Search results for: forest fire fuel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2953

Search results for: forest fire fuel

973 Preliminary Study of the Potential of Propagation by Cuttings of Juniperus thurefera in Aures (Algeria)

Authors: N. Khater, I. Djbablia, A. Telaoumaten, S. A. Menina, H. Benbouza

Abstract:

Thureferous Juniper is an endemic cupressacée constitutes a forest cover in the mountains of Aures (Algeria ). It is an heritage and important ecological richness, but continues to decline, highly endangered species in danger of extinction, these populations show significant originality due to climatic conditions of the environment, because of its strength and extraordinary vitality, made a powerful but fragile and unique ecosystem in which natural regeneration by seed is almost absent in Algeria. Because of the quality of seeds that are either dormant or affected at the tree and the ground level by a large number of pests and parasites, which will lead to the total disappearance of this species and consequently leading to the biodiversity. View the ecological and social- economic interest presented by this case, it deserves to be preserved and produced in large quantities in this respect. The present work aims to try to regenerate the Juniperus thurefera via vegetative propagation. We studied the potential of cuttings to form adventitious roots and buds. Cuttings were taken from young subjects from 5 to 20 years treated with indole butyric acid (AIB) and planted out inside perlite under atomizer whose temperature and light are controlled. The results show that the rate of rooting is important and encourages the regeneration of this species through vegetative propagation.

Keywords: juniperus thurefera, indole butyric acid, cutting, buds, rooting

Procedia PDF Downloads 306
972 Literature Review: Microalgae as Functional Foods with Solvent Free Extraction

Authors: Angela Justina Kumalaputri

Abstract:

Indonesia, as a maritime country, has abundant marine living resources yet has not been optimally utilized. So far, we only focusing on fisheries. In the other hand, Indonesia, as the country with the fourth longest coastline, is a very good cultivation place for microalgae. Microalgae can be diversified to many important products, such as food, fuel, pharmaceutical products, functional food, and cosmetics.This research is focusing on the literature study about types of microalgae as sources for functional foods (such as antioxidants), including the contents and the separation methods. The research methods which we use are: (1) Literature study about various microalgaes (2) Literature study about extractions using supercritical fluid of CO₂, which are free from toxic organic solvents, environmentally friendly, and safe for food products. Supercritical fluid extraction using CO₂ (low critical points: temperature at 31.1 oC and pressure at 72.9 bars) could be done at a low temperature which are suitable for temperature labile compounds, low energy, and faster extraction time compared with conventional method of extraction.

Keywords: antioxidants, supercritical fluid extraction, solvent-free extraction, microalgae

Procedia PDF Downloads 72
971 Corn Production in the Visayas: An Industry Study from 2002-2019

Authors: Julie Ann L. Gadin, Andrearose C. Igano, Carl Joseph S. Ignacio, Christopher C. Bacungan

Abstract:

Corn production has become an important and pervasive industry in the Visayas for many years. Its role as a substitute commodity to rice heightens demand for health-particular consumers. Unfortunately, the corn industry is confronted with several challenges, such as weak institutions. Considering these issues, the paper examined the factors that influence corn production in the three administrative regions in the Visayas, namely, Western Visayas, Central Visayas, and Eastern Visayas. The data used was retrieved from a variety of publicly available data sources such as the Philippine Statistics Authority, the Department of Agriculture, the Philippine Crop Insurance Corporation, and the International Disaster Database. Utilizing a dataset from 2002 to 2019, the indicators were tested using three multiple linear regression (MLR) models. Results showed that the land area harvested (p=0.02), and the value of corn production (p=0.00) are statistically significant variables that influence corn production in the Visayas. Given these findings, it is suggested that the policy of forest conversion and sustainable land management should be effective in enabling farmworkers to obtain land to grow corn crops, especially in rural regions. Furthermore, the Biofuels Act of 2006, the Livestock Industry Restructuring and Rationalization Act, and supported policy, Senate Bill No. 225, or an Act Establishing the Philippine Corn Research Institute and Appropriating Funds, should be enforced inclusively in order to improve the demand for the corn-allied industries which may lead to an increase in the value and volume of corn production in the Visayas.

