Search results for: explosive strength of leg muscles
2083 Blood Ketones as a Point of Care Testing in Paediatric Emergencies
Authors: Geetha Jayapathy, Lakshmi Muthukrishnan, Manoj Kumar Reddy Pulim , Radhika Raman
Abstract:
Introduction: Ketones are the end products of fatty acid metabolism and a source of energy for vital organs such as the brain, heart and skeletal muscles. Ketones are produced in excess when glucose is not available as a source of energy or it cannot be utilized as in diabetic ketoacidosis. Children admitted in the emergency department often have starvation ketosis which is not clinically manifested. Decision on admission of children to the emergency room with subtle signs can be difficult at times. Point of care blood ketone testing can be done at the bedside even in a primary level care setting to supplement and guide us in our management decisions. Hence this study was done to explore the utility of this simple bedside parameter as a supplement in assessing pediatric patients presenting to the emergency department. Objectives: To estimate blood ketones of children admitted in the emergency department. To analyze the significance of blood ketones in various disease conditions. Methods: Blood ketones using point of care testing instrument (ABOTTprecision Xceed Pro meters) was done in patients getting admitted in emergency room and in out-patients (through sample collection centre). Study population: Children aged 1 month to 18 years were included in the study. 250 cases (In-patients) and 250 controls (out-patients) were collected. Study design: Prospective observational study. Data on details of illness and physiological status were documented. Blood ketones were compared between the two groups and all in patients were categorized into various system groups and analysed. Results: Mean blood ketones were high in in-patients ranging from 0 to 7.2, with a mean of 1.28 compared to out-patients ranging from 0 to 1.9 with a mean of 0.35. This difference was statistically significant with a p value < 0.001. In-patients with shock (mean of 4.15) and diarrheal dehydration (mean of 1.85) had a significantly higher blood ketone values compared to patients with other system involvement. Conclusion: Blood ketones were significantly high (above the normal range) in pediatric patients who are sick requiring admission. Patients with various forms of shock had very high blood ketone values as found in diabetic ketoacidosis. Ketone values in diarrheal dehydration were moderately high correlating to the degree of dehydration.Keywords: admission, blood ketones, paediatric emergencies, point of care testing
Procedia PDF Downloads 2092082 Evaluation of the Mechanical Properties of Nano TiO2 and Clay Filler Filled Epoxy Composites
Authors: A. Mimaroglu, H. Unal
Abstract:
In this study, the mechanical properties of nano filled epoxy composites were evaluated. The matrix material is epoxy. nano fillers are Al2O3, TiO2 and clay added in 2.5- 10 wt% by weight ratio. Test samples were prepared using an open mould type die. Mechanical tests were carried out. The tensile strength, elastic modulus, elongation at break and the hardness of the composite materials were obtained and evaluated. It was seen from the results that the filler content had a high influence on the level of the mechanical properties of the epoxy composites.Keywords: nano, epoxy, composite, fillers, clay
Procedia PDF Downloads 3902081 Fabric-Reinforced Cementitious Matrix (FRCM)-Repaired Corroded Reinforced Concrete (RC) Beams under Monotonic and Fatigue Loads
Authors: Mohammed Elghazy, Ahmed El Refai, Usama Ebead, Antonio Nanni
Abstract:
Rehabilitating corrosion-damaged reinforced concrete (RC) structures has been accomplished using various techniques such as steel plating, external post-tensioning, and external bonding of fiber reinforced polymer (FRP) composites. This paper reports on the use of an innovative technique to strengthen corrosion-damaged RC structures using fabric-reinforced cementitious matrix (FRCM) composites. FRCM consists of dry-fiber fabric embedded in cement-based matrix. Twelve large-scale RC beams were constructed and tested in flexural monotonic and fatigue loads. Prior to testing, ten specimens were subjected to accelerated corrosion process for 140 days leading to an average mass loss in the tensile steel bars of 18.8 %. Corrosion was restricted to the main reinforcement located in the middle third of the beam span. Eight corroded specimens were repaired and strengthened while two virgin and two corroded-unrepaired/unstrengthened beams were used as benchmarks for comparison purpose. The test parameters included the FRCM materials (Carbon-FRCM, PBO-FRCM), the number of FRCM plies, the strengthening scheme, and the type of loading (monotonic and fatigue). The effects of the pervious parameters on the flexural response, the mode of failure, and the fatigue life were reported. Test results showed that corrosion reduced the yield and ultimate strength of the beams. The corroded-unrepaired specimen failed to meet the provisions of the ACI-318 code for crack width criteria. The use of FRCM significantly increased the ultimate strength of the corroded specimen by 21% and 65% more than that of the corroded-unrepaired specimen. Corrosion significantly decreased the fatigue life of the corroded-unrepaired beam by 77% of that of the virgin beam. The fatigue life of the FRCM repaired-corroded beams increased to 1.5 to 3.8 times that of the corroded-unrepaired beam but was lower than that of the virgin specimen. The specimens repaired with U-wrapped PBO-FRCM strips showed higher fatigue life than those repaired with the end-anchored bottom strips having similar number of PBO-FRCM-layers. PBO-FRCM was more effective than Carbon-FRCM in restoring the fatigue life of the corroded specimens.Keywords: corrosion, concrete, fabric-reinforced cementitious matrix (FRCM), fatigue, flexure, repair
