Search results for: hydrologic and hydraulic modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2493

Search results for: hydrologic and hydraulic modelling

513 Downtime Modelling for the Post-Earthquake Building Assessment Phase

Authors: S. Khakurel, R. P. Dhakal, T. Z. Yeow

Abstract:

Downtime is one of the major sources (alongside damage and injury/death) of financial loss incurred by a structure in an earthquake. The length of downtime associated with a building after an earthquake varies depending on the time taken for the reaction (to the earthquake), decision (on the future course of action) and execution (of the decided course of action) phases. Post-earthquake assessment of buildings is a key step in the decision making process to decide the appropriate safety placarding as well as to decide whether a damaged building is to be repaired or demolished. The aim of the present study is to develop a model to quantify downtime associated with the post-earthquake building-assessment phase in terms of two parameters; i) duration of the different assessment phase; and ii) probability of different colour tagging. Post-earthquake assessment of buildings includes three stages; Level 1 Rapid Assessment including a fast external inspection shortly after the earthquake, Level 2 Rapid Assessment including a visit inside the building and Detailed Engineering Evaluation (if needed). In this study, the durations of all three assessment phases are first estimated from the total number of damaged buildings, total number of available engineers and the average time needed for assessing each building. Then, probability of different tag colours is computed from the 2010-11 Canterbury earthquake Sequence database. Finally, a downtime model for the post-earthquake building inspection phase is proposed based on the estimated phase length and probability of tag colours. This model is expected to be used for rapid estimation of seismic downtime within the Loss Optimisation Seismic Design (LOSD) framework.

Keywords: assessment, downtime, LOSD, Loss Optimisation Seismic Design, phase length, tag color

Procedia PDF Downloads 182
512 The Ideal for Building Reservior Under the Ground in Mekong Delta in Vietnam

Authors: Huu Hue Van

Abstract:

The Mekong Delta is the region in southwestern Vietnam where the Mekong River approaches and flow into the sea through a network of distributaries. The Climate Change Research Institute at University of Can Tho, in studying the possible consequences of climate change, has predicted that, many provinces in the Mekong Delta will be flooded by the year 2030. The Mekong Delta lacks fresh water in the dry season. Being served for daily life, industry and agriculture in the dry season, the water is mainly taken from layers of soil contained water under the ground (aquifers) depleted water; the water level in aquifers have decreased. Previously, the Mekong Delta can withstand two bad scenarios in the future: 1) The Mekong Delta will be submerged into the sea again: Due to subsidence of the ground (over-exploitation of groundwater), subsidence of constructions because of the low groundwater level (10 years ago, some of constructions were built on the foundation of Melaleuca poles planted in Mekong Delta, Melaleuca poles have to stay in saturated soil layer fully, if not, they decay easyly; due to the top of Melaleuca poles are higher than the groundwater level, the top of Melaleuca poles will decay and cause subsidence); erosion the river banks (because of the hydroelectric dams in the upstream of the Mekong River is blocking the flow, reducing the concentration of suspended substances in the flow caused erosion the river banks) and the delta will be flooded because of sea level rise (climate change). 2) The Mekong Delta will be deserted: People will migrate to other places to make a living because of no planting due to alum capillary (In Mekong Delta, there is a layer of alum soil under the ground, the elevation of groundwater level is lower than the the elevation of layer of alum soil, alum will be capillary to the arable soil layer); there is no fresh water for cultivation and daily life (because of saline intrusion and groundwater depletion in the aquifers below). Mekong Delta currently has about seven aquifers below with a total depth about 500 m. The water mainly has exploited in the middle - upper Pleistocene aquifer (qp2-3). The major cause of two bad scenarios in the future is over-exploitation of water in aquifers. Therefore, studying and building water reservoirs in seven aquifers will solve many pressing problems such as preventing subsidence, providing water for the whole delta, especially in coastal provinces, favorable to nature, saving land ( if we build the water lake on the surface of the delta, we will need a lot of land), pollution limitation (because when building some hydraulic structures for preventing the salt instrutions and for storing water in the lake on the surface, we cause polluted in the lake)..., It is necessary to build a reservoir under the ground in aquifers in the Mekong Delta. The super-sized reservoir will contribute to the existence and development of the Mekong Delta.

Keywords: aquifers, aquifers storage, groundwater, land subsidence, underground reservoir

Procedia PDF Downloads 83
511 Status of Participative Governance Practices in Higher Education: Implications for Stakeholders' Transformative Role-Assumption

Authors: Endalew Fufa Kufi

Abstract:

The research investigated the role of stakeholders such as students, teachers and administrators in the practices of good governance in higher education by looking into the special contributions of top-officials, teachers and students in ensuring workable ties and productive interchanges in Adama Science and Technology University. Attention was given to participation, fairness and exemplariness as key indicators of good governance. The target university was chosen for its familiarity for the researcher to get dependable data, access to respondent and management of the processing of data. Descriptive survey design was used for the purpose of describing concerned roles the stakeholders in the university governance in order to reflect on the nature of participation of the practices. Centres of the research were administration where supportive groups such as central administrators and underlying service-givers had parts and academia where teachers and students were target. Generally, 60 teachers, 40 students and 15 administrative officers were referents. Data were collected in the form of self-report through open-ended questionnaires. The findings indicated that, while vertical interchanges in terms of academic and administrative routines were had normal flow on top-down basis, planned practices of stakeholders in decision-making and reasonably communicating roles and changes in decisions with top-officials were not efficiently practiced. Moreover, the practices of good modelling were not witnessed to have existed to the fullest extent. Rather, existence of a very wide gap between the academic and administrative staffs was witnessed as was reflected the case between teachers and students. The implication was such that for shortage in participative atmosphere and weaning of fairness in governance, routine practices have been there as the vicious circles of governance.