Keywords: corn, industry, production, MLR, Visayas

Procedia PDF Downloads 209
970 Location and Group Specific Differences in Human-Macaque Interactions in Singapore: Implications for Conflict Management

Authors: Srikantan L. Jayasri, James Gan

Abstract:

The changes in Singapore’s land use, natural preference of long-tailed macaques (Macaca fascicularis) to live in forest edges and their adaptability has led to interface between humans and macaques. Studies have shown that two-third of human-macaque interactions in Singapore were related to human food. We aimed to assess differences among macaques groups in their dependence on human food and interaction with humans as indicators of the level of interface. Field observations using instantaneous scan sampling and all occurrence ad-lib sampling were carried out for 23 macaque groups over 28 days recording 71.5 hours of observations. Data on macaque behaviour, demography, frequency, and nature of human-macaque interactions were collected. None of the groups were found to completely rely on human food source. Of the 23 groups, 40% of them were directly or indirectly provisioned by humans. One-third of the groups observed engaged in some form of interactions with the humans. Three groups that were directly fed by humans contributed to 83% of the total human-macaque interactions observed during the study. Our study indicated that interactions between humans and macaques exist in specific groups and in those fed by humans regularly. Although feeding monkeys is illegal in Singapore, such incidents seem to persist in specific locations. We emphasize the importance of group and location-specific assessment of the existing human-wildlife interactions. Conflict management strategies developed should be location specific to address the cause of interactions.

Keywords: primates, Southeast Asia, wildlife management, Singapore

Procedia PDF Downloads 478
969 Numerical Study on the Effect of Obstacle Structure on Two-Phase Detonation Initiation

Authors: Ding Yu, Ge Yang, Wang Hong-Tao

Abstract:

Aiming at the detonation performance and detonation wave propagation distance of liquid fuel detonation engine, the kerosene/oxygen-enriched air mixture is chosen as the research object; its detonation initiation and detonation wave propagation process by mild energy input are numerically studied by using Euler-Lagrange method in the present study. The effects of a semicircular obstacle, rectangular obstacle, and triangular obstacle on the detonation characteristic parameters in the detonation tube are compared and analyzed, and the effect of the angle between obstacle and flame propagation direction on flame propagation characteristics and detonation process when the blocking ratio is constant are studied. The results show that the flame propagation velocity decreases with the increase of the angle in the range of 0-90°, and when the angle is 0° which corresponds to the semicircle obstacle gets the highest detonation wave propagation velocity. With the increase of the angle in the range of 0-90°, DDT (Deflagration to detonation transition) distance decreases first and then increases.

Keywords: deflagration to detonation transition, numerical simulation, obstacle structure, turbulent flame

Procedia PDF Downloads 80
968 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 108
967 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network

Procedia PDF Downloads 133
966 A Hill Town in Nature to Urban Sprawl: Shimla (HP) India

Authors: Minakshi Jain, I. P. Singh

Abstract:

The mountain system makes the one fifth of the world’s landscape and is the home to the 600 million people. Though hills and mountains contain about 10 percent of the total population of the country, yet almost half of the country’s population living in or adjacent to the mountain areas depend directly or indirectly on the resources of the hills. Mountain environments are essential to the survival of the global ecosystems, as they sustain the economy of India through its perennial river system and precious forest wealth. Hill areas, with distinct climate, diverse vegetation and valuable flora & fauna are distinguished primarily by unique eco-system, rich both in bio-diversity and visual resources. These areas have special significance in terms of environment and economy. Still the irony is that these mountain ecosystems are fragile and highly susceptible to disturbance, with a low ability to rebound and heal after damage. Hills are home to endangered species, biological diversity and an essential part of the ecosystem. They are extremely sensitive to any human related development. Natural systems are the most ignored in the hills. The way the cities and towns have encroached them today has the serious repercussions on the climate. Amidst immense resources and constraints of nature, the town had a fantastic diversity of cultural and ethnic characteristics nurtured through ages along river basin and valley strung across the length and breadth of this Himalayan setting.

