Search results for: mobile data patterns
25831 Temporal Trends in the Urban Metabolism of Riyadh, Saudi Arabia
Authors: Naif Albelwi, Alan Kwan, Yacine Rezgui
Abstract:
Cities with rapid growth face tremendous challenges not only to provide services to meet this growth but also to assure that this growth occurs in a sustainable way. The consumption of material, energy, and water resources is inextricably linked to population growth with a unique impact in urban areas, especially in light of significant investments in infrastructure to support urban development. Urban Metabolism (UM) is becoming popular as it provides a framework accounting the mass and energy flows through a city. The objective of this study is to determine the energy and material flows of Riyadh, Saudi Arabia using locally generated data from 1996 and 2012 and analyzing the temporal trends of energy and material flows. Preliminary results show that while the population of Riyadh grew 90% since 1996, the input and output flows have increased at higher rate. Results also show increasing in energy mobile consumption from 61k TJ in 1996 to 157k TJ in 2012 which points to Riyadh’s inefficient urban form. The study findings highlight the importance to develop effective policies for improving the use of resources.Keywords: energy and water consumption, sustainability, urban development, urban metabolism
Procedia PDF Downloads 27325830 Data Collection Based on the Questionnaire Survey In-Hospital Emergencies
Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala
Abstract:
The methods identified in data collection are diverse: electronic media, focus group interviews and short-answer questionnaires [1]. The collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses [2]. In this context, we opted to collect good quality data by doing a sizeable questionnaire-based survey on hospital emergencies to improve emergency services and alleviate the problems encountered. At the level of this paper, we will present our study, and we will detail the steps followed to achieve the collection of relevant, consistent and practical data.Keywords: data collection, survey, questionnaire, database, data analysis, hospital emergencies
Procedia PDF Downloads 10825829 Application of Artificial Intelligence in Market and Sales Network Management: Opportunities, Benefits, and Challenges
Authors: Mohamad Mahdi Namdari
Abstract:
In today's rapidly changing and evolving business competition, companies and organizations require advanced and efficient tools to manage their markets and sales networks. Big data analysis, quick response in competitive markets, process and operations optimization, and forecasting customer behavior are among the concerns of executive managers. Artificial intelligence, as one of the emerging technologies, has provided extensive capabilities in this regard. The use of artificial intelligence in market and sales network management can lead to improved efficiency, increased decision-making accuracy, and enhanced customer satisfaction. Specifically, AI algorithms can analyze vast amounts of data, identify complex patterns, and offer strategic suggestions to improve sales performance. However, many companies are still distant from effectively leveraging this technology, and those that do face challenges in fully exploiting AI's potential in market and sales network management. It appears that the general public's and even the managerial and academic communities' lack of knowledge of this technology has caused the managerial structure to lag behind the progress and development of artificial intelligence. Additionally, high costs, fear of change and employee resistance, lack of quality data production processes, the need for updating structures and processes, implementation issues, the need for specialized skills and technical equipment, and ethical and privacy concerns are among the factors preventing widespread use of this technology in organizations. Clarifying and explaining this technology, especially to the academic, managerial, and elite communities, can pave the way for a transformative beginning. The aim of this research is to elucidate the capacities of artificial intelligence in market and sales network management, identify its opportunities and benefits, and examine the existing challenges and obstacles. This research aims to leverage AI capabilities to provide a framework for enhancing market and sales network performance for managers. The results of this research can help managers and decision-makers adopt more effective strategies for business growth and development by better understanding the capabilities and limitations of artificial intelligence.Keywords: artificial intelligence, market management, sales network, big data analysis, decision-making, digital marketing
Procedia PDF Downloads 4225828 Nano-Enabling Technical Carbon Fabrics to Achieve Improved Through Thickness Electrical Conductivity in Carbon Fiber Reinforced Composites
Authors: Angelos Evangelou, Katerina Loizou, Loukas Koutsokeras, Orestes Marangos, Giorgos Constantinides, Stylianos Yiatros, Katerina Sofocleous, Vasileios Drakonakis
Abstract:
Owing to their outstanding strength to weight properties, carbon fiber reinforced polymer (CFRPs) composites have attracted significant attention finding use in various fields (sports, automotive, transportation, etc.). The current momentum indicates that there is an increasing demand for their employment in high value bespoke applications such as avionics and electronic casings, damage sensing structures, EMI (electromagnetic interference) structures that dictate the use of materials with increased electrical conductivity both in-plane and through the thickness. Several efforts by research groups have focused on enhancing the through-thickness electrical conductivity of FRPs, in an attempt to combine the intrinsically high relative strengths exhibited with improved z-axis electrical response as well. However, only a limited number of studies deal with printing of nano-enhanced polymer inks to produce a pattern on dry fabric level that could be used to fabricate CFRPs with improved through thickness electrical conductivity. The present study investigates the employment of screen-printing process on technical dry fabrics using nano-reinforced polymer-based inks to achieve the required through thickness conductivity, opening new pathways for the application of fiber reinforced composites in niche products. Commercially available inks and in-house prepared inks reinforced with electrically conductive nanoparticles are employed, printed in different patterns. The aim of the present study is to investigate both the effect of the nanoparticle concentration as well as the droplet patterns (diameter, inter-droplet distance and coverage) to optimize printing