Keywords: governance, participative, stakeholders, transformative, role-assumption

Procedia PDF Downloads 395
510 Identification and Characterization of Groundwater Recharge Sites in Kuwait

Authors: Dalal Sadeqi

Abstract:

Groundwater is an important component of Kuwait’s water resources. Although limited in quantity and often poor in quality, the significance of this natural source of water cannot be overemphasized. Recharge of groundwater in Kuwait occurs during periodical storm events, especially in open desert areas. Runoff water dissolves accumulated surficial meteoric salts and subsequently leaches them into the groundwater following a period of evaporative enrichment at or near the soil surface. Geochemical processes governing groundwater recharge vary in time and space. Stable isotope (18O and 2H) and geochemical signatures are commonly used to gain some insight into recharge processes and groundwater salinization mechanisms, particularly in arid and semiarid regions. This article addresses the mechanism used in identifying and characterizing the main water shed areas in Kuwait using stable isotopes in an attempt to determine favorable groundwater recharge sites in the country. Stable isotopes of both rainwater and groundwater were targeted in different hydrogeological settings. Additionally, data and information obtained from subsurface logs in the study area were collected and analyzed to develop a better understanding of the lateral and vertical extent of the groundwater aquifers. Geographic Information System (GIS) and RockWorks 3D modelling software were used to map out the hydrogeomorphology of the study area and the subsurface lithology of the investigated aquifers. The collected data and information, including major ion chemistry, isotopes, subsurface characteristics, and hydrogeomorphology, were integrated in a GIS platform to identify and map out suitable natural recharge areas as part of an integrated water resources management scheme that addresses the challenges of the sustainability of the groundwater reserves in the country.

Keywords: scarcity, integrated, recharge, isotope

Procedia PDF Downloads 113
509 Findings on Modelling Carbon Dioxide Concentration Scenarios in the Nairobi Metropolitan Region before and during COVID-19

Authors: John Okanda Okwaro

Abstract:

Carbon (IV) oxide (CO₂) is emitted majorly from fossil fuel combustion and industrial production. The sources of interest of carbon (IV) oxide in the study area are mining activities, transport systems, and industrial processes. This study is aimed at building models that will help in monitoring the emissions within the study area. Three scenarios were discussed, namely: pessimistic scenario, business-as-usual scenario, and optimistic scenario. The result showed that there was a reduction in carbon dioxide concentration by approximately 50.5 ppm between March 2020 and January 2021 inclusive. This is majorly due to reduced human activities that led to decreased consumption of energy. Also, the CO₂ concentration trend follows the business-as-usual scenario (BAU) path. From the models, the pessimistic, business-as-usual, and optimistic scenarios give CO₂ concentration of about 545.9 ppm, 408.1 ppm, and 360.1 ppm, respectively, on December 31st, 2021. This research helps paint the picture to the policymakers of the relationship between energy sources and CO₂ emissions. Since the reduction in CO₂ emission was due to decreased use of fossil fuel as there was a decrease in economic activities, then if Kenya relies more on green energy than fossil fuel in the post-COVID-19 period, there will be more CO₂ emission reduction. That is, the CO₂ concentration trend is likely to follow the optimistic scenario path, hence a reduction in CO₂ concentration of about 48 ppm by the end of the year 2021. This research recommends investment in solar energy by energy-intensive companies, mine machinery and equipment maintenance, investment in electric vehicles, and doubling tree planting efforts to achieve the 10% cover.

Keywords: forecasting, greenhouse gas, green energy, hierarchical data format

Procedia PDF Downloads 166
508 Relationship between Physical Activity Level and Functional Movement in 16-years old Schoolchildren: A Multilevel Modelling Approach

Authors: Josip Karuc, Marjeta Mišigoj-Duraković, Goran Marković, Vedran Hadžić, Michael J. Duncan, Hrvoje Podnar, Maroje Sorić

Abstract:

As a part of the CRO-PALS longitudinal study, this investigation aimed to examine the association between different levels of physical activity (PA) and movement quality in 16-years old school children. The total number of participants in this research was 725. Movement quality was assessed via the Functional Movement Screen (FMSTM), and the PA level was estimated using the School Health Action, Planning, and Evaluation System (SHAPES) questionnaire. In addition, body fat and socioeconomic status (SES) were assessed. In order to investigate the association between total FMS score and different levels of PA, multilevel modeling was employed for boys (n=359) and girls (n=366) separately. All models were adjusted for age, body fat, and SES. Among boys, MVPA, MPA, and VPA were not significant predictors of the total FMS score (β=0.000, p=0.78; β=-0.002, p=0.455; β=0.004, p=0.158, respectively). On the contrary, among girls, VPA and MVPA showed significant effects on the total FMS score (β=0.011, p=0.001, β=0.005, p=0.006, respectively). The findings of this research provide evidence that the intensity of PA is a minor but relevant factor in describing the association between PA and movement quality in adolescent girls but not in boys. This means that the PA level does not guarantee optimal functional movement patterns. Therefore, practicing functional movement patterns in an isolated manner and at moderate to vigorous intensity could be beneficial in order to reduce the risk of injury incidence and potential orthopedic abnormalities in later life. This work was supported by the Croatian Science Foundation, grant no: IP-2016-06-9926 and grant no: DOK-2018-01-2328.

Keywords: functional movement screen, fundamental movement patterns, movement quality, pediatric

Procedia PDF Downloads 161
507 Industry 4.0 Adoption, Control Mechanism and Sustainable Performance of Healthcare Supply Chains under Disruptive Impact

Authors: Edward Nartey

Abstract:

Although the boundaries of sustainable performance and growth in the field of service supply chains (SCs) have been broadened by scholars in recent years, research on the impact and promises of Industry 4.0 Destructive Technologies (IDTs) on sustainability performance under disruptive events is still scarce. To mitigate disruptions in the SC and improve efficiency by identifying areas for cost savings, organizations have resorted to investments in digitalization, automation, and control mechanisms in recent years. However, little is known about the sustainability implications for IDT adoption and controls in service SCs, especially during disruptive events. To investigate this paradox, survey data were sought from 223 public health managers across Ghana and analyzed via covariance-based structural equations modelling. The results showed that both formal and informal control have a positive and significant relationship with IDT adoption. In addition, formal control has a significant and positive relationship with environmental and economic sustainability but an insignificant relationship with social sustainability. Furthermore, informal control positively impacts economic performance but has an insignificant relationship with social and environmental sustainability. While the findings highlight the prevalence of the IDTs being initiated by Ghanaian public health institutions (PHIs), this study concludes that the installed control systems in these organizations are inadequate for promoting sustainable SC behaviors under destructive events. Thus, in crisis situations, PHIs need to redesign their control systems to facilitate IDT integration towards sustainability issues in SCs.