Keywords: eco-system, bio-diversity, urban sprawl, vernacular landscape

Procedia PDF Downloads 525
965 Effect of Core Puncture Diameter on Bio-Char Kiln Efficiency

Authors: W. Intagun, T. Khamdaeng, P. Prom-ngarm, N. Panyoyai

Abstract:

Biochar has been used as a soil amendment since it has high porous structure and has proper nutrients and chemical properties for plants. Product yields produced from biochar kiln are dependent on process parameters and kiln types used. The objective of this research is to investigate the effect of core puncture diameter on biochar kiln efficiency, i.e., yields of biochar and produced gas. Corncobs were used as raw material to produce biochar. Briquettes from agricultural wastes were used as fuel. Each treatment was performed by changing the core puncture diameter. From the experiment, it is revealed that the yield of biochar at the core puncture diameter of 3.18 mm, 4.76 mm, and 6.35 mm was 10.62 wt. %, 24.12 wt. %, and 12.24 wt. %, of total solid yields, respectively. The yield of produced gas increased with increasing the core puncture diameter. The maximum percentage by weight of the yield of produced gas was 81.53 wt. % which was found at the core puncture diameter of 6.35 mm. The core puncture diameter was furthermore found to affect the temperature distribution inside the kiln and its thermal efficiency. In conclusion, the high efficient biochar kiln can be designed and constructed by using the proper core puncture diameter.

Keywords: anila stove, bio-char, soil conditioning materials, temperature distribution

Procedia PDF Downloads 229
964 Artificial Intelligent Methodology for Liquid Propellant Engine Design Optimization

Authors: Hassan Naseh, Javad Roozgard

Abstract:

This paper represents the methodology based on Artificial Intelligent (AI) applied to Liquid Propellant Engine (LPE) optimization. The AI methodology utilized from Adaptive neural Fuzzy Inference System (ANFIS). In this methodology, the optimum objective function means to achieve maximum performance (specific impulse). The independent design variables in ANFIS modeling are combustion chamber pressure and temperature and oxidizer to fuel ratio and output of this modeling are specific impulse that can be applied with other objective functions in LPE design optimization. To this end, the LPE’s parameter has been modeled in ANFIS methodology based on generating fuzzy inference system structure by using grid partitioning, subtractive clustering and Fuzzy C-Means (FCM) clustering for both inferences (Mamdani and Sugeno) and various types of membership functions. The final comparing optimization results shown accuracy and processing run time of the Gaussian ANFIS Methodology between all methods.

Keywords: ANFIS methodology, artificial intelligent, liquid propellant engine, optimization

Procedia PDF Downloads 586
963 Comprehensive Risk Analysis of Decommissioning Activities with Multifaceted Hazard Factors

Authors: Hyeon-Kyo Lim, Hyunjung Kim, Kune-Woo Lee

Abstract:

Decommissioning process of nuclear facilities can be said to consist of a sequence of problem solving activities, partly because there may exist working environments contaminated by radiological exposure, and partly because there may also exist industrial hazards such as fire, explosions, toxic materials, and electrical and physical hazards. As for an individual hazard factor, risk assessment techniques are getting known to industrial workers with advance of safety technology, but the way how to integrate those results is not. Furthermore, there are few workers who experienced decommissioning operations a lot in the past. Therefore, not a few countries in the world have been trying to develop appropriate counter techniques in order to guarantee safety and efficiency of the process. In spite of that, there still exists neither domestic nor international standard since nuclear facilities are too diverse and unique. In the consequence, it is quite inevitable to imagine and assess the whole risk in the situation anticipated one by one. This paper aimed to find out an appropriate technique to integrate individual risk assessment results from the viewpoint of experts. Thus, on one hand the whole risk assessment activity for decommissioning operations was modeled as a sequence of individual risk assessment steps, and on the other, a hierarchical risk structure was developed. Then, risk assessment procedure that can elicit individual hazard factors one by one were introduced with reference to the standard operation procedure (SOP) and hierarchical task analysis (HTA). With an assumption of quantification and normalization of individual risks, a technique to estimate relative weight factors was tried by using the conventional Analytic Hierarchical Process (AHP) and its result was reviewed with reference to judgment of experts. Besides, taking the ambiguity of human judgment into consideration, debates based upon fuzzy inference was added with a mathematical case study.