Procedia PDF Downloads 2962080 Study of Biocomposites Based of Poly(Lactic Acid) and Olive Husk Flour
Authors: Samra Isadounene, Amar Boukerrou, Dalila Hammiche
Abstract:
In this work, the composites were prepared with poly(lactic acid) (PLA) and olive husk flour (OHF) with different percentages (10, 20 and 30%) using extrusion method followed by injection molding. The morphological, mechanical properties and thermal behavior of composites were investigated. Tensile strength and elongation at break of composites showed a decreasing trend with increasing fiber content. On the other hand, Young modulus and storage modulus were increased. The addition of OHF resulted in a decrease in thermal stability of composites. The presence of OHF led to an increase in percentage of crystallinity (Xc) of PLA matrix.Keywords: biopolymers, composites, mechanical properties, poly(lactic acid)
Procedia PDF Downloads 2382079 Studying the Effect of Nanoclays on the Mechanical Properties of Polypropylene/Polyamide Nanocomposites
Authors: Benalia Kouini, Aicha Serier
Abstract:
Nanocomposites based on polypropylene/polyamide 66 (PP/PA66) nanoblends containing organophilic montmorillonite (OMMT) and maleic anhydride grafted polypropylene (PP-g-MAH) were prepared by melt compounding method followed by injection molding. Two different types of nanoclays were used in this work. DELLITE LVF is the untreated nanoclay and DELLITE 67G is the treated one. The morphology of the nanocomposites was studied using the XR diffraction (XRD). The results indicate that the incorporation of treated nanoclay has a significant effect on the impact strength of PP/PA66 nanocomposites. Furthermore, it was found that XRD results revealed the intercalation, exfoliation of nanaclays of nanocomposites.Keywords: nNanoclay, Nanocomposites, Polypropylene, Polyamide, melt processing, mechanical properties.
Procedia PDF Downloads 3542078 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate
Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar
Abstract:
Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).Keywords: hardness, RSM, sputtering, TiN XRD
Procedia PDF Downloads 3212077 Performance Analysis of Wireless Sensor Networks in Areas for Sports Activities and Environmental Preservation
Authors: Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, José Anderson Rodrigues de Souza, Ítalo de Pontes Oliveira
Abstract:
This paper presents a analysis of performance the Received Strength Signal Indicator (RSSI) to Wireless Sensor Networks, with a finality of investigate a behavior of ZigBee devices operating into real environments. The test of performance was realize using two Series 1 ZigBee Module and two modules of development Arduino Uno R3, evaluating in this form a measurements of RSSI into environments like places of sports, preservation forests and water reservoir.Keywords: wireless sensor networks, RSSI, Arduino, environments
Procedia PDF Downloads 6192076 Numerical Static and Seismic Evaluation of Pile Group Settlement: A Case Study
Authors: Seyed Abolhassan Naeini, Hamed Yekehdehghan
Abstract:
Shallow foundations cannot be used when the bedding soil is soft. A suitable method for constructing foundations on soft soil is to employ pile groups to transfer the load to the bottom layers. The present research used results from tests carried out in northern Iran (Langarud) and the FLAC3D software to model a pile group for investigating the effects of various parameters on pile cap settlement under static and seismic conditions. According to the results, changes in the strength parameters of the soil, groundwater level, and the length of and distance between the piles affect settlement differently.Keywords: FLACD 3D software, pile group, settlement, soil
Procedia PDF Downloads 1282075 Evaluation of the Boiling Liquid Expanding Vapor Explosion Thermal Effects in Hassi R'Mel Gas Processing Plant Using Fire Dynamics Simulator
Authors: Brady Manescau, Ilyas Sellami, Khaled Chetehouna, Charles De Izarra, Rachid Nait-Said, Fati Zidani
Abstract:
During a fire in an oil and gas refinery, several thermal accidents can occur and cause serious damage to people and environment. Among these accidents, the BLEVE (Boiling Liquid Expanding Vapor Explosion) is most observed and remains a major concern for risk decision-makers. It corresponds to a violent vaporization of explosive nature following the rupture of a vessel containing a liquid at a temperature significantly higher than its normal boiling point at atmospheric pressure. Their effects on the environment generally appear in three ways: blast overpressure, radiation from the fireball if the liquid involved is flammable and fragment hazards. In order to estimate the potential damage that would be caused by such an explosion, risk decision-makers often use quantitative risk analysis (QRA). This analysis is a rigorous and advanced approach that requires a reliable data in order to obtain a good estimate and control of risks. However, in most cases, the data used in QRA are obtained from the empirical correlations. These empirical correlations generally overestimate BLEVE effects because