Keywords: industry 4.0 destructive technologies, formal control, informal control, sustainable supply chain performance, public health organizations

Procedia PDF Downloads 62
506 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving

Authors: Yasin Tadayonrad

Abstract:

Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.

Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming

Procedia PDF Downloads 91
505 Assessing the Imapact of Climate Change on Biodiversity Hotspots: A Multidisciplinary Study

Authors: Reet Bishnoi

Abstract:

Climate change poses a pressing global challenge, with far-reaching consequences for the planet's ecosystems and biodiversity. This abstract introduces the research topic, "Assessing the Impact of Climate Change on Biodiversity Hotspots: A Multidisciplinary Study," which delves into the intricate relationship between climate change and biodiversity in the world's most ecologically diverse regions. Biodiversity hotspots, characterized by their exceptionally high species richness and endemism, are under increasing threat due to rising global temperatures, altered precipitation patterns, and other climate-related factors. This research employs a multidisciplinary approach, incorporating ecological, climatological, and conservationist methodologies to comprehensively analyze the effects of climate change on these vital regions. Through a combination of field research, climate modelling, and ecological assessments, this study aims to elucidate the vulnerabilities of biodiversity hotspots and understand how changes in temperature and precipitation are affecting the diverse species and ecosystems that inhabit these areas. The research seeks to identify potential tipping points, assess the resilience of native species, and propose conservation strategies that can mitigate the adverse impacts of climate change on these critical regions. By illuminating the complex interplay between climate change and biodiversity hotspots, this research not only contributes to our scientific understanding of these issues but also informs policymakers, conservationists, and the public about the urgent need for coordinated efforts to safeguard our planet's ecological treasures. The outcomes of this multidisciplinary study are expected to play a pivotal role in shaping future climate policies and conservation practices, emphasizing the importance of protecting biodiversity hotspots for the well-being of the planet and future generations.

Keywords: climate change, biodiversity hotspots, ecological diversity, conservation, multidisciplinary study

Procedia PDF Downloads 74
504 Investigating Role of Traumatic Events in a Pakistani Sample

Authors: Khadeeja Munawar, Shamsul Haque

Abstract:

The claim that traumatic events influence the recalled memories and mental health has received mixed empirical support. This study examines the memories of a sample drawn from Pakistan, a country that has witnessed many life-changing socio-political events, wars, and natural disasters in 72 years of its history. A sample of 210 senior citizens (Mage = 64.35, SD = 6.33) was recruited from Pakistan. The aim was to investigate if participants retrieved more memories related to past traumatic events using a word-cueing technique. Each participant reported ten memories to ten neutral cue words. The results revealed that past traumatic events were not adversely affecting the memories and mental health of participants. When memories were plotted with respect to the ages at which the events happened, a pronounced bump at 11-20 years of age was seen. Memories within as well as outside of the bump were mostly positive. The multilevel logistic regression modelling showed that the memories recalled were personally important and played a role in enhancing resilience. The findings revealed that despite facing an array of ethnic, religious, political, economic, and social conflicts, the participants were resilient, recalled predominantly positive memories, and had intact mental health. The findings have clinical implications in Cognitive Behavioral Therapy (CBT). The patients can be made aware of their negative emotions, troublesome/traumatic memories, and the distorted thinking patterns and their memories can be restructured. The findings can also be used to teach Memory Specificity Training (MEST) by psycho-educating the patients around changes in memory functioning and enhancing the recall of memories, which are more specific, vivid, and filled with sensory details.

Keywords: cognitive behavioral therapy, memories, mental health, resilience, trauma

Procedia PDF Downloads 151
503 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 283
502 Studying the Effect of Carbon Nanotubes on the Mechanical Properties of Epoxy-Nanocomposite for the Oil Field Applications

Authors: Mohammed Al-Bahrani, Alistair Cree, Zoltan J. Gombos

Abstract:

Carbon nanotubes are currently considered to be one of the strongest and stiffest engineering materials available, possessing a calculated tensile strength of σTS ≈ 200GPa and Young’s moduli up to E = 1.4 TPa. In the context of manufactured engineering composites, epoxy resin is the most commonly used matrix material for many aerospace and oil field, and other, industrial applications. This paper reports the initial findings of a study which considered the effects that small additions of nickel coated multi-wall carbon nanotubes (Ni-MWCNTs) would have on the mechanical properties of an epoxy resin matrix material. To successfully incorporate these particles into the matrix materials, with good dispersive properties, standard mixing techniques using an ultrasonic bath were used during the manufacture of appropriate specimens for testing. The tensile and flexural strength properties of these specimens, as well as the microstructure, were then evaluated and studied. Scanning Electronics Microscope (SEM) was used to visualise the degree of dispersion of the Ni-MWCNT’s in matrix. The results obtained indicated that the mechanical properties of epoxy resin can be improved significantly by the addition of the Ni-MWCNT’s. Further, the addition of Ni-MWCNT’s increased the tensile strength by approximately 19% and the tensile modulus by 28%. The flexural strength increased by 20.7% and flexural modulus by 22.6% compared to unmodified epoxy resin. It is suggested that these improvements, seen with the Ni-MWCNT’s particles, were due to an increase in the degree of interfacial bonding between Ni-MWCNT and epoxy, so leading to the improved mechanical properties of the nanocomposite observed. Theoretical modelling, using ANSYS finite element analysis, also showed good correlation with the experimental results obtained.

Keywords: carbon nanotubes, nanocomposite, epoxy resin, ansys

Procedia PDF Downloads 173
501 Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami

Authors: M. Ashaque Meah, Md. Fazlul Karim, M. Shah Noor, Nazmun Nahar Papri, M. Khalid Hossen, M. Ismoen

Abstract:

Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation.