Keywords: decommissioning, risk assessment, analytic hierarchical process (AHP), fuzzy inference

Procedia PDF Downloads 423
962 Technology Maps in Energy Applications Based on Patent Trends: A Case Study

Authors: Juan David Sepulveda

Abstract:

This article reflects the current stage of progress in the project “Determining technological trends in energy generation”. At first it was oriented towards finding out those trends by employing such tools as the scientometrics community had proved and accepted as effective for getting reliable results. Because a documented methodological guide for this purpose could not be found, the decision was made to reorient the scope and aim of this project, changing the degree of interest in pursuing the objectives. Therefore it was decided to propose and implement a novel guide from the elements and techniques found in the available literature. This article begins by explaining the elements and considerations taken into account when implementing and applying this methodology, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.

Keywords: energy, technology mapping, patents, univariate analysis

Procedia PDF Downloads 475
961 Evaluation of Different Fertilization Practices and Their Impacts on Soil Chemical and Microbial Properties in Two Agroecological Zones of Ghana

Authors: Ansong Richard Omari, Yosei Oikawa, Yoshiharu Fujii, Dorothea Sonoko Bellingrath-Kimura

Abstract:

Renewed interest in soil management aimed at improving the productive capacity of Sub Saharan Africa (SSA) soils has called for the need to analyse the long term effect of different fertilization systems on soil. This study was conducted in two agroecological zones (i.e., Guinea Savannah (GS) and Deciduous forest (DF)) of Ghana to evaluate the impacts of long term (> 5 years) fertilization schemes on soil chemical and microbial properties. Soil samples under four different fertilization schemes (inorganic, inorganic and organic, organic, and no fertilization) were collected from 20 farmers` field in both agroecological zones. Soil analyses were conducted using standard procedures. All average soil quality parameters except extractable C, potential mineralizable nitrogen and CEC were significantly higher in DF sites compared to GS. Inorganic fertilization proved superior in soil chemical and microbial biomass especially in GS zone. In GS, soil deterioration index (DI) revealed that soil quality deteriorated significantly (−26%) under only organic fertilization system whereas soil improvement was observed under inorganic and no fertilization sites. In DF, either inorganic or organic and inorganic fertilization showed significant positive effects on soil quality. The high soil chemical composition and enhanced microbial biomass in DF were associated with the high rate of inorganic fertilization.

Keywords: deterioration index, fertilization scheme, microbial biomass, tropical agroecological zone

Procedia PDF Downloads 404
960 Analysis of the CO2 Emissions of Public Passenger Transport in Tianjin City of China

Authors: Tao Zhao, Xianshuo Xu

Abstract:

Low-carbon public passenger transport is an important part of low carbon city. The CO2 emissions of public passenger transport in Tianjin from 1995 to 2010 are estimated with IPCC CO2 counting method, which shows that the total CO2 emissions of Tianjin public passenger transport have gradually become stable at 1,425.1 thousand tons. And then the CO2 emissions of the buses, taxies, and rail transits are calculated respectively. A CO2 emission of 829.9 thousand tons makes taxies become the largest CO2 emissions source among the public passenger transport in Tianjin. Combining with passenger volume, this paper analyzes the CO2 emissions proportion of the buses, taxies, and rail transits compare the passenger transport rate with the proportion of CO2 emissions, as well as the CO2 emissions change of per 10,000 people. The passenger volume proportion of bus among the three public means of transport is 72.62% which is much higher than its CO2 emissions proportion of 36.01%, with the minimum number of CO2 emissions per 10,000 people of 4.90 tons. The countermeasures to reduce CO2 emissions of public passenger transport in Tianjin are to develop rail transit, update vehicles and use alternative fuel vehicles.