they are based on simplifications and do not take into account real parameters like the geometry effect. Considering that these risk analyses are based on an assessment of BLEVE effects on human life and plant equipment, more precise and reliable data should be provided. From this point of view, the CFD modeling of BLEVE effects appears as a solution to the empirical law limitations. In this context, the main objective is to develop a numerical tool in order to predict BLEVE thermal effects using the CFD code FDS version 6. Simulations are carried out with a mesh size of 1 m. The fireball source is modeled as a vertical release of hot fuel in a short time. The modeling of fireball dynamics is based on a single step combustion using an EDC model coupled with the default LES turbulence model. Fireball characteristics (diameter, height, heat flux and lifetime) issued from the large scale BAM experiment are used to demonstrate the ability of FDS to simulate the various steps of the BLEVE phenomenon from ignition up to total burnout. The influence of release parameters such as the injection rate and the radiative fraction on the fireball heat flux is also presented. Predictions are very encouraging and show good agreement in comparison with BAM experiment data. In addition, a numerical study is carried out on an operational propane accumulator in an Algerian gas processing plant of SONATRACH company located in the Hassi R’Mel Gas Field (the largest gas field in Algeria).Keywords: BLEVE effects, CFD, FDS, fireball, LES, QRA
Procedia PDF Downloads 1862074 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites
Authors: Jifeng Zhang , Yongpeng Lei
Abstract:
Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface
Procedia PDF Downloads 1212073 Creatine Associated with Resistance Training Increases Muscle Mass in the Elderly
Authors: Camila Lemos Pinto, Juliana Alves Carneiro, Patrícia Borges Botelho, João Felipe Mota
Abstract:
Sarcopenia, a syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength, currently affects over 50 million people and increases the risk of adverse outcomes such as physical disability, poor quality of life and death. The aim of this study was to examine the efficacy of creatine supplementation associated with resistance training on muscle mass in the elderly. A 12-week, double blind, randomized, parallel group, placebo controlled trial was conducted. Participants were randomly allocated into one of the following groups: placebo with resistance training (PL+RT, n=14) and creatine supplementation with resistance training (CR + RT, n=13). The subjects from CR+RT group received 5 g/day of creatine monohydrate and the subjects from the PL+RT group were given the same dose of maltodextrin. Participants were instructed to ingest the supplement on non-training days immediately after lunch and on training days immediately after resistance training sessions dissolved in a beverage comprising 100 g of maltodextrin lemon flavored. Participants of both groups undertook a supervised exercise training program for 12 weeks (3 times per week). The subjects were assessed at baseline and after 12 weeks. The primary outcome was muscle mass, assessed by dual energy X-ray absorptiometry (DXA). The secondary outcome included diagnose participants with one of the three stages of sarcopenia (presarcopenia, sarcopenia and severe sarcopenia) by skeletal muscle mass index (SMI), handgrip strength and gait speed. CR+RT group had a significant increase in SMI and muscle (p<0.0001), a significant decrease in android and gynoid fat (p = 0.028 and p=0.035, respectively) and a tendency of decreasing in body fat (p=0.053) after the intervention. PL+RT only had a significant increase in SMI (p=0.007). The main finding of this clinical trial indicated that creatine supplementation combined with resistance training was capable of increasing muscle mass in our elderly cohort (p=0.02). In addition, the number of subjects diagnosed with one of the three stages of sarcopenia at baseline decreased in the creatine supplemented group in comparison with the placebo group (CR+RT, n=-3; PL+RT, n=0). In summary, 12 weeks of creatine supplementation associated with resistance training resulted in increases in muscle mass. This is the first research with elderly of both sexes that show the same increase in muscle mass with a minor quantity of creatine supplementation in a short period. Future long-term research should investigate the effects of these interventions in sarcopenic elderly.Keywords: creatine, dietetic supplement, elderly, resistance training
Procedia PDF Downloads 4742072 Understanding the Effect of Material and Deformation Conditions on the “Wear Mode Diagram”: A Numerical Study
Authors: A. Mostaani, M. P. Pereira, B. F. Rolfe
Abstract:
The increasing application of Advanced High Strength Steel (AHSS) in the automotive industry to fulfill crash requirements has introduced higher levels of wear in stamping dies and parts. Therefore, understanding wear behaviour in sheet metal forming is of great importance as it can help to reduce the high costs currently associated with tool wear. At the contact between the die and the sheet, the tips of hard tool asperities interact with the softer sheet material. Understanding the deformation that occurs during this interaction is important for our overall understanding of the wear mechanisms. For these reasons, the scratching of a perfectly plastic material by a rigid indenter has been widely examined in the literature; with finite element modelling (FEM) used in recent years to further understand the behaviour. The ‘wear mode diagram’ has been commonly used to classify the deformation regime of the soft work-piece during scratching, into three modes: ploughing, wedge formation, and cutting. This diagram, which is based on 2D slip line theory and upper bound method for perfectly plastic work-piece and rigid indenter, relates different wear modes to attack angle and interfacial strength. This diagram has been the basis for many wear studies and wear models to date. Additionally, it has been concluded that galling is most likely to occur during the wedge formation mode. However, there has been little analysis in the literature of how the material behaviour and deformation conditions associated with metal forming processes influence the wear behaviour. Therefore, the first aim of this work is first to use a commercial FEM package (Abaqus/Explicit) to build a 3D model to capture wear modes during scratching with indenters with different attack angles and different interfacial strengths. The second goal is to utilise the developed model to understand how wear modes might change in the presence of bulk deformation of the work-piece material as a result of the metal forming operation. Finally, the effect of the work-piece material properties, including strain hardening, will be examined to understand how these influence the wear modes and wear behaviour. The results show that both strain hardening and substrate deformation can change the critical attack angle at which the wedge formation regime is activated.Keywords: finite element, pile-up, scratch test, wear mode
Procedia PDF Downloads 3272071 Association between Single Nucleotide Polymorphism of Calpain1 Gene and Meat Tenderness Traits in Different Genotypes of Chicken: Malaysian Native and Commercial Broiler Line
Authors: Abtehal Y. Anaas, Mohd. Nazmi Bin Abd. Manap
Abstract:
Meat Tenderness is one of the most important factors affecting consumers' assessment of meat quality. Variation in meat tenderness is genetically controlled and varies among breeds, and it is also influenced by environmental factors that can affect its creation during rigor mortis and postmortem. The final postmortem meat tenderization relies on the extent of proteolysis of myofibrillar proteins caused by the endogenous activity of the proteolytic calpain system. This calpain system includes different calcium-dependent cysteine proteases, and an inhibitor, calpastatin. It is widely accepted that in farm animals including chickens, the μ-calpain gene (CAPN1) is a physiological candidate gene for meat tenderness. This study aimed to identify the association of single nucleotide polymorphism (SNP) markers in the CAPN1 gene with the tenderness of chicken breast meat from two Malaysian native and commercial broiler breed crosses. Ten, five months old native chickens and ten, 42 days commercial broilers were collected from the local market and breast muscles were removed two hours after slaughter, packed separately in plastic bags and kept at -20ºC for 24 h. The tenderness phenotype for all chickens’ breast meats was determined by Warner-Bratzler Shear Force (WBSF). Thawing and cooking losses were also measured in the same breast samples before using in WBSF determination. Polymerase chain reaction (PCR) was used to identify the previously reported C7198A and G9950A SNPs in the CAPN1 gene and assess their associations with meat tenderness in the two breeds. The broiler breast meat showed lower shear force values and lower thawing loss rates than the native chickens (p<0.05), whereas there were similar in the rates of cooking loss. The study confirms some previous results that the markers CAPN1 C7198A and G9950A were not significantly associated with the variation in meat tenderness in chickens. Therefore, further study is needed to confirm the functional molecular mechanism of these SNPs and evaluate their associations in different chicken populations.Keywords: CAPNl, chicken, meat tenderness, meat quality, SNPs
Procedia PDF Downloads 2452070 Utilization of Nanoclay to Reinforce Flax Fabric-Geopolymer Composites
Authors: H. S. Assaedi, F. U. A. Shaikh, I. M. Low
Abstract:
Geopolymer composites reinforced with flax fabrics and nano-clay are fabricated and studied for physical and mechanical properties using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Nanoclay platelets at a weight of 1.0%, 2.0%, and 3.0% were added to geopolymer pastes. Nanoclay at 2.0 wt.% was found to improve density and decrease porosity while improving flexural strength and post-peak toughness. A microstructural analysis indicated that nanoclay behaves as filler and as an activator supporting geopolymeric reaction while producing a higher content geopolymer gel improving the microstructure of binders. The process enhances adhesion between the geopolymer matrix and flax fibres.Keywords: flax fibres, geopolymer, mechanical properties, nanoclay
Procedia PDF Downloads 2452069 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM
Procedia PDF Downloads 3102068 Temperature Dependence of the Optoelectronic Properties of InAs(Sb)-Based LED Heterostructures
Authors: Antonina Semakova, Karim Mynbaev, Nikolai Bazhenov, Anton Chernyaev, Sergei Kizhaev, Nikolai Stoyanov
Abstract:
At present, heterostructures are used for fabrication of almost all types of optoelectronic devices. Our research focuses on the optoelectronic properties of InAs(Sb) solid solutions that are widely used in fabrication of light emitting diodes (LEDs) operating in middle wavelength infrared range (MWIR). This spectral range (2-6 μm) is relevant for laser diode spectroscopy of gases and molecules, for systems for the detection of explosive substances, medical applications, and for environmental monitoring. The fabrication of MWIR LEDs that operate efficiently at room temperature is mainly hindered by the predominance of non-radiative Auger recombination of charge carriers over the process of radiative recombination, which makes practical application of LEDs difficult. However, non-radiative recombination can be partly suppressed in quantum-well structures. In this regard, studies of such structures are quite topical. In this work, electroluminescence (EL) of LED heterostructures based on InAs(Sb) epitaxial films with the molar fraction of InSb ranging from 0 to 0.09 and multi quantum-well (MQW) structures was studied in the temperature range 4.2-300 K. The growth of the heterostructures was performed by metal-organic chemical vapour deposition on InAs substrates. On top of the active layer, a wide-bandgap InAsSb(Ga,P) barrier was formed. At low temperatures (4.2-100 K) stimulated emission was observed. As the temperature increased, the emission became spontaneous. The transition from stimulated emission to spontaneous one occurred at different temperatures for structures with different InSb contents in the active region. The temperature-dependent carrier lifetime, limited by radiative recombination and the most probable Auger processes (for the materials under consideration, CHHS and CHCC), were calculated within the framework of the Kane model. The effect of various recombination processes on the carrier lifetime was studied, and the dominant role of Auger processes was established. For MQW structures quantization energies for electrons, light and heavy holes were calculated. A characteristic feature of the experimental EL spectra of these structures was the presence of peaks with energy different from that of calculated optical transitions between the first quantization levels for electrons and heavy holes. The obtained results showed strong effect of the specific electronic structure of InAsSb on the energy and intensity of optical transitions in nanostructures based on this material. For the structure with MQWs in the active layer, a very weak temperature dependence of EL peak was observed at high temperatures (>150 K), which makes it attractive for fabricating temperature-resistant gas sensors operating in the middle-infrared range.Keywords: Electroluminescence, InAsSb, light emitting diode, quantum wells
Procedia PDF Downloads 2122067 Effective Layer-by-layer Chemical Grafting of a Reactive Oxazoline Polymer and MWCNTs onto Carbon Fibers for Enhancing Mechanical Properties of Composites using Polystyrene as a Model Thermoplastic Matrix
Authors: Ryoma Tokonami, Teruya Goto, Tatsuhiro Takahashi,
Abstract:
For enhancing the mechanical property ofcarbon fiber reinforced plastic (CFRP), the surface modification of carbon fiber (CF) by multi-walled carbon nanotube (MWCNT) has received considerable attention using direct MWCNT growth on CF with a catalysis, MWCNT electrophoresis, and layer-by-layer of MWCNT with reactive polymers, etc. Among above approaches, the layer-by-layer method is the simplest process, however, the amount of MWCNTs on CF is very little, resulting in the small amount of improvement of the mechanical property of the composite. The remaining amount of MWCNT on CF after melt mixing of CF (short fiber) with thermoplastic matrix polymer was not examined clearly in the former studies. The present research aims to propose an effective layer-by-layer chemical grafting of a highly reactive oxazoline polymer, which has not been used before, and MWCNTs onto CF using the highly reactivity of oxazoline and COOH on the surface of CF and MWCNTs.With layer-by-layer method, the first uniform chemically bonded mono molecular layer on carbon fiber was formed by chemical surface reaction of carbon fiber, a reactive oxazoline polymer solution between COOH of carbon fiber and oxazoline. The second chemically bonded uniform layer of MWCNTs on the first layer was prepared through the first layer coated carbon fiber in MWCNT dispersion solution by chemical reaction between oxazoline and COOH of MWCNTs. The quantitative analysis of MWCNTs on carbon fiber was performed, showing 0.44 wt.% of MWCNTs based on carbon fiber, which is much larger amount compared with the former studies in layer-by-layer method. In addition, MWCNTs were also observed uniform coating on carbon fiber by scanning electron micrograph (SEM). Carbon fiber composites were prepared by melting mixing using polystyrene (PS) as a thermoplastic matrix because of easy removal of PS by solvent for additional analysis, resulting the 20% of enhancement of tensile strength and modulus by tensile strength test. It was confirmed bySEM the layer-by-layer structure on carbon fibers were remained after the melt mixing by removing PS with a solvent. As a conclusion, the effectiveness for the enhancement of the mechanical properties of CF(short fiber)/PS composite using the highly reactive oxazoline polymer for the first layer and MWCNT for the second layer, which act as the physical anchor, was demonstrated.Keywords: interface, layer-by-layer, multi walled carbon nanotubes (MWCNTs), oxazoline
Procedia PDF Downloads 2032066 Visualization of Malaysia Universities Websites Based On Social Network Analysis
Authors: N. A. Ismail, Abdul Arif, Sharul Hafiz, Lu S. J., Tham W. S., Wong S. K.