Keywords: open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far-field tsunami, shallow water equations, tsunami source, Indonesian tsunami of 2004

Procedia PDF Downloads 445
500 Statistical Modelling of Maximum Temperature in Rwanda Using Extreme Value Analysis

Authors: Emmanuel Iyamuremye, Edouard Singirankabo, Alexis Habineza, Yunvirusaba Nelson

Abstract:

Temperature is one of the most important climatic factors for crop production. However, severe temperatures cause drought, feverish and cold spells that have various consequences for human life, agriculture, and the environment in general. It is necessary to provide reliable information related to the incidents and the probability of such extreme events occurring. In the 21st century, the world faces a huge number of threats, especially from climate change, due to global warming and environmental degradation. The rise in temperature has a direct effect on the decrease in rainfall. This has an impact on crop growth and development, which in turn decreases crop yield and quality. Countries that are heavily dependent on agriculture use to suffer a lot and need to take preventive steps to overcome these challenges. The main objective of this study is to model the statistical behaviour of extreme maximum temperature values in Rwanda. To achieve such an objective, the daily temperature data spanned the period from January 2000 to December 2017 recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to model and analyse extreme temperature. Model parameters were estimated, while the extreme temperature return periods and confidence intervals were predicted. The model fit suggests Gumbel and Beta distributions to be the most appropriate models for the annual maximum of daily temperature. The results show that the temperature will continue to increase, as shown by estimated return levels.

Keywords: climate change, global warming, extreme value theory, rwanda, temperature, generalised extreme value distribution, generalised pareto distribution

Procedia PDF Downloads 179
499 Evaluation of Current Methods in Modelling and Analysis of Track with Jointed Rails

Authors: Hossein Askarinejad, Manicka Dhanasekar

Abstract:

In railway tracks, two adjacent rails are either welded or connected using bolted jointbars. In recent years the number of bolted rail joints is reduced by introduction of longer rail sections and by welding the rails at location of some joints. However, significant number of bolted rail joints remains in railways around the world as they are required to allow for rail thermal expansion or to provide electrical insulation in some sections of track. Regardless of the quality and integrity of the jointbar and bolt connections, the bending stiffness of jointbars is much lower than the rail generating large deflections under the train wheels. In addition, the gap or surface discontinuity on the rail running surface leads to generation of high wheel-rail impact force at the joint gap. These fundamental weaknesses have caused high rate of failure in track components at location of rail joints resulting in significant economic and safety issues in railways. The mechanical behavior of railway track at location of joints has not been fully understood due to various structural and material complexities. Although there have been some improvements in the methods for analysis of track at jointed rails in recent years, there are still uncertainties concerning the accuracy and reliability of the current methods. In this paper the current methods in analysis of track with a rail joint are critically evaluated and the new advances and recent research outcomes in this area are discussed. This research is part of a large granted project on rail joints which was defined by Cooperative Research Centre (CRC) for Rail Innovation with supports from Australian Rail Track Corporation (ARTC) and Queensland Rail (QR).

Keywords: jointed rails, railway mechanics, track dynamics, wheel-rail interaction

Procedia PDF Downloads 348
498 Modelling Urban Rigidity and Elasticity Growth Boundaries: A Spatial Constraints-Suitability Based Perspective

Authors: Pengcheng Xiang Jr., Xueqing Sun, Dong Ngoduy

Abstract:

In the context of rapid urbanization, urban sprawl has brought about extensive negative impacts on ecosystems and the environment, resulting in a gradual shift from "incremental growth" to ‘stock growth’ in cities. A detailed urban growth boundary is a prerequisite for urban renewal and management. This study takes Shenyang City, China, as the study area and evaluates the spatial distribution of urban spatial suitability in the study area from the perspective of spatial constraints-suitability using multi-source data and simulates the future rigid and elastic growth boundaries of the city in the study area using the CA-Markov model. The results show that (1) the suitable construction area and moderate construction area in the study area account for 8.76% and 19.01% of the total area, respectively, and the suitable construction area and moderate construction area show a trend of distribution from the urban centre to the periphery, mainly in Shenhe District, the southern part of Heping District, the western part of Dongling District, and the central part of Dadong District; (2) the area of expansion of construction land in the study area in the period of 2023-2030 is 153274.6977hm2, accounting for 44.39% of the total area of the study area; (3) the rigid boundary of the study area occupies an area of 153274.6977 hm2, accounting for 44.39% of the total area of the study area, and the elastic boundary of the study area contains an area of 75362.61 hm2, accounting for 21.69% of the total area of the study area. The study constructed a method for urban growth boundary delineation, which helps to apply remote sensing to guide future urban spatial growth management and urban renewal.

Keywords: urban growth boundary, spatial constraints, spatial suitability, urban sprawl

Procedia PDF Downloads 32
497 Influence of Infinite Elements in Vibration Analysis of High-Speed Railway Track

Authors: Janaki Rama Raju Patchamatla, Emani Pavan Kumar

Abstract:

The idea of increasing the existing train speeds and introduction of the high-speed trains in India as a part of Vision-2020 is really challenging from both economic viability and technical feasibility. More than economic viability, technical feasibility has to be thoroughly checked for safe operation and execution. Trains moving at high speeds need a well-established firm and safe track thoroughly tested against vibration effects. With increased speeds of trains, the track structure and layered soil-structure interaction have to be critically assessed for vibration and displacements. Physical establishment of track, testing and experimentation is a costly and time taking process. Software-based modelling and simulation give relatively reliable, cost-effective means of testing effects of critical parameters like sleeper design and density, properties of track and sub-grade, etc. The present paper reports the applicability of infinite elements in reducing the unrealistic stress-wave reflections from so-called soil-structure interface. The influence of the infinite elements is quantified in terms of the displacement time histories of adjoining soil and the deformation pattern in general. In addition, the railhead response histories at various locations show that the numerical model is realistic without any aberrations at the boundaries. The numerical model is quite promising in its ability to simulate the critical parameters of track design.