Keywords: public passenger transport, carbon emissions, countermeasures, China

Procedia PDF Downloads 428
959 Thermal Barrier Coated Diesel Engine With Neural Networks Mathematical Modelling

Authors: Hanbey Hazar, Hakan Gul

Abstract:

In this study; piston, exhaust, and suction valves of a diesel engine were coated in 300 mm thickness with Tungsten Carbide (WC) by using the HVOF coating method. Mathematical modeling of a coated and uncoated (standardized) engine was performed by using ANN (Artificial Neural Networks). The purpose was to decrease the number of repetitions of tests and reduce the test cost through mathematical modeling of engines by using ANN. The results obtained from the tests were entered in ANN and therefore engines' values at all speeds were estimated. Results obtained from the tests were compared with those obtained from ANN and they were observed to be compatible. It was also observed that, with thermal barrier coating, hydrocarbon (HC), carbon monoxide (CO), and smoke density values of the diesel engine decreased; but nitrogen oxides (NOx) increased. Furthermore, it was determined that results obtained through mathematical modeling by means of ANN reduced the number of test repetitions. Therefore, it was understood that time, fuel and labor could be saved in this way.

Keywords: Artificial Neural Network, Diesel Engine, Mathematical Modelling, Thermal Barrier Coating

Procedia PDF Downloads 527
958 The Penetration of Urban Mobility Multi-Modality Enablers in a Vehicle-Dependent City

Authors: Lama Yaseen, Nourah Al-Hosain

Abstract:

A Multi-modal system in urban mobility is an essential framework for an optimized urban transport network. Many cities are still heavily dependent on vehicle transportation, dominantly using conventional fuel-based cars for daily travel. With the reliance on motorized vehicles in large cities such as Riyadh, the capital city of Saudi Arabia, traffic congestion is eminent, which ultimately results in an increase in road emissions and loss of time. Saudi Arabia plans to undergo a massive transformation in mobility infrastructure and urban greening projects, including introducing public transport and other massive urban greening infrastructures that enable alternative mobility options. This paper uses a Geographic Information System (GIS) approach that analyzes the accessibility of current and planned public transport stations and how they intertwine with massive urban greening projects that may play a role as an enabler of micro-mobility and walk-ability options in the city.

Keywords: urban development, urban mobility, sustainable mobility, Middle East

Procedia PDF Downloads 95
957 Identification and Evaluation of Landscape Mosaics of Kutlubeyyazıcılar Campus, Bartın University, Turkey

Authors: Y. Sarı Nayim, B. N. Nayim

Abstract:

This research proposal includes the defining and evaluation of the semi-natural and cultural ecosystems at Bartın University main campus in Turkey in terms of landscape mosaics. The ecosystem mosaic of the main campus was divided into zones based on ecological classification technique. Based on the results from the study, it was found that 6 different ecosystem mosaics should be used as a base in the planning and design of the existing and future landscape planning of Kutlubeyyazıcılar campus. The first landscape zone involves the 'social areas'. These areas include yards, dining areas, recreational areas and lawn areas. The second landscape zone is 'main vehicle and pedestrian areas'. These areas include vehicle access to the campus landscape, moving in the campus with vehicles, parking and pedestrian walk ways. The third zone is 'landscape areas with high visual landscape quality'. These areas will be the places where attractive structural and plant landscape elements will be used. Fourth zone will be 'landscapes of building borders and their surroundings.' The fifth and important zone that should be survived in the future is 'Actual semi-natural forest and bush areas'. And the last zone is 'water landscape' which brings ecological value to landscape areas. While determining the most convenient areas in the planning and design of the campus, these landscape mosaics should be taken into consideration. This zoning will ensure that the campus landscape is protected and living spaces in the campus apart from the areas where human activities are carried out will be used properly.

Keywords: campus landscape planning and design, landscape ecology, landscape mosaics, Bartın

Procedia PDF Downloads 364
956 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products

Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet

Abstract:

All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.

Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis

Procedia PDF Downloads 187
955 Illuminating the Policies Affecting Energy Security in Malaysia’s Electricity Sector

Authors: Hussain Ali Bekhet, Endang Jati Mat Sahid

Abstract:

For the past few decades, the Malaysian economy has expanded at an impressive pace, whilst, the Malaysian population has registered a relatively high growth rate. These factors had driven the growth of final energy demand. The ballooning energy demand coupled with the country’s limited indigenous energy resources have resulted in an increased of the country’s net import. Therefore, acknowledging the precarious position of the country’s energy self-sufficiency, this study has identified three main concerns regarding energy security, namely; over-dependence on fossil fuel, increasing energy import dependency, and increasing energy consumption per capita. This paper discusses the recent energy demand and supply trends, highlights the policies that are affecting energy security in Malaysia and suggests strategic options towards achieving energy security. The paper suggested that diversifying energy sources, reducing carbon content of energy, efficient utilization of energy and facilitating low-carbon industries could further enhance the effectiveness of the measures as the introduction of policies and initiatives will be more holistic.

Keywords: electricity, energy policy, energy security, Malaysia

Procedia PDF Downloads 304
954 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel

Procedia PDF Downloads 231
953 Frank Norris’ McTeague: An Entropic Melodrama

Authors: Mohsen Masoomi, Fazel Asadi Amjad, Monireh Arvin

Abstract:

According to Naturalistic principles, human destiny in the form of blind chance and determinism, entraps the individual, so man is a defenceless creature unable to escape from the ruthless paws of a stoical universe. In Naturalism; nonetheless, melodrama mirrors a conscious alternative with a peculiar function. A typical American Naturalistic character thus cannot be a subject for social criticism of American society since they are not victims of the ongoing virtual slavery, capitalist system, nor of a ruined milieu, but of their own volition, and more importantly, their character frailty. Through a Postmodern viewpoint, each Naturalistic work can encompass some entropic trends and changes culminating in an entire failure and devastation. Frank Norris in McTeague displays the futile struggles of ordinary men and how they end up brutes. McTeague encompasses intoxication, abuse, violation, and ruthless homicides. Norris’ depictions of the falling individual as a demon represent the entropic dimension of Naturalistic novels. McTeague’s defeat is somewhat his own fault, the result of his own blunders and resolution, not the result of sheer accident. Throughout the novel, each character is a kind of insane quester indicating McTeague’s decadence and, by inference, the decadence of Western civilisation. McTeague seems to designate Norris’ solicitude for a community fabricated by the elements of human negative demeanours and conducts hauling acute symptoms of infectious dehumanisation. The aim of this article is to illustrate how one specific negative human disposition gradually, like a running fire, can spread everywhere and burn everything in itself. The author applies the concept of entropy metaphorically to describe the individual devolutions that necessarily comprise community entropy in McTeague, a dying universe.

Keywords: animal imagery, entropy, Gypsy, melodrama

Procedia PDF Downloads 277
952 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios

Authors: Revoti Prasad Bora, Nikita Katyal

Abstract:

Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.

Keywords: Halo, Cannibalization, promotion, Baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression

Procedia PDF Downloads 175
951 Development and Characterization of a Polymer Composite Electrolyte to Be Used in Proton Exchange Membranes Fuel Cells

Authors: B. A. Berns, V. Romanovicz, M. M. de Camargo Forte, D. E. O. S. Carpenter

Abstract:

The Proton Exchange Membranes (PEM) are largely studied because they operate at low temperatures and they are suitable for mobile applications. However, There are some deficiencies in their operation, Mainly those that use ethanol as a hydrogen source that require a certain attention. Therefore, This research aimed to develop Nafion® composite membranes, Mixing clay minerals, Kaolin and halloysite to the polymer matrix in order to improve the ethanol molecule retentions and at the same time to keep the system’s protonic conductivity. The modified Nafion/Kaolin, Nafion/Halloysite composite membranes were prepared in weight proportion of 0.5, 1.0 and 1.5. The membranes obtained were characterized as to their ethanol permeability, Protonic conductivity and water absorption. The composite morphology and structure are characterized by SEM and EDX and also the thermal behavior is determined by TGA and DSC. The analysis of the results shows ethanol permeability reduction from 48% to 63%. However, The protonic conductivity results are lower in relation to pure Nafion®. As to the thermal behavior, The Nafion® composite membranes were stable up to a temperature of 325ºC.

