbul Technical University, nowadays. In this research, it is aimed to discover, how MSNS can help to participants about learning the basic movements of lower extremity. This experiment has six volunteers who were randomly selected. Each volunteer has been graded for their dance backgrounds and all the volunteers have been studied for six weeks. Each week has included different topic and examples such as contacts on foot, jumps, timing, directions and basic symbols of MSNS. Examples have changed from easy to hard. On conclusion, 6 volunteer subjects were tested in final test. The tests were recorded with the camera. In this presentation, it will be explained and detailed the results of the reading test on MSNS. Some of important video records will be watched and interpreted after the test. As a conclusion, all the scores will be interpreted and assessed from different perspectives.

Keywords: dance notation, Turkish dances, reading test, Education

Procedia PDF Downloads 233
2815 An Analysis of Machine Translation: Instagram Translation vs Human Translation on the Perspective Translation Quality

Authors: Aulia Fitri

Abstract:

This aims to seek which part of the linguistics with the common mistakes occurred between Instagram translation and human translation. Instagram is a social media account that is widely used by people in the world. Everyone with the Instagram account can consume the captions and pictures that are shared by their friends, celebrity, and public figures across countries. Instagram provides the machine translation under its caption space that will assist users to understand the language of their non-native. The researcher takes samples from an Indonesian public figure whereas the account is followed by many followers. The public figure tries to help her followers from other countries understand her posts by putting up the English version after the Indonesian version. However, the research on Instagram account has not been done yet even though the account is widely used by the worldwide society. There are 20 samples that will be analysed on the perspective of translation quality and linguistics tools. As the MT, Instagram tends to give a literal translation without regarding the topic meant. On the other hand, the human translation tends to exaggerate the translation which leads a different meaning in English. This is an interesting study to discuss when the human nature and robotic-system influence the translation result.

Keywords: human translation, machine translation (MT), translation quality, linguistic tool

Procedia PDF Downloads 321
2814 A Periodogram-Based Spectral Method Approach: The Relationship between Tourism and Economic Growth in Turkey

Authors: Mesut BALIBEY, Serpil TÜRKYILMAZ

Abstract:

A popular topic in the econometrics and time series area is the cointegrating relationships among the components of a nonstationary time series. Engle and Granger’s least squares method and Johansen’s conditional maximum likelihood method are the most widely-used methods to determine the relationships among variables. Furthermore, a method proposed to test a unit root based on the periodogram ordinates has certain advantages over conventional tests. Periodograms can be calculated without any model specification and the exact distribution under the assumption of a unit root is obtained. For higher order processes the distribution remains the same asymptotically. In this study, in order to indicate advantages over conventional test of periodograms, we are going to examine a possible relationship between tourism and economic growth during the period 1999:01-2010:12 for Turkey by using periodogram method, Johansen’s conditional maximum likelihood method, Engle and Granger’s ordinary least square method.

Keywords: cointegration, economic growth, periodogram ordinate, tourism

Procedia PDF Downloads 270
2813 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)

Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo

Abstract:

Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.

Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop

Procedia PDF Downloads 403
2812 Deleterious SNP’s Detection Using Machine Learning

Authors: Hamza Zidoum

Abstract:

This paper investigates the impact of human genetic variation on the function of human proteins using machine-learning algorithms. Single-Nucleotide Polymorphism represents the most common form of human genome variation. We focus on the single amino-acid polymorphism located in the coding region as they can affect the protein function leading to pathologic phenotypic change. We use several supervised Machine Learning methods to identify structural properties correlated with increased risk of the missense mutation being damaging. SVM associated with Principal Component Analysis give the best performance.

Keywords: single-nucleotide polymorphism, machine learning, feature selection, SVM

Procedia PDF Downloads 378
2811 Determination of Four Anions in the Ground Layer of Tomb Murals by Ion Chromatography

Authors: Liping Qiu, Xiaofeng Zhang

Abstract:

The ion chromatography method for the rapid determination of four anions (F⁻、Cl⁻、SO₄²⁻、NO₃⁻) in burial ground poles was optimized. The L₉(₃⁴) orthogonal test was used to determine the optimal parameters of sample pretreatment: accurately weigh 2.000g of sample, add 10mL of ultrapure water, and extract for 40min under the conditions of shaking temperature 40℃ and shaking speed 180 r·min-1. The eluent was 25 mmol/L KOH solution, the analytical column was Ion Pac® AS11-SH (250 mm × 4.0 mm), and the purified filtrate was measured by a conductivity detector. Under this method, the detection limit of each ion is 0.066~0.078mg/kg, the relative standard deviation is 0.86%~2.44% (n=7), and the recovery rate is 94.6~101.9.