Keywords: high speed railway track, finite element method, Infinite elements, vibration analysis, soil-structure interface

Procedia PDF Downloads 270
496 Finite Element Analysis of the Drive Shaft and Jacking Frame Interaction in Micro-Tunneling Method: Case Study of Tehran Sewerage

Authors: B. Mohammadi, A. Riazati, P. Soltan Sanjari, S. Azimbeik

Abstract:

The ever-increasing development of civic demands on one hand; and the urban constrains for newly establish of infrastructures, on the other hand, perforce the engineering committees to apply non-conflicting methods in order to optimize the results. One of these optimized procedures to establish the main sewerage networks is the pipe jacking and micro-tunneling method. The raw information and researches are based on the experiments of the slurry micro-tunneling project of the Tehran main sewerage network that it has executed by the KAYSON co. The 4985 meters route of the mentioned project that is located nearby the Azadi square and the most vital arteries of Tehran is faced to 45% physical progress nowadays. The boring machine is made by the Herrenknecht and the diameter of the using concrete-polymer pipes are 1600 and 1800 millimeters. Placing and excavating several shafts on the ground and direct Tunnel boring between the axes of issued shafts is one of the requirements of the micro-tunneling. Considering the stream of the ground located shafts should care the hydraulic circumstances, civic conditions, site geography, traffic cautions and etc. The profile length has to convert to many shortened segment lines so the generated angle between the segments will be based in the manhole centers. Each segment line between two continues drive and receive the shaft, displays the jack location, driving angle and the path straight, thus, the diversity of issued angle causes the variety of jack positioning in the shaft. The jacking frame fixing conditions and it's associated dynamic load direction produces various patterns of Stress and Strain distribution and creating fatigues in the shaft wall and the soil surrounded the shaft. This pattern diversification makes the shaft wall transformed, unbalanced subsidence and alteration in the pipe jacking Stress Contour. This research is based on experiments of the Tehran's west sewerage plan and the numerical analysis the interaction of the soil around the shaft, shaft walls and the Jacking frame direction and finally, the suitable or unsuitable location of the pipe jacking shaft will be determined.

Keywords: underground structure, micro-tunneling, fatigue analysis, dynamic-soil–structure interaction, underground water, finite element analysis

Procedia PDF Downloads 318
495 Microstructure Evolution and Modelling of Shear Forming

Authors: Karla D. Vazquez-Valdez, Bradley P. Wynne

Abstract:

In the last decades manufacturing needs have been changing, leading to the study of manufacturing methods that were underdeveloped, such as incremental forming processes like shear forming. These processes use rotating tools in constant local contact with the workpiece, which is often also rotating, to generate shape. This means much lower loads to forge large parts and no need for expensive special tooling. Potential has already been established by demonstrating manufacture of high-value products, e.g., turbine and satellite parts, with high dimensional accuracy from difficult to manufacture materials. Thus, huge opportunities exist for these processes to replace the current method of manufacture for a range of high value components, e.g., eliminating lengthy machining, reducing material waste and process times; or the manufacture of a complicated shape without the development of expensive tooling. However, little is known about the exact deformation conditions during processing and why certain materials are better than others for shear forming, leading to a lot of trial and error before production. Three alloys were used for this study: Ti-54M, Jethete M154, and IN718. General Microscopy and Electron Backscatter Diffraction (EBSD) were used to measure strains and orientation maps during shear forming. A Design of Experiments (DOE) analysis was also made in order to understand the impact of process parameters in the properties of the final workpieces. Such information was the key to develop a reliable Finite Element Method (FEM) model that closely resembles the deformation paths of this process. Finally, the potential of these three materials to be shear spun was studied using the FEM model and their Forming Limit Diagram (FLD) which led to the development of a rough methodology for testing the shear spinnability of various metals.

Keywords: shear forming, damage, principal strains, forming limit diagram

Procedia PDF Downloads 162
494 Modelling of Geotechnical Data Using Geographic Information System and MATLAB for Eastern Ahmedabad City, Gujarat

Authors: Rahul Patel

Abstract:

Ahmedabad, a city located in western India, is experiencing rapid growth due to urbanization and industrialization. It is projected to become a metropolitan city in the near future, resulting in various construction activities. Soil testing is necessary before construction can commence, requiring construction companies and contractors to periodically conduct soil testing. The focus of this study is on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical (Geo)-database involves three steps: collecting borehole data from reputable sources, verifying the accuracy and redundancy of the data, and standardizing and organizing the geotechnical information for integration into the database. Once the database is complete, it is integrated with GIS, allowing users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. This GIS map enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This study highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers.

Keywords: ArcGIS, borehole data, geographic information system, geo-database, interpolation, SPT N-value, soil classification, Φ-Value, bearing capacity

Procedia PDF Downloads 73
493 Mathematical Modelling of Blood Flow with Magnetic Nanoparticles as Carrier for Targeted Drug Delivery in a Stenosed Artery

Authors: Sreeparna Majee, G. C. Shit

Abstract:

A study on targeted drug delivery is carried out in an unsteady flow of blood infused with magnetic NPs (nanoparticles) with an aim to understand the flow pattern and nanoparticle aggregation in a diseased arterial segment having stenosis. The magnetic NPs are supervised by the magnetic field which is significant for therapeutic treatment of arterial diseases, tumor and cancer cells and removing blood clots. Coupled thermal energy have also been analyzed by considering dissipation of energy because of the application of the magnetic field and the viscosity of blood. Simulation technique used to solve the mathematical model is vorticity-stream function formulations in the diseased artery. An elevation in SLP (Specific loss power) is noted in the aortic bloodstream when the agglomeration of nanoparticles is higher. This phenomenon has potential application in the treatment of hyperthermia. The study focuses on the lowering of WSS (Wall Shear Stress) with increasing particle concentration at the downstream of the stenosis which depicts the vigorous flow circulation zone. These low shear stress regions prolong the residing time of the nanoparticles carrying drugs which soaks up the LDL (Low Density Lipoprotein) deposition. Moreover, an increase in NP concentration enhances the Nusselt number which marks the increase of heat transfer from the arterial wall to the surrounding tissues to destroy tumor and cancer cells without affecting the healthy cells. The results have a significant influence in the study of medicine, to treat arterial diseases such as atherosclerosis without the need for surgery which can minimize the expenditures on cardiovascular treatments.