Keywords: Polymer-matrix composites (PMCs), thermal properties, nanoclay, differential scanning calorimetry

Procedia PDF Downloads 398
950 The Effect of Bearing Surface Finish on the Engine's Lubrication System Performance

Authors: Kudakwashe Diana Nyamugure

Abstract:

Engine design has evolved to suit new industry standards of smaller compact designs that operate at high temperatures and even higher stress loads. Research has proven that the interaction of the bearing surface and the lubrication film is affected by the bearing's surface texture, geometry, and dimensional tolerances. The challenge now for the automotive manufacturing industry is to understand which processes can be applied on bearing surfaces to reduce the 65% energy loss in engines, 15% of which is caused by friction. This paper will discuss a post grinding process known as microfinishing which optimises the characteristics of a manufactured surface such as roughness, profile, and waviness. Microfinishing is becoming an increasing trend within the automotive industry and has so far been applied on high performance and mass production crank or cam bearing surfaces in bid of friction reduction and extended engine service life. In the near future, microfinishing will be applied to more engine components because of the stringent environmental regulations demands on fuel consumption, reliability, power, and service life of engine components.

Keywords: bearings, tribology, friction reduction, energy efficiency

Procedia PDF Downloads 478
949 Sustainable Crop Production: Greenhouse Gas Management in Farm Value Chain

Authors: Aswathaman Vijayan, Manish Jha, Ullas Theertha

Abstract:

Climate change and Global warming have become an issue for both developed and developing countries and perhaps the biggest threat to the environment. We at ITC Limited believe that a company’s performance must be measured by its Triple Bottom Line contribution to building economic, social and environmental capital. This Triple Bottom Line strategy focuses on - Embedding sustainability in business practices, Investing in social development and Adopting a low carbon growth path with a cleaner environment approach. The Agri Business Division - ILTD operates in the tobacco crop growing regions of Andhra Pradesh and Karnataka province of India. The Agri value chain of the company comprises of two distinct phases: First phase is Agricultural operations undertaken by ITC trained farmers and the second phase is Industrial operations which include marketing and processing of the agricultural produce. This research work covers the Greenhouse Gas (GHG) management strategy of ITC in the Agricultural operations undertaken by the farmers. The agriculture sector adds considerably to global GHG emissions through the use of carbon-based energies, use of fertilizers and other farming operations such as ploughing. In order to minimize the impact of farming operations on the environment, ITC has a taken a big leap in implementing system and process in reducing the GHG impact in farm value chain by partnering with the farming community. The company has undertaken a unique three-pronged approach for GHG management at the farm value chain: 1) GHG inventory at farm value chain: Different sources of GHG emission in the farm value chain were identified and quantified for the baseline year, as per the IPCC guidelines for greenhouse gas inventories. The major sources of emission identified are - emission due to nitrogenous fertilizer application during seedling production and main-field; emission due to diesel usage for farm machinery; emission due to fuel consumption and due to burning of crop residues. 2) Identification and implementation of technologies to reduce GHG emission: Various methodologies and technologies were identified for each GHG emission source and implemented at farm level. The identified methodologies are – reducing the consumption of chemical fertilizer usage at the farm through site-specific nutrient recommendation; Usage of sharp shovel for land preparation to reduce diesel consumption; implementation of energy conservation technologies to reduce fuel requirement and avoiding burning of crop residue by incorporation in the main field. These identified methodologies were implemented at farm level, and the GHG emission was quantified to understand the reduction in GHG emission. 3) Social and farm forestry for CO2 sequestration: In addition, the company encouraged social and farm forestry in the waste lands to convert it into green cover. The plantations are carried out with fast growing trees viz., Eucalyptus, Casuarina, and Subabul at the rate of 10,000 Ha of land per year. The above approach minimized considerable amount of GHG emission at the farm value chain benefiting farmers, community, and environment at a whole. In addition, the CO₂ stock created by social and farm forestry program has made the farm value chain to become environment-friendly.