Keywords: ion chromatography, tomb, anion (F⁻, Cl⁻, SO₄²⁻, NO₃⁻), environmental protection

Procedia PDF Downloads 102
2810 Genetic Diversity of Norovirus Strains in Outpatient Children from Rural Communities of Vhembe District, South Africa, 2014-2015

Authors: Jean Pierre Kabue, Emma Meader, Afsatou Ndama Traore, Paul R. Hunter, Natasha Potgieter

Abstract:

Norovirus is now considered the most common cause of outbreaks of nonbacterial gastroenteritis. Limited data are available for Norovirus strains in Africa, especially in rural and peri-urban areas. Despite the excessive burden of diarrhea disease in developing countries, Norovirus infections have been to date mostly reported in developed countries. There is a need to investigate intensively the role of viral agents associated with diarrhea in different settings in Africa continent. To determine the prevalence and genetic diversity of Norovirus strains circulating in the rural communities in the Limpopo Province, South Africa and investigate the genetic relationship between Norovirus strains, a cross-sectional study was performed on human stools collected from rural communities. Between July 2014 and April 2015, outpatient children under 5 years of age from rural communities of Vhembe District, South Africa, were recorded for the study. A total of 303 stool specimens were collected from those with diarrhea (n=253) and without (n=50) diarrhea. NoVs were identified using real-time one-step RT-PCR. Partial Sequence analyses were performed to genotype the strains. Phylogenetic analyses were performed to compare identified NoVs genotypes to the worldwide circulating strains. Norovirus detection rate was 41.1% (104/253) in children with diarrhea. There was no significant difference (OR=1.24; 95% CI 0.66-2.33) in Norovirus detection between symptomatic and asymptomatic children. Comparison of the median CT values for NoV in children with diarrhea and without diarrhea revealed significant statistical difference of estimated GII viral load from both groups, with a much higher viral burden in children with diarrhea. To our knowledge, this is the first study reporting on the differences in estimated viral load of GII and GI NoV positive cases and controls. GII.Pe (n=9) were the predominant genotypes followed by GII.Pe/GII.4 Sydney 2012 (n=8) suspected recombinant and GII.4 Sydney 2012 variants(n=7). Two unassigned GII.4 variants and an unusual RdRp genotype GII.P15 were found. With note, the rare GIIP15 identified in this study has a common ancestor with GIIP15 strain from Japan previously reported as GII/untypeable recombinant strain implicated in a gastroenteritis outbreak. To our knowledge, this is the first report of this unusual genotype in the African continent. Though not confirmed predictive of diarrhea disease in this study, the high detection rate of NoV is an indication of subsequent exposure of children from rural communities to enteric pathogens due to poor sanitation and hygiene practices. The results reveal that the difference between asymptomatic and symptomatic children with NoV may possibly be related to the NoV genogroups involved. The findings emphasize NoV genetic diversity and predominance of GII.Pe/GII.4 Sydney 2012, indicative of increased NoV activity. An uncommon GII.P15 and two unassigned GII.4 variants were also identified from rural settings of the Vhembe District/South Africa. NoV surveillance is required to help to inform investigations into NoV evolution, and to support vaccine development programmes in Africa.