Keywords: magnetic nanoparticles, blood flow, atherosclerosis, hyperthermia

Procedia PDF Downloads 140
492 Factor Influencing Pharmacist Engagement and Turnover Intention in Thai Community Pharmacist: A Structural Equation Modelling Approach

Authors: T. Nakpun, T. Kanjanarach, T. Kittisopee

Abstract:

Turnover of community pharmacist can affect continuity of patient care and most importantly the quality of care and also the costs of a pharmacy. It was hypothesized that organizational resources, job characteristics, and social supports had direct effect on pharmacist turnover intention, and indirect effect on pharmacist turnover intention via pharmacist engagement. This research aimed to study influencing factors on pharmacist engagement and pharmacist turnover intention by testing the proposed structural hypothesized model to explain the relationship among organizational resources, job characteristics, and social supports that effect on pharmacist turnover intention and pharmacist engagement in Thai community pharmacists. A cross sectional study design with self-administered questionnaire was conducted in 209 Thai community pharmacists. Data were analyzed using Structural Equation Modeling technique with analysis of a moment structures AMOS program. The final model showed that only organizational resources had significant negative direct effect on pharmacist turnover intention (β =-0.45). Job characteristics and social supports had significant positive relationship with pharmacist engagement (β = 0.44, and 0.55 respectively). Pharmacist engagement had significant negative relationship with pharmacist turnover intention (β = - 0.24). Thus, job characteristics and social supports had significant negative indirect effect on turnover intention via pharmacist engagement (β =-0.11 and -0.13, respectively). The model fit the data well (χ2/ degree of freedom (DF) = 2.12, the goodness of fit index (GFI)=0.89, comparative fit index (CFI) = 0.94 and root mean square error of approximation (RMSEA) = 0.07). This study can be concluded that organizational resources were the most important factor because it had direct effect on pharmacist turnover intention. Job characteristics and social supports were also help decrease pharmacist turnover intention via pharmacist engagement.

Keywords: community pharmacist, influencing factor, turnover intention, work engagement

Procedia PDF Downloads 202
491 A Simple Model for Solar Panel Efficiency

Authors: Stefano M. Spagocci

Abstract:

The efficiency of photovoltaic panels can be calculated with such software packages as RETScreen that allow design engineers to take financial as well as technical considerations into account. RETScreen is interfaced with meteorological databases, so that efficiency calculations can be realistically carried out. The author has recently contributed to the development of solar modules with accumulation capability and an embedded water purifier, aimed at off-grid users such as users in developing countries. The software packages examined do not allow to take ancillary equipment into account, hence the decision to implement a technical and financial model of the system. The author realized that, rather than re-implementing the quite sophisticated model of RETScreen - a mathematical description of which is anyway not publicly available - it was possible to drastically simplify it, including the meteorological factors which, in RETScreen, are presented in a numerical form. The day-by-day efficiency of a photovoltaic solar panel was parametrized by the product of factors expressing, respectively, daytime duration, solar right ascension motion, solar declination motion, cloudiness, temperature. For the sun-motion-dependent factors, positional astronomy formulae, simplified by the author, were employed. Meteorology-dependent factors were fitted by simple trigonometric functions, employing numerical data supplied by RETScreen. The accuracy of our model was tested by comparing it to the predictions of RETScreen; the accuracy obtained was 11%. In conclusion, our study resulted in a model that can be easily implemented in a spreadsheet - thus being easily manageable by non-specialist personnel - or in more sophisticated software packages. The model was used in a number of design exercises, concerning photovoltaic solar panels and ancillary equipment like the above-mentioned water purifier.

Keywords: clean energy, energy engineering, mathematical modelling, photovoltaic panels, solar energy

Procedia PDF Downloads 65
490 Household Knowledge, Attitude, and Determinants in Solid Waste Segregation: The Case of Sfax City

Authors: Leila Kharrat, Younes Boujelbene

Abstract:

In recent decades, solid waste management (SWM) has become a global concern because rapid population growth and overexploitation of non-renewable resources have generated enormous amounts of waste far exceeding carrying capacity; too, it poses serious threats to the environment and health. However, it is still difficult to combat the growing amount of solid waste before assessing the condition of people. Therefore, this study was conducted to assess the knowledge, attitudes, perception, and practices on the separation of solid waste in Sfax City. Nowadays, GDS is essential for sustainable development, hence the need for intensive research. Respondents from seven different districts in the city of Sfax were analyzed through a questionnaire survey with 342 households. This paper presents a qualitative exploratory study on the behavior of the citizens in the field of waste separation. The objective knows the antecedents of waste separation and the representation that individuals have about sorting waste on a specific territory which presents some characteristics regarding waste management in Sfax city. Source separation is not widely practiced and people usually sweep their places throwing waste components into the streets or neighboring plots. The results also indicate that participation in solid waste separation activities depends on the level of awareness of separating activities in the area, household income and educational level. It is, therefore, argued that increasing quality of municipal service is the best means of promoting positive attitudes to solid waste separation activities. One of the effective strategies identified by households that can be initiated by policymakers to increase the rate of participation in separation activities and eventually encourage them to participate in recycling activities is to provide a financial incentive in all residential areas in Sfax city.