Keywords: CO₂ sequestration, farm value chain, greenhouse gas, ITC limited

Procedia PDF Downloads 294
948 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 96
947 Interaction between Breathiness and Nasality: An Acoustic Analysis

Authors: Pamir Gogoi, Ratree Wayland

Abstract:

This study investigates the acoustic measures of breathiness when coarticulated with nasality. The acoustic correlates of breathiness and nasality that has already been well established after years of empirical research. Some of these acoustic parameters - like low frequency peaks and wider bandwidths- are common for both nasal and breathy voice. Therefore, it is likely that these parameters interact when a sound is coarticulated with breathiness and nasality. This leads to the hypothesis that the acoustic parameters, which usually act as robust cues in differentiating between breathy and modal voice, might not be reliable cues for differentiating between breathy and modal voice when breathiness is coarticulated with nasality. The effect of nasality on the perception of breathiness has been explored in earlier studies using synthesized speech. The results showed that perceptually, nasality and breathiness do interact. The current study investigates if a similar pattern is observed in natural speech. The study is conducted on Marathi, an Indo-Aryan language which has a three-way contrast between nasality and breathiness. That is, there is a phonemic distinction between nasals, breathy voice and breathy-nasals. Voice quality parameters like – H1-H2 (Difference between the amplitude of first and second harmonic), H1-A3 (Difference between the amplitude of first harmonic and third formant, CPP (Cepstral Peak Prominence), HNR (Harmonics to Noise ratio) and B1 (Bandwidth of first formant) were extracted. Statistical models like linear mixed effects regression and Random Forest classifiers show that measures that capture the noise component in the signal- like CPP and HNR- can classify breathy voice from modal voice better than spectral measures when breathy voice is coarticulated with nasality.

Keywords: breathiness, marathi, nasality, voice quality

Procedia PDF Downloads 93
946 Deep Learning-Based Automated Structure Deterioration Detection for Building Structures: A Technological Advancement for Ensuring Structural Integrity

Authors: Kavita Bodke

Abstract:

Structural health monitoring (SHM) is experiencing growth, necessitating the development of distinct methodologies to address its expanding scope effectively. In this study, we developed automatic structure damage identification, which incorporates three unique types of a building’s structural integrity. The first pertains to the presence of fractures within the structure, the second relates to the issue of dampness within the structure, and the third involves corrosion inside the structure. This study employs image classification techniques to discern between intact and impaired structures within structural data. The aim of this research is to find automatic damage detection with the probability of each damage class being present in one image. Based on this probability, we know which class has a higher probability or is more affected than the other classes. Utilizing photographs captured by a mobile camera serves as the input for an image classification system. Image classification was employed in our study to perform multi-class and multi-label classification. The objective was to categorize structural data based on the presence of cracks, moisture, and corrosion. In the context of multi-class image classification, our study employed three distinct methodologies: Random Forest, Multilayer Perceptron, and CNN. For the task of multi-label image classification, the models employed were Rasnet, Xceptionet, and Inception.

Keywords: SHM, CNN, deep learning, multi-class classification, multi-label classification

Procedia PDF Downloads 35
945 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 253
944 Performance Analysis of Solar Assisted Air Condition Using Carbon Dioxide as Refrigerant

Authors: Olusola Bamisile, Ferdinard Dika, Mustafa Dagbasi, Serkan Abbasoglu

Abstract:

The aim of this study was to model an air conditioning system that brings about effective cooling and reduce fossil fuel consumption with solar energy as an alternative source of energy. The objective of the study is to design a system with high COP, low usage of electricity and to integrate solar energy into AC systems. A hybrid solar assisted air conditioning system is designed to produce 30kW cooling capacity and R744 (CO₂) is used as a refrigerant. The effect of discharge pressure on the performance of the system is studied. The subcool temperature, evaporating temperature (5°C) and suction gas return temperature (12°C) are kept constant for the four different discharge pressures considered. The cooling gas temperature is set at 25°C, and the discharge pressure includes 80, 85, 90 and 95 bars. Copeland Scroll software is used for the simulation. A pressure-enthalpy graph is also used to deduce each enthalpy point while numerical methods were used in making other calculations. From the result of the study, it is observed that a higher COP is achieved with the use of solar assisted systems. As much as 46% of electricity requirements will be save using solar input at compressor stage.

Keywords: air conditioning, solar energy, performance, energy saving

Procedia PDF Downloads 144