for the desired level of conductivity enhancement in the lamina level. The electrical conductivity is measured initially at ink level to pinpoint the optimum concentrations to be employed using a “four-probe” configuration. Upon printing of the different patterns, the coverage of the dry fabric area is assessed along with the permeability of the resulting dry fabrics, in alignment with the fabrication of CFRPs that requires adequate wetting by the epoxy matrix. Results demonstrated increased electrical conductivities of the printed droplets, with increase of the conductivity from the benchmark value of 0.1 S/M to between 8 and 10 S/m. Printability of dense and dispersed patterns has exhibited promising results in terms of increasing the z-axis conductivity without inhibiting the penetration of the epoxy matrix at the processing stage of fiber reinforced composites. The high value and niche prospect of the resulting applications that can stem from CFRPs with increased through thickness electrical conductivities highlights the potential of the presented endeavor, signifying screen printing as the process to to nano-enable z-axis electrical conductivity in composite laminas. This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Project: ENTERPRISES/0618/0013).Keywords: CFRPs, conductivity, nano-reinforcement, screen-printing
Procedia PDF Downloads 15125827 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation
Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang
Abstract:
Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation
Procedia PDF Downloads 6825826 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping
Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert
Abstract:
In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping
Procedia PDF Downloads 9025825 The Utilization of Big Data in Knowledge Management Creation
Authors: Daniel Brian Thompson, Subarmaniam Kannan
Abstract:
The huge weightage of knowledge in this world and within the repository of organizations has already reached immense capacity and is constantly increasing as time goes by. To accommodate these constraints, Big Data implementation and algorithms are utilized to obtain new or enhanced knowledge for decision-making. With the transition from data to knowledge provides the transformational changes which will provide tangible benefits to the individual implementing these practices. Today, various organization would derive knowledge from observations and intuitions where this information or data will be translated into best practices for knowledge acquisition, generation and sharing. Through the widespread usage of Big Data, the main intention is to provide information that has been cleaned and analyzed to nurture tangible insights for an organization to apply to their knowledge-creation practices based on facts and figures. The translation of data into knowledge will generate value for an organization to make decisive decisions to proceed with the transition of best practices. Without a strong foundation of knowledge and Big Data, businesses are not able to grow and be enhanced within the competitive environment.Keywords: big data, knowledge management, data driven, knowledge creation
Procedia PDF Downloads 11625824 Revolutionizing Accounting: Unleashing the Power of Artificial Intelligence
Authors: Sogand Barghi
Abstract:
The integration of artificial intelligence (AI) in accounting practices is reshaping the landscape of financial management. This paper explores the innovative applications of AI in the realm of accounting, emphasizing its transformative impact on efficiency, accuracy, decision-making, and financial insights. By harnessing AI's capabilities in data analysis, pattern recognition, and automation, accounting professionals can redefine their roles, elevate strategic decision-making, and unlock unparalleled value for businesses. This paper delves into AI-driven solutions such as automated data entry, fraud detection, predictive analytics, and intelligent financial reporting, highlighting their potential to revolutionize the accounting profession. Artificial intelligence has swiftly emerged as a game-changer across industries, and accounting is no exception. This paper seeks to illuminate the profound ways in which AI is reshaping accounting practices, transcending conventional boundaries, and propelling the profession toward a new era of efficiency and insight-driven decision-making. One of the most impactful applications of AI in accounting is automation. Tasks that were once labor-intensive and time-consuming, such as data entry and reconciliation, can now be streamlined through AI-driven algorithms. This not only reduces the risk of errors but also allows accountants to allocate their valuable time to more strategic and analytical tasks. AI's ability to analyze vast amounts of data in real time enables it to detect irregularities and anomalies that might go unnoticed by traditional methods. Fraud detection algorithms can continuously monitor financial transactions, flagging any suspicious patterns and thereby bolstering financial security. AI-driven predictive analytics can forecast future financial trends based on historical data and market variables. This empowers organizations to make informed decisions, optimize resource allocation, and develop proactive strategies that enhance profitability and sustainability. Traditional financial reporting often involves extensive manual effort and data manipulation. With AI, reporting becomes more intelligent and intuitive. Automated report generation not only saves time but also ensures accuracy and consistency in financial statements. While the potential benefits of AI in accounting are undeniable, there are challenges to address. Data privacy and security concerns, the need for continuous learning to keep up with evolving AI technologies, and potential biases within algorithms demand careful attention. The convergence of AI and accounting marks a pivotal juncture in the evolution of financial management. By harnessing the capabilities of AI, accounting professionals can transcend routine tasks, becoming strategic advisors and data-driven decision-makers. The applications discussed in this paper underline the transformative power of AI, setting the stage for an accounting landscape that is smarter, more efficient, and more insightful than ever before. The future of accounting is here, and it's driven by artificial intelligence.Keywords: artificial intelligence, accounting, automation, predictive analytics, financial reporting
Procedia PDF Downloads 7125823 Applying GIS Geographic Weighted Regression Analysis to Assess Local Factors Impeding Smallholder Farmers from Participating in Agribusiness Markets: A Case Study of Vihiga County, Western Kenya
Authors: Mwehe Mathenge, Ben G