Keywords: solid waste management, waste separation, public policy, econometric modelling

Procedia PDF Downloads 234
489 Compressed Natural Gas (CNG) Injector Research for Dual Fuel Engine

Authors: Adam Majczak, Grzegorz Barański, Marcin Szlachetka

Abstract:

Environmental considerations necessitate the search for new energy sources. One of the available solutions is a partial replacement of diesel fuel by compressed natural gas (CNG) in the compression ignition engines. This type of the engines is used mainly in vans and trucks. These units are also gaining more and more popularity in the passenger car market. In Europe, this part of the market share reaches 50%. Diesel engines are also used in industry in such vehicles as ship or locomotives. Diesel engines have higher emissions of nitrogen oxides in comparison to spark ignition engines. This can be currently limited by optimizing the combustion process and the use of additional systems such as exhaust gas recirculation or AdBlue technology. As a result of the combustion process of diesel fuel also particulate matter (PM) that are harmful to the human health are emitted. Their emission is limited by the use of a particulate filter. One of the method for toxic components emission reduction may be the use of liquid gas fuel such as propane and butane (LPG) or compressed natural gas (CNG). In addition to the environmental aspects, there are also economic reasons for the use of gaseous fuels to power diesel engines. A total or partial replacement of diesel gas is possible. Depending on the used technology and the percentage of diesel fuel replacement, it is possible to reduce the content of nitrogen oxides in the exhaust gas even by 30%, particulate matter (PM) by 95 % carbon monoxide and by 20%, in relation to original diesel fuel. The research object is prototype gas injector designed for direct injection of compressed natural gas (CNG) in compression ignition engines. The construction of the injector allows for it positioning in the glow plug socket, so that the gas is injected directly into the combustion chamber. The cycle analysis of the four-cylinder Andoria ADCR engine with a capacity of 2.6 dm3 for different crankshaft rotational speeds allowed to determine the necessary time for fuel injection. Because of that, it was possible to determine the required mass flow rate of the injector, for replacing as much of the original fuel by gaseous fuel. To ensure a high value of flow inside the injector, supply pressure equal to 1 MPa was applied. High gas supply pressure requires high value of valve opening forces. For this purpose, an injector with hydraulic control system, using a liquid under pressure for the opening process was designed. On the basis of air pressure measurements in the flow line after the injector, the analysis of opening and closing of the valve was made. Measurements of outflow mass of the injector were also carried out. The results showed that the designed injector meets the requirements necessary to supply ADCR engine by the CNG fuel.

Keywords: CNG, diesel engine, gas flow, gas injector

Procedia PDF Downloads 491
488 Modeling of the Biodegradation Performance of a Membrane Bioreactor to Enhance Water Reuse in Agri-food Industry - Poultry Slaughterhouse as an Example

Authors: masmoudi Jabri Khaoula, Zitouni Hana, Bousselmi Latifa, Akrout Hanen

Abstract:

Mathematical modeling has become an essential tool for sustainable wastewater management, particularly for the simulation and the optimization of complex processes involved in activated sludge systems. In this context, the activated sludge model (ASM3h) was used for the simulation of a Biological Membrane Reactor (MBR) as it includes the integration of biological wastewater treatment and physical separation by membrane filtration. In this study, the MBR with a useful volume of 12.5 L was fed continuously with poultry slaughterhouse wastewater (PSWW) for 50 days at a feed rate of 2 L/h and for a hydraulic retention time (HRT) of 6.25h. Throughout its operation, High removal efficiency was observed for the removal of organic pollutants in terms of COD with 84% of efficiency. Moreover, the MBR has generated a treated effluent which fits with the limits of discharge into the public sewer according to the Tunisian standards which were set in March 2018. In fact, for the nitrogenous compounds, average concentrations of nitrate and nitrite in the permeat reached 0.26±0.3 mg. L-1 and 2.2±2.53 mg. L-1, respectively. The simulation of the MBR process was performed using SIMBA software v 5.0. The state variables employed in the steady state calibration of the ASM3h were determined using physical and respirometric methods. The model calibration was performed using experimental data obtained during the first 20 days of the MBR operation. Afterwards, kinetic parameters of the model were adjusted and the simulated values of COD, N-NH4+and N- NOx were compared with those reported from the experiment. A good prediction was observed for the COD, N-NH4+and N- NOx concentrations with 467 g COD/m³, 110.2 g N/m³, 3.2 g N/m³ compared to the experimental data which were 436.4 g COD/m³, 114.7 g N/m³ and 3 g N/m³, respectively. For the validation of the model under dynamic simulation, the results of the experiments obtained during the second treatment phase of 30 days were used. It was demonstrated that the model simulated the conditions accurately by yielding a similar pattern on the variation of the COD concentration. On the other hand, an underestimation of the N-NH4+ concentration was observed during the simulation compared to the experimental results and the measured N-NO3 concentrations were lower than the predicted ones, this difference could be explained by the fact that the ASM models were mainly designed for the simulation of biological processes in the activated sludge systems. In addition, more treatment time could be required by the autotrophic bacteria to achieve a complete and stable nitrification. Overall, this study demonstrated the effectiveness of mathematical modeling in the prediction of the performance of the MBR systems with respect to organic pollution, the model can be further improved for the simulation of nutrients removal for a longer treatment period.

Keywords: activated sludge model (ASM3h), membrane bioreactor (MBR), poultry slaughter wastewater (PSWW), reuse

Procedia PDF Downloads 58
487 The Role of Fluid Catalytic Cracking in Process Optimisation for Petroleum Refineries

Authors: Chinwendu R. Nnabalu, Gioia Falcone, Imma Bortone

Abstract:

Petroleum refining is a chemical process in which the raw material (crude oil) is converted to finished commercial products for end users. The fluid catalytic cracking (FCC) unit is a key asset in refineries, requiring optimised processes in the context of engineering design. Following the first stage of separation of crude oil in a distillation tower, an additional 40 per cent quantity is attainable in the gasoline pool with further conversion of the downgraded product of crude oil (residue from the distillation tower) using a catalyst in the FCC process. Effective removal of sulphur oxides, nitrogen oxides, carbon and heavy metals from FCC gasoline requires greater separation efficiency and involves an enormous environmental significance. The FCC unit is primarily a reactor and regeneration system which employs cyclone systems for separation.  Catalyst losses in FCC cyclones lead to high particulate matter emission on the regenerator side and fines carryover into the product on the reactor side. This paper aims at demonstrating the importance of FCC unit design criteria in terms of technical performance and compliance with environmental legislation. A systematic review of state-of-the-art FCC technology was carried out, identifying its key technical challenges and sources of emissions.  Case studies of petroleum refineries in Nigeria were assessed against selected global case studies. The review highlights the need for further modelling investigations to help improve FCC design to more effectively meet product specification requirements while complying with stricter environmental legislation.