Keywords: asymptomatic, common, outpatients, norovirus genetic diversity, sporadic gastroenteritis, South African rural communities, symptomatic

Procedia PDF Downloads 195
2809 Lines for a Different Approach in Music Education: A Review of the Concept of Musicality

Authors: Emmanuel Carlos De Mata Castrejón

Abstract:

Music education has shown to be connected to many areas of sciences and arts, it has also been associated with several facets of human life. The many aspects around the study of music and education, make very difficult for the music educator to find a way through, even though there are lots of methods of teaching music to young children, they are different between one another and so are the students. For the music to help improve children’s development, it is necessary for the children to explore their musicality as they explore their creativity; it must be a challenging, playful, and enjoyable activity. The purpose of this investigation is to focus the music education not in the music, nor the teaching, but the children to be guided through their own musicality. The first approach to this kind of music education comes from the Active learning methods during the nineteenth century, most of which are still used around the world, sometimes with modifications to fit a certain place or type of students. This approach on children’s musicality requires some knowledge of music, pedagogy, and developmental psychology at least, but more important than the theory or the method used for music education, the focus should be on developing the student’s musicality, considering the complexity of this concept. To get this, it is needed, indeed, far more research in the topic, so this is a call for collaborative research and for interdisciplinary teams to emerge. This is a review of authors and methods in music education trying to trace a line pointing to transdisciplinary work and pursuing the development of children’s musicality.

Keywords: children, methods, music education, musicality

Procedia PDF Downloads 332
2808 Development Of Diabetes Mellitus In Overweight People

Authors: Ashiraliyev SHavkat

Abstract:

Relevance of the topic: Diabetes mellitus in overweight people development and absence of treatment measures. Objective: to give patients the correct instructions on proper nutrition, to organize a network of preventive and therapeutic measures. Materials and methods: Multidisciplinary Tashkent Medical Academy. As a result of objective observations in patients who applied to the clinic, 28 11 overweight patients had to type 2 diabetes. Diabetesmellituswasdiagnosed. Results: 11.5 mmol / L on an empty stomach in the morning. EDT yes. Pathogenesis: fat content in the diet of patients with diabetes mellitus. Carbohydrate foods make up 60%. Eating disorders and physical inactivity As a result, the accumulation of glucose in the form of fat increases, and this is constantly in the blood, which led to an increase in the number of fatty acids. Clinic: Frequent fasting in 11 patients (hypothalamus). Associated with glucose deficiency), drinking 8-9 liters of water per day of blood in 7 people Systolic pressure 150 diastolic pressures 100. Sensation of ants in 3 people and poor eyesight in 5 people. Conclusion: Explain to patients that nutritional guidelines should be followed. Assign active movement in accordance with the energy entering the body.

Keywords: mellitus, diabetes, pathogenesis, clinic

Procedia PDF Downloads 90
2807 qPCR Method for Detection of Halal Food Adulteration

Authors: Gabriela Borilova, Monika Petrakova, Petr Kralik

Abstract:

Nowadays, European producers are increasingly interested in the production of halal meat products. Halal meat has been increasingly appearing in the EU's market network and meat products from European producers are being exported to Islamic countries. Halal criteria are mainly related to the origin of muscle used in production, and also to the way products are obtained and processed. Although the EU has legislatively addressed the question of food authenticity, the circumstances of previous years when products with undeclared horse or poultry meat content appeared on EU markets raised the question of the effectiveness of control mechanisms. Replacement of expensive or not-available types of meat for low-priced meat has been on a global scale for a long time. Likewise, halal products may be contaminated (falsified) by pork or food components obtained from pigs. These components include collagen, offal, pork fat, mechanically separated pork, emulsifier, blood, dried blood, dried blood plasma, gelatin, and others. These substances can influence sensory properties of the meat products - color, aroma, flavor, consistency and texture or they are added for preservation and stabilization. Food manufacturers sometimes access these substances mainly due to their dense availability and low prices. However, the use of these substances is not always declared on the product packaging. Verification of the presence of declared ingredients, including the detection of undeclared ingredients, are among the basic control procedures for determining the authenticity of food. Molecular biology methods, based on DNA analysis, offer rapid and sensitive testing. The PCR method and its modification can be successfully used to identify animal species in single- and multi-ingredient raw and processed foods and qPCR is the first choice for food analysis. Like all PCR-based methods, it is simple to implement and its greatest advantage is the absence of post-PCR visualization by electrophoresis. qPCR allows detection of trace amounts of nucleic acids, and by comparing an unknown sample with a calibration curve, it can also provide information on the absolute quantity of individual components in the sample. Our study addresses a problem that is related to the fact that the molecular biological approach of most of the work associated with the identification and quantification of animal species is based on the construction of specific primers amplifying the selected section of the mitochondrial genome. In addition, the sections amplified in conventional PCR are relatively long (hundreds of bp) and unsuitable for use in qPCR, because in DNA fragmentation, amplification of long target sequences is quite limited. Our study focuses on finding a suitable genomic DNA target and optimizing qPCR to reduce variability and distortion of results, which is necessary for the correct interpretation of quantification results. In halal products, the impact of falsification of meat products by the addition of components derived from pigs is all the greater that it is not just about the economic aspect but above all about the religious and social aspect. This work was supported by the Ministry of Agriculture of the Czech Republic (QJ1530107).

Keywords: food fraud, halal food, pork, qPCR

Procedia PDF Downloads 247
2806 Chaotic Semiflows with General Acting Topological Monoids

Authors: Alica Miller

Abstract:

A semiflow is a triple consisting of a Hausdorff topological space $X$, a commutative topological monoid $T$ and a continuous monoid action of $T$ on $X$. The acting monoid $T$ is usually either the discrete monoid $\N_0$ of nonnegative integers (in which case the semiflow can be defined as a pair $(X,f)$ consisting of a phase space $X$ and a continuous function $f:X\to X$), or the monoid $\R_+$ of nonnegative real numbers (the so-called one-parameter monoid). However, it turns out that there are real-life situations where it is useful to consider the acting monoids that are a combination of discrete and continuous monoids. That, for example, happens, when we are observing certain dynamical system at discrete moments, but after some time realize that it would be beneficial to continue our observations in real time. The acting monoid in that case would be $T=\{0, t_0, 2t_0, \dots, (n-1)t_0\} \cup [nt_0,\infty)$ with the operation and topology induced from real numbers. This partly explains the motivation for the level of generality which is pursued in our research. We introduce the PSP monoids, which include all but ``pathological'' monoids, and most of our statements hold for them. The topic of our presentation are some recent results about chaos-related properties in semiflows, indecomposability and sensitivity of semiflows in the described general context.

Keywords: chaos, indecomposability, PSP monoids, semiflow, sensitivity

Procedia PDF Downloads 285
2805 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 74
2804 Factors That Promote Bystander Intervention in Cases of Sexual Violence

Authors: Avigail Moor

Abstract:

Sexual violence against women occurs at alarmingly high rates, which have remained steady irrespective of the increased societal awareness of this problem, affecting an upward of 20% of women. It appears that all the public discourse on this topic, including research, prevention programs, and public campaigns have not made a noticeable dent in this prevalence. This calls for new course of action. Raising awareness regarding the preventive role of bystanders might be it. To that end, the present study sought to establish what promotes bystander intervention and what hinders it. Three hundred and twenty-four men and women, ranging in age from 20-40, participated in this study, completing self-report questionnaires on the topics under investigation. Results indicated that the proclivity to intervene as a bystander is impacted by various factors. The most consequential among them is gender, with twice as many women as men, 70% vs 38% respectively, being positively inclined to take action in such cases. Other significant factors included belief in rape myths and having empathy towards perpetrators, which reduced the likelihood of bystander intervention. Holding the attitude that it is possible to freely consent to sex while intoxicated had a similar impact. The discussion addresses various preventive implications.

Keywords: bystander intervention, sexual assault, rape prevention, rape myths

Procedia PDF Downloads 128
2803 Research Development on the Role of Libraries and Librarians during COVID-19: A Scientometric Study

Authors: Saeed Ullah Jan, Muhammad Zahid

Abstract:

Purpose of study: The main theme of this study is to scrutinize and evaluate the available research on “role of libraries and librarians during COVID-19”. Design/Methodology/Approach: The quantitative research tool Bibliometric was used for the analysis of collected data. All the retrieved articles have been analyzed through MS office, MS Excel. Findings: It was depicted that 48 papers were published in 2021. The researchers from international countries have been published 45 and Pakistani researchers published only3 research papers on the subject cited above. Delimitations of the study: This study is delimited to the research articles published on the role of libraries and librarians during COVID-19. Practical implications: The findings of this study will be guideline for policy makers, higher ups and authorities of various facets of the libraries to revisit their priorities and work for the betterment of effective library culture in the country. Contribution to the knowledge: To the best of author's knowledge, no significant study has been done on this important topic of Library and Information Science research in Pakistan. This study will. add valuable literature the available literary world related to research development on the role of libraries and librarians during COVID-19.

Keywords: role of libraries, COVID-19, libraries, librarians, Pakistan

Procedia PDF Downloads 107
2802 Evaluation of Antimicrobial Susceptibility Profile of Urinary Tract Infections in Massoud Medical Laboratory: 2018-2021

Authors: Ali Ghorbanipour

Abstract:

The aim of this study is to investigate the drug resistance pattern and the value of the MIC (minimum inhibitory concentration)method to reduce the impact of infectious diseases and the slow development of resistance. Method: The study was conducted on clinical specimens collected between 2018 to 2021. identification of isolates and antibiotic susceptibility testing were performed using conventional biochemical tests. Antibiotic resistance was determined using kibry-Bauer disk diffusion and MIC by E-test methods comparative with microdilution plate elisa method. Results were interpreted according to CLSI. Results: Out of 249600 different clinical specimens, 18720 different pathogenic bacteria by overall detection ratio 7.7% were detected. Among pathogen bacterial were Gram negative bacteria (70%,n=13000) and Gram positive bacteria(30%,n=5720).Medically relevant gram-negative bacteria include a multitude of species such as E.coli , Klebsiella .spp , Pseudomonas .aeroginosa , Acinetobacter .spp , Enterobacterspp ,and gram positive bacteria Staphylococcus.spp , Enterococcus .spp , Streptococcus .spp was isolated . Conclusion: Our results highlighted that the resistance ratio among Gram Negative bacteria and Gram positive bacteria with different infection is high it suggest constant screening and follow-up programs for the detection of antibiotic resistance and the value of MIC drug susceptibility reporting that provide a new way to the usage of resistant antibiotic in combination with other antibiotics or accurate weight of antibiotics that inhibit or kill bacteria. Evaluation of wrong medication in the expansion of resistance and side effects of over usage antibiotics are goals. Ali ghorbanipour presently working as a supervision at the microbiology department of Massoud medical laboratory. Iran. Earlier, he worked as head department of pulmonary infection in firoozgarhospital, Iran. He received master degree in 2012 from Fergusson College. His research prime objective is a biologic wound dressing .to his credit, he has Published10 articles in various international congresses by presenting posters.

Keywords: antimicrobial profile, MIC & MBC Method, microplate antimicrobial assay, E-test

Procedia PDF Downloads 133
2801 The Relationship between Rhythmic Complexity and Listening Engagement as a Proxy for Perceptual Interest

Authors: Noah R. Fram

Abstract:

Although it has been confirmed by multiple studies, the inverted-U relationship between stimulus complexity and preference (liking) remains contentious. Research aimed at substantiating the model are largely reliant upon anecdotal self-assessments of subjects and basic measures of complexity, leaving potential confounds unresolved. This study attempts to address the topic by assessing listening time as a behavioral correlate of liking (with the assumption that engagement prolongs listening time) and by looking for latent factors underlying several measures of rhythmic complexity. Participants listened to groups of rhythms, stopping each one when they started to lose interest and were asked to rate each rhythm in each group in terms of interest, complexity, and preference. Subjects were not informed that the time spent listening to each rhythm was the primary measure of interest. The hypothesis that listening time does demonstrate the same inverted-U relationship with complexity as verbal reports of liking was confirmed using a variety of metrics for rhythmic complexity, including meter-dependent measures of syncopation and meter-independent measures of entropy.

Keywords: complexity, entropy, rhythm, syncopation

Procedia PDF Downloads 174
2800 A Study of the Formation, Existence and Stability of Localised Pulses in PDE

Authors: Ayaz Ahmad

Abstract:

TOPIC: A study of the formation ,existness and stability of localised pulses in pde Ayaz Ahmad ,NITP, Abstract:In this paper we try to govern the evolution deterministic variable over space and time .We analysis the behaviour of the model which allows us to predict and understand the possible behaviour of the physical system .Bifurcation theory provides a basis to systematically investigate the models for invariant sets .Exploring the behaviour of PDE using bifurcation theory which provides many challenges both numerically and analytically. We use the derivation of a non linear partial differential equation which may be written in this form ∂u/∂t+c ∂u/∂x+∈(∂^3 u)/(∂x^3 )+¥u ∂u/∂x=0 We show that the temperature increased convection cells forms. Through our work we look for localised solution which are characterised by sudden burst of aeroidic spatio-temporal evolution. Key word: Gaussian pulses, Aeriodic ,spatio-temporal evolution ,convection cells, nonlinearoptics, Dr Ayaz ahmad Assistant Professor Department of Mathematics National institute of technology Patna ,Bihar,,India 800005 [email protected] +91994907553

Keywords: Gaussian pulses, aeriodic, spatio-temporal evolution, convection cells, nonlinear optics

Procedia PDF Downloads 340
2799 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 72
2798 Meta-Review of Scholarly Publications on Biosensors: A Bibliometric Study

Authors: Nasrine Olson

Abstract:

With over 70,000 scholarly publications on the topic of biosensors, an overview of the field has become a challenge. To facilitate, there are currently over 700 expert-reviews of publications on biosensors and related topics. This study focuses on these review papers in order to provide a Meta-Review of the area. This paper provides a statistical analysis and overview of biosensor-related review papers. Comprehensive searches are conducted in the Web of Science, and PubMed databases and the resulting empirical material are analyzed using bibliometric methods and tools. The study finds that the biosensor-related review papers can be categorized in five related subgroups, broadly denoted by (i) properties of materials and particles, (ii) analysis and indicators, (iii) diagnostics, (iv) pollutant and analytical devices, and (v) treatment/ application. For an easy and clear access to the findings visualization of clusters and networks of connections are presented. The study includes a temporal dimension and identifies the trends over the years with an emphasis on the most recent developments. This paper provides useful insights for those who wish to form a better understanding of the research trends in the area of biosensors.

Keywords: bibliometrics, biosensors, meta-review, statistical analysis, trends visualization

Procedia PDF Downloads 217
2797 A Small-Scale Flexible Test Bench for the Investigation of Fertigation Strategies in Soilless Culture

Authors: Giacomo Barbieri

Abstract:

In soilless culture, the management of the nutrient solution is the most important aspect for crop growing. Fertigation dose, frequency and nutrient concentration must be planned with the objective of reaching an optimal crop growth by limiting the utilized resources and the associated costs. The definition of efficient fertigation strategies is a complex problem since fertigation requirements vary on the basis of different factors, and crops are sensitive to small variations on fertigation parameters. To the best of author knowledge, a small-scale test bench that is flexible for both nutrient solution preparation and precise irrigation is currently missing, limiting the investigations in standard practices for soilless culture. Starting from the analysis of the state of the art, this paper proposes a small-scale system that is potentially able to concurrently test different fertigation strategies. The system will be designed and implemented throughout a three year project started on August 2018. However, due to the importance of the topic within current challenges as food security and climate change, this work is spread considering that may inspire other universities and organizations.

Keywords: soilless culture, fertigation, test bench, small-scale, automation

Procedia PDF Downloads 177
2796 Pragmatic Discoursal Study of Hedging Constructions in English Language

Authors: Mohammed Hussein Ahmed, Bahar Mohammed Kareem

Abstract:

This study is concerned with the pragmatic discoursal study of hedging constructions in English language. Hedging is a mitigated word used to lessen the impact of the utterance uttered by the speakers. Hedging could be either adverbs, adjectives, verbs and sometimes it may consist of clauses. It aims at finding out the extent to which speakers and participants of the discourse use hedging constructions during their conversations. The study also aims at finding out whether or not there are any significant differences in the types and functions of the frequency of hedging constructions employed by male and female. It is hypothesized that hedging constructions are frequent in English discourse more than any other languages due to its formality and that the frequency of the types and functions are influenced by the gender of the participants. To achieve the aims of the study, two types of procedures have been followed: theoretical and practical. The theoretical procedure consists of presenting a theoretical background of hedging topic which includes its definitions, etymology and theories. The practical procedure consists of selecting a sample of texts and analyzing them according to an adopted model. A number of conclusions will be drawn based on the findings of the study.

Keywords: hedging, pragmatics, politeness, theoretical

Procedia PDF Downloads 587
2795 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
2794 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia

Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami

Abstract:

Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.

Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia

Procedia PDF Downloads 347
2793 Use of Social Media Among University Student and Its Effect on the Achievement of Students

Authors: Saba Latif

Abstract:

The use of social media among university students is a topic of ongoing debate, with conflicting views on its impact on academic achievement. This study aimed to explore the relationship between social media use and academic achievement among university students and to identify factors that may contribute to positive or negative effects. The study used a mixed-methods design, including a survey of 500 university students and qualitative interviews with a subset of participants. The survey results showed that social media use was prevalent among students, with Facebook and Instagram are the most commonly used platforms. The findings also indicated a positive relationship between social media use and academic achievement, with students who reported higher levels of social media use also reporting higher GPAs. However, the qualitative interviews revealed that excessive use of social media could be a distraction that hinders academic performance, especially when students use it to procrastinate or to stay up late at night. Overall, the findings suggest that social media use can have both positive and negative effects on academic achievement among university students. Responsible and balanced use of social media, such as setting limits on usage and avoiding procrastination, may help students maximize the benefits while minimizing the risks.

Keywords: social media, university, achievement, effective, learning

Procedia PDF Downloads 83
2792 Snapchat’s Scanning Feature

Authors: Reham Banwair, Lana Alshehri, Sara Hadrawi

Abstract:

The purpose of this project is to identify user satisfaction with the AI functions on Snapchat, in order to generate improvement proposals that allow its development within the app. To achieve this, a qualitative analysis was carried out through interviews to people who usually use the application, revealing their satisfaction or dissatisfaction with the usefulness of the AI. In addition, the background of the company and its introduction in these algorithms were analyzed. Furthermore, the characteristics of the three main functions of AI were explained: identify songs, solve mathematical problems, and recognize plants. As a result, it was obtained that 50% still do not know the characteristics of AI, 50% still believe song recognition is not always correct, 41.7% believe that math problems are usually accurate and 91.7% believes the plant detection tool is working properly.

Keywords: artificial intelligence, scanning, Snapchat, machine learning

Procedia PDF Downloads 134
2791 Testing the Moderating Effect of Sub Ethnic on Household Investment Behaviour

Authors: Widayat Widayat

Abstract:

Nowday, in the modern investment era, household behavior on investment is a topic that is quite warm. The development of the modern investment, indicated by the emergence of a variety of investment instruments, such as stocks, bonds and various forms of derivatives, affected on the complexity of choosing an investment, especially for traditional societies. Various studies show that there is more than one factor acting as a behavioral antesenden decide to choose an investment instrument. One of the factors, which contribute in determining the investment option is ethnic. Society with a particular sub-culture tend to prefer investing their particular instrument. This is because they have the values, norms and different social environmental. This article is designed to test the impact of sub-cultures between Osing-Java as moderator, in investing. The study was conducted in Banyuwangi, East Java Province of Indonesia. Data were collected using questionnaires, which is given to the head of the household respondents were selected as samples. Sample of households selected by multistage sampling method. The data have been collected processed using SmartPLS software and testing moderating effects using grouped sample test. The result showed that sub-ethnic and has a significant role in determining the investment.

Keywords: investment behaviour, household, moderating, sub ethnic

Procedia PDF Downloads 371
2790 Teaching Italian Sign Language in Higher Education

Authors: Maria Tagarelli De Monte

Abstract:

Since its formal recognition in 2021, Italian Sign Language (LIS) and interpreters’ education has become a topic for higher education in Italian universities. In April 2022, Italian universities have been invited to present their proposals to create sign language courses for interpreters’ training for both LIS and tactile LIS. As a result, a few universities have presented a three-year course leading candidate students from the introductory level to interpreters. In such a context, there is an open debate not only on the fact that three years may not be enough to prepare skillful interpreters but also on the need to refer to international standards in the definition of the training path to follow. Among these, are the Common European Framework of Reference (CEFR) for languages and Dublin’s descriptors. This contribution will discuss the potentials and the challenges given by LIS training in academic settings, by comparing traditional studies to the requests coming from universities. Particular attention will be given to the use of CEFR as a reference document for the Italian Sign Language Curriculum. Its use has given me the chance to reflect on how LIS can be taught in higher education, and the adaptations that need to be addressed to respect the visual-gestural nature of sign language and the formal requirements of academic settings.

Keywords: Italian sign language, higher education, sign language curriculum, interpreters education, CEFR

Procedia PDF Downloads 45
2789 Impact of Social Media Usage and Psychological Absenteeism at Workplace on Job Performance

Authors: Quaid Farooq, Zainab Mujtaba

Abstract:

The main aim of this paper was to conduct a research regarding social media usage, psychological absenteeism and job performance at workplace in Pakistan. This research examined the effects of social media usage and psychological absenteeism at workplace on job performance of employees. It was a popular belief that social media usage and psychological absenteeism at workplace have a negative relation with job performance. However, to date there was no study to support this argument, and this compelled us to choose this topic and find out the results. Secondly, this research also found effect of social media usage on psychological absenteeism. Despite the theoretical appeal of these variables and significance in today’s workplace environment, no previous study has investigated the relationship between them in detail. Data was collected from a sample (N = 100 paired responses) of employees and supervisors from different organizations in Pakistan. Study results indicate that performance is negatively related to psychological absenteeism, and such individuals were rated as exhibiting low performance level by their supervisors. However, it had no significant relationship with social media. Moreover, psychological absenteeism was positively related to social media. Individuals, who used more social media at workplace, were more psychologically absent at work according to our results.

Keywords: employee, job performance, psychological absenteeism, social media

Procedia PDF Downloads 389
2788 Efficacy of a Social-Emotional Learning Curriculum for Kindergarten and First Grade Students to Improve Social Adjustment within the School Culture

Authors: Ann P. Daunic, Nancy Corbett

Abstract:

Background and Significance: Researchers emphasize the role that motivation, self-esteem, and self-regulation play in children’s early adjustment to the school culture, including skills such as identifying their own feelings and understanding the feelings of others. As social-emotional growth, academic learning, and successful integration within culture and society are inextricably connected, the Social-Emotional Learning Foundations (SELF) curriculum was designed to integrate social-emotional learning (SEL) instruction within early literacy instruction (specifically, reading) for Kindergarten and first-grade students at risk for emotional and behavioral difficulties. Storybook reading is a typically occurring activity in the primary grades; thus SELF provides an intervention that is both theoretically and practically sound. Methodology: The researchers will report on findings from the first two years of a three-year study funded by the US Department of Education’s Institute of Education Sciences to evaluate the effects of the SELF curriculum versus “business as usual” (BAU). SELF promotes the development of self-regulation by incorporating instructional strategies that support children’s use of SEL related vocabulary, self-talk, and critical thinking. The curriculum consists of a carefully coordinated set of materials and pedagogy designed specifically for primary grade children at early risk for emotional and behavioral difficulties. SELF lessons (approximately 50 at each grade level) are organized around 17 SEL topics within five critical competencies. SELF combines whole-group (the first in each topic) and small-group lessons (the 2nd and 3rd in each topic) to maximize opportunities for teacher modeling and language interactions. The researchers hypothesize that SELF offers a feasible and substantial opportunity within the classroom setting to provide a small-group social-emotional learning intervention integrated with K-1 literacy-related instruction. Participating target students (N = 876) were identified by their teachers as potentially at risk for emotional or behavioral issues. These students were selected from 122 Kindergarten and 100 first grade classrooms across diverse school districts in a southern state in the US. To measure the effectiveness of the SELF intervention, the researchers asked teachers to complete assessments related to social-emotional learning and adjustment to the school culture. A social-emotional learning related vocabulary assessment was administered directly to target students receiving small-group instruction. Data were analyzed using a 3-level MANOVA model with full information maximum likelihood to estimate coefficients and test hypotheses. Major Findings: SELF had significant positive effects on vocabulary, knowledge, and skills associated with social-emotional competencies, as evidenced by results from the measures administered. Effect sizes ranged from 0.41 for group (SELF vs. BAU) differences in vocabulary development to 0.68 for group differences in SEL related knowledge. Conclusion: Findings from two years of data collection indicate that SELF improved outcomes related to social-emotional learning and adjustment to the school culture. This study thus supports the integration of SEL with literacy instruction as a feasible and effective strategy to improve outcomes for K-1 students at risk for emotional and behavioral difficulties.

Keywords: Socio-cultural context for learning, social-emotional learning, social skills, vocabulary development

Procedia PDF Downloads 125