Abstract:
This paper investigates the visulization of Malaysia universities websites. Twenty (20) public universities websites in Malaysia has been chosen as samples to explore and visualize the link relationship between their academic websites using social network analysis methods such as inlink, degree, weight, betweenness and modularity class. All of the connection and relation demonstrate the power to influence, comprehensive strength and also the variety of subject types that are present in universities. The experimental results also show that University Malaysia Sabah (UMS) is the biggest back links provider.Keywords: academic websites, link analysis, social network analysis, experimental result
Procedia PDF Downloads 4712065 Nanomaterials for Archaeological Stone Conservation: Re-Assembly of Archaeological Heavy Stones Using Epoxy Resin Modified with Clay Nanoparticles
Authors: Sayed Mansour, Mohammad Aldoasri, Nagib Elmarzugi, Nadia A. Al-Mouallimi
Abstract:
The archaeological large stone used in construction of ancient Pharaonic tombs, temples, obelisks and other sculptures, always subject to physicomechanical deterioration and destructive forces, leading to their partial or total broken. The task of reassembling this type of artifact represent a big challenge for the conservators. Recently, the researchers are turning to new technologies to improve the properties of traditional adhesive materials and techniques used in re-assembly of broken large stone. The epoxy resins are used extensively in stone conservation and re-assembly of broken stone because of their outstanding mechanical properties. The introduction of nanoparticles to polymeric adhesives at low percentages may lead to substantial improvements of their mechanical performances in structural joints and large objects. The aim of this study is to evaluate the effectiveness of clay nanoparticles in enhancing the performances of epoxy adhesives used in re-assembly of archaeological massive stone by adding proper amounts of those nanoparticles. The nanoparticles reinforced epoxy nanocomposite was prepared by direct melt mixing with a nanoparticles content of 3% (w/v), and then mould forming in the form of rectangular samples, and used as adhesive for experimental stone samples. Scanning electron microscopy (SEM) was employed to investigate the morphology of the prepared nanocomposites, and the distribution of nanoparticles inside the composites. The stability and efficiency of the prepared epoxy-nanocomposites and stone block assemblies with new formulated adhesives were tested by aging artificially the samples under different environmental conditions. The effect of incorporating clay nanoparticles on the mechanical properties of epoxy adhesives was evaluated comparatively before and after aging by measuring the tensile, compressive, and Elongation strength tests. The morphological studies revealed that the mixture process between epoxy and nanoparticles has succeeded with a relatively homogeneous morphology and good dispersion in low nano-particles loadings in epoxy matrix was obtained. The results show that the epoxy-clay nanocomposites exhibited superior tensile, compressive, and Elongation strength. Moreover, a marked improvement of the mechanical properties of stone joints increased in all states by adding nano-clay to epoxy in comparison with pure epoxy resin.Keywords: epoxy resins, nanocomposites, clay nanoparticles, re-assembly, archaeological massive stones, mechanical properties
Procedia PDF Downloads 1132064 Observation and Experience of Using Mechanically Activated Fly Ash in Concrete
Authors: Rudolf Hela, Lenka Bodnarova
Abstract:
Paper focuses on experimental testing of possibilities of mechanical activation of fly ash and observation of influence of specific surface and granulometry on final properties of fresh and hardened concrete. Mechanical grinding prepared various fineness of fly ash, which was classed by specific surface in accordance with Blain and their granulometry was determined by means of laser granulometer. Then, sets of testing specimens were made from mix designs of identical composition with 25% or Portland cement CEM I 42.5 R replaced with fly ash with various specific surface and granulometry. Mix design with only Portland cement was used as reference. Mix designs were tested on consistency of fresh concrete and compressive strength after 7, 28, 60, and 90 days.Keywords: concrete, fly ash, latent hydraulicity, mechanically activated fly ash
Procedia PDF Downloads 2122063 Alkali Activated Materials Based on Natural Clay from Raciszyn
Authors: Michal Lach, Maria Hebdowska-Krupa, Justyna Stefanek, Artur Stanek, Anna Stefanska, Janusz Mikula, Marek Hebda
Abstract:
Limited resources of raw materials determine the necessity of obtaining materials from other sources. In this area, the most known and widespread are recycling processes, which are mainly focused on the reuse of material. Another possible solution used in various companies to achieve improvement in sustainable development is waste-free production. It involves the production exclusively from such materials, whose waste is included in the group of renewable raw materials. This means that they can: (i) be recycled directly during the manufacturing process of further products or (ii) be raw material obtained by other companies for the production of alternative products. The article presents the possibility of using post-production clay from the Jurassic limestone deposit "Raciszyn II" as a raw material for the production of alkali activated materials (AAM). Such products are currently increasingly used, mostly in various building applications. However, their final properties depend significantly on many factors; the most important of them are: chemical composition of the raw material, particle size, specific surface area, type and concentration of the activator and the temperature range of the heat treatment. Conducted mineralogical and chemical analyzes of clay from the “Raciszyn II” deposit confirmed that this material, due to its high content of aluminosilicates, can be used as raw material for the production of AAM. In order to obtain the product with the best properties, the optimization of the clay calcining process was also carried out. Based on the obtained results, it was found that this process should occur in the range between 750 oC and 800 oC. The use of a lower temperature causes getting a raw material with low metakaolin content which is the main component of materials suitable for alkaline activation processes. On the other hand, higher heat treatment temperatures cause thermal dissociation of large amounts of calcite, which is associated with the release of large amounts of CO2 and the formation of calcium oxide. This compound significantly accelerates the binding process, which consequently often prevents the correct formation of geopolymer mass. The effect of the use of various activators: (i) NaOH, (ii) KOH and (iii) a mixture of KOH to NaOH in a ratio of 10%, 25% and 50% by volume on the compressive strength of the AAM was also analyzed. Obtained results depending on the activator used were in the range from 25 MPa to 40 MPa. These values are comparable with the results obtained for materials produced on the basis of Portland cement, which is one of the most popular building materials.Keywords: alkaline activation, aluminosilicates, calcination, compressive strength
Procedia PDF Downloads 1532062 Mechanical and Microstructural Properties of Rotary-Swaged Wire of Commercial-Purity Titanium
Authors: Michal Duchek, Jan Palán, Tomas Kubina
Abstract:
Bars made of titanium grade 2 and grade 4 were subjected to rotary forging with up to 2.2 true strain reduction in the cross-section from 10 to 3.81 mm. During progressive deformation, grain refinement in the transverse direction took place. In the longitudinal direction, ultrafine microstructure has not developed. It has been demonstrated that titanium grade 2 strengthens more than grade 4. The ultimate tensile strength increased from 650 MPa to 1040 MPa in titanium grade 4. Hardness profiles on the cross section in both materials show an increase in the centre of the wire.Keywords: commercial-purity titanium, wire, rotary swaging, tensile test, hardness, modulus of elasticity, microstructure
Procedia PDF Downloads 2382061 The Effect of Vanadium Addition on the Mechanical Properties and Microstructure of A319 Aluminum Alloy
Authors: Musbah Mahfoud, Ibtisam Mustafa
Abstract:
The present work highlights some of our up-to-date findings on the effect of vanadium addition on the mechanical properties and microstructure of one of the most versatile aluminum-silicon alloys, i.e., A319. In terms of microstructure, it was found that in addition to its ability to refine some of the constituent phases, vanadium also helps in retarding the formation of some of the detrimental intermetallic compounds, such as those involving Al-Fe-Si. Preliminary studies of the effect of vanadium on the mechanical properties of A319 have shown that vanadium additions up to 0.4% cause slight increase in the yield and tensile strength. However, the vanadium addition did not show a significant effect on the hardness of the alloy.Keywords: aluminium, vanadium, intermetallic, microstructure, mechanical properties
Procedia PDF Downloads 6332060 The Structure and Development of a Wing Tip Vortex under the Effect of Synthetic Jet Actuation
Authors: Marouen Dghim, Mohsen Ferchichi
Abstract:
The effect of synthetic jet actuation on the roll-up and the development of a wing tip vortex downstream a square-tipped rectangular wing was investigated experimentally using hotwire anemometry. The wing is equipped with a hallow cavity designed to generate a high aspect ratio synthetic jets blowing at an angles with respect to the spanwise direction. The structure of the wing tip vortex under the effect of fluidic actuation was examined at a chord Reynolds number Re_c=8×10^4. An extensive qualitative study on the effect of actuation on the spanwise pressure distribution at c⁄4 was achieved using pressure scanner measurements in order to determine the optimal actuation parameters namely, the blowing momentum coefficient, Cμ, and the non-dimensionalized actuation frequency, F^+. A qualitative study on the effect of actuation parameters on the spanwise pressure distribution showed that optimal actuation frequencies of the synthetic jet were found within the range amplified by both long and short wave instabilities where spanwise pressure coefficients exhibited a considerable decrease by up to 60%. The vortex appeared larger and more diffuse than that of the natural vortex case. Operating the synthetic jet seemed to introduce unsteadiness and turbulence into the vortex core. Based on the ‘a priori’ optimal selected parameters, results of the hotwire wake survey indicated that the actuation achieved a reduction and broadening of the axial velocity deficit. A decrease in the peak tangential velocity associated with an increase in the vortex core radius was reported as a result of the accelerated radial transport of angular momentum. Peak vorticity level near the core was also found to be largely diffused as a direct result of the increased turbulent mixing within the vortex. The wing tip vortex a exhibited a reduced strength and a diffused core as a direct result of increased turbulent mixing due to the presence of turbulent small scale vortices within its core. It is believed that the increased turbulence within the vortex due to the synthetic jet control was the main mechanism associated with the decreased strength and increased size of the wing tip vortex as it evolves downstream. A comparison with a ‘non-optimal’ case was included to demonstrate the effectiveness of selecting the appropriate control parameters. The Synthetic Jet will be operated at various actuation configurations and an extensive parametric study is projected to determine the optimal actuation parameters.Keywords: flow control, hotwire anemometry, synthetic jet, wing tip vortex
Procedia PDF Downloads 4362059 Comparison of Processing Conditions for Plasticized PVC and PVB
Authors: Michael Tupý, Jaroslav Císař, Pavel Mokrejš, Dagmar Měřínská, Alice Tesaříková-Svobodová
Abstract:
The worldwide problem is that the recycled PVB is wildly stored in landfills. However, PVB have very similar chemical properties such as PVC. Moreover, both of them are used in plasticized form. Thus, the thermal properties of plasticized PVC obtained from primary production and the PVB was obtained by recycling of windshields are compared. It is carried out in order to find degradable conditions and decide if blend of PVB/PVC can be processable together. Tested PVC contained 38 % of plasticizer diisononyl phthalate (DINP) and PVB was plasticized with 28 % of triethylene glycol, bis(2-ethylhexanoate) (3GO). Thermal and thermo-oxidative decomposition of both vinyl polymers are compared such as DSC and OOT analysis. The tensile strength analysis is added.Keywords: polyvinyl chloride, polyvinyl butyral, recycling, reprocessing, thermal analysis, decomposition
Procedia PDF Downloads 5152058 Failure Simulation of Small-scale Walls with Chases Using the Lattic Discrete Element Method
Authors: Karina C. Azzolin, Luis E. Kosteski, Alisson S. Milani, Raquel C. Zydeck
Abstract:
This work aims to represent Numerically tests experimentally developed in reduced scale walls with horizontal and inclined cuts by using the Lattice Discrete Element Method (LDEM) implemented On de Abaqus/explicit environment. The cuts were performed with depths of 20%, 30%, and 50% On the walls subjected to centered and eccentric loading. The parameters used to evaluate the numerical model are its strength, the failure mode, and the in-plane and out-of-plane displacements.Keywords: structural masonry, wall chases, small scale, numerical model, lattice discrete element method
Procedia PDF Downloads 1772057 The Normal-Generalized Hyperbolic Secant Distribution: Properties and Applications
Authors: Hazem M. Al-Mofleh
Abstract:
In this paper, a new four-parameter univariate continuous distribution called the Normal-Generalized Hyperbolic Secant Distribution (NGHS) is defined and studied. Some general and structural distributional properties are investigated and discussed, including: central and non-central n-th moments and incomplete moments, quantile and generating functions, hazard function, Rényi and Shannon entropies, shapes: skewed right, skewed left, and symmetric, modality regions: unimodal and bimodal, maximum likelihood (MLE) estimators for the parameters. Finally, two real data sets are used to demonstrate empirically its flexibility and prove the strength of the new distribution.Keywords: bimodality, estimation, hazard function, moments, Shannon’s entropy
Procedia PDF Downloads 3482056 Resistance of African States Against the African Court on Human and People Rights (ACPHR)
Authors: Ayyoub Jamali
Abstract:
At the first glance, it seems that the African Court on Human and People’s Rights has achieved a tremendous development in the protection of human rights in Africa. Since its first judgement in 2009, the court has taken a robust approach/ assertive stance, showing its strength by finding states to be in violation of the Africana Charter and other human rights treaties. This paper seeks to discuss various challenges and resistance that the Court has faced since the adoption of the Founding Protocol to the Establishment of the African Court on Human and People’s Rights. The outcome of the paper casts shadow on the legitimacy and effectiveness of the African Court as the guarantor of human rights within the African continent.Keywords: African Court on Human and People’s Rights, African Union, African regional human rights system, compliance
Procedia PDF Downloads 1532055 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems
Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras
Abstract:
The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.Keywords: MOEAs, multiobjective optimization, ZDT test functions, evolutionary algorithms
Procedia PDF Downloads 4702054 Investigation on the Thermal Properties of Magnesium Oxychloride Cement Prepared with Glass Powder
Authors: Rim Zgueb, Noureddine Yacoubi
Abstract:
The objective of this study was to investigate the thermal property of magnesium oxychloride cement (MOC) using glass powder as a substitute. Glass powder by proportion 0%, 5%, 10%, 15% and 20% of cement’s weight was added to specimens. At the end of a drying time of 28 days, thermal properties, compressive strength and bulk density of samples were determined. Thermal property is measured by Photothermal Deflection Technique by comparing the experimental of normalized amplitude and the phase curves of the photothermal signal to the corresponding theoretical ones. The findings indicate that incorporation of glass powder decreases the thermal properties of MOC.Keywords: magnesium oxychloride cement (MOC), phototharmal deflection technique, thermal properties, Ddensity
Procedia PDF Downloads 354