Keywords: design, emission, fluid catalytic cracking, petroleum refineries

Procedia PDF Downloads 136
486 Hemodynamics of a Cerebral Aneurysm under Rest and Exercise Conditions

Authors: Shivam Patel, Abdullah Y. Usmani

Abstract:

Physiological flow under rest and exercise conditions in patient-specific cerebral aneurysm models is numerically investigated. A finite-volume based code with BiCGStab as the linear equation solver is used to simulate unsteady three-dimensional flow field through the incompressible Navier-Stokes equations. Flow characteristics are first established in a healthy cerebral artery for both physiological conditions. The effect of saccular aneurysm on cerebral hemodynamics is then explored through a comparative analysis of the velocity distribution, nature of flow patterns, wall pressure and wall shear stress (WSS) against the reference configuration. The efficacy of coil embolization as a potential strategy of surgical intervention is also examined by modelling coil as a homogeneous and isotropic porous medium where the extended Darcy’s law, including Forchheimer and Brinkman terms, is applicable. The Carreau-Yasuda non-Newtonian blood model is incorporated to capture the shear thinning behavior of blood. Rest and exercise conditions correspond to normotensive and hypertensive blood pressures respectively. The results indicate that the fluid impingement on the outer wall of the arterial bend leads to abnormality in the distribution of wall pressure and WSS, which is expected to be the primary cause of the localized aneurysm. Exercise correlates with elevated flow velocity, vortex strength, wall pressure and WSS inside the aneurysm sac. With the insertion of coils in the aneurysm cavity, the flow bypasses the dilatation, leading to a decline in flow velocities and WSS. Particle residence time is observed to be lower under exercise conditions, a factor favorable for arresting plaque deposition and combating atherosclerosis.

Keywords: 3D FVM, Cerebral aneurysm, hypertension, coil embolization, non-Newtonian fluid

Procedia PDF Downloads 232
485 Analytical Modelling of the Moment-Rotation Behavior of Top and Seat Angle Connection with Stiffeners

Authors: Merve Sagiroglu

Abstract:

The earthquake-resistant steel structure design is required taking into account the behavior of beam-column connections besides the basic properties of the structure such as material and geometry. Beam-column connections play an important role in the behavior of frame systems. Taking into account the behaviour of connection in analysis and design of steel frames is important due to presenting the actual behavior of frames. So, the behavior of the connections should be well known. The most important force which transmitted by connections in the structural system is the moment. The rotational deformation is customarily expressed as a function of the moment in the connection. So, the moment-rotation curves are the best expression of behaviour of the beam-to-column connections. The designed connections form various moment-rotation curves according to the elements of connection and the shape of placement. The only way to achieve this curve is with real-scale experiments. The experiments of some connections have been carried out partially and are formed in the databank. It has been formed the models using this databank to express the behavior of connection. In this study, theoretical studies have been carried out to model a real behavior of the top and seat angles connections with angles. Two stiffeners in the top and seat angle to increase the stiffness of the connection, and two stiffeners in the beam web to prevent local buckling are used in this beam-to-column connection. Mathematical models have been performed using the database of the beam-to-column connection experiments previously by authors. Using the data of the tests, it has been aimed that analytical expressions have been developed to obtain the moment-rotation curve for the connection details whose test data are not available. The connection has been dimensioned in various shapes and the effect of the dimensions of the connection elements on the behavior has been examined.

Keywords: top and seat angle connection, stiffener, moment-rotation curves, analytical study

Procedia PDF Downloads 174
484 Application of Geosynthetics for the Recovery of Located Road on Geological Failure

Authors: Rideci Farias, Haroldo Paranhos

Abstract:

The present work deals with the use of drainage geo-composite as a deep drainage and geogrid element to reinforce the base of the body of the landfill destined to the road pavement on geological faults in the stretch of the TO-342 Highway, between the cities of Miracema and Miranorte, in the State of Tocantins / TO, Brazil, which for many years was the main link between TO-010 and BR-153, after the city of Palmas, also in the state of Tocantins / TO, Brazil. For this application, geotechnical and geological studies were carried out by means of SPT percussion drilling, drilling and rotary drilling, to understand the problem, identifying the type of faults, filling material and the definition of the water table. According to the geological and geotechnical studies carried out, the area where the route was defined, passes through a zone of longitudinal fault to the runway, with strong breaking / fracturing, with presence of voids, intense alteration and with advanced argilization of the rock and with the filling up parts of the faults by organic and compressible soils leachate from other horizons. This geology presents as a geotechnical aggravating agent a medium of high hydraulic load and very low resistance to penetration. For more than 20 years, the region presented constant excessive deformations in the upper layers of the pavement, which after routine services of regularization, reconformation, re-compaction of the layers and application of the asphalt coating. The faults were quickly propagated to the surface of the asphalt pavement, generating a longitudinal shear, forming steps (unevenness), close to 40 cm, causing numerous accidents and discomfort to the drivers, since the geometric positioning was in a horizontal curve. Several projects were presented to the region's highway department to solve the problem. Due to the need for partial closure of the runway, the short time for execution, the use of geosynthetics was proposed and the most adequate solution for the problem was taken into account the movement of existing geological faults and the position of the water level in relation to several Layers of pavement and failure. In order to avoid any flow of water in the body of the landfill and in the filling material of the faults, a drainage curtain solution was used, carried out at 4.0 meters depth, with drainage geo-composite and as reinforcement element and inhibitor of the possible A geogrid of 200 kN / m of resistance was inserted at the base of the reconstituted landfill. Recent evaluations, after 13 years of application of the solution, show the efficiency of the technique used, supported by the geotechnical studies carried out in the area.

Keywords: geosynthetics, geocomposite, geogrid, road, recovery, geological failure

Procedia PDF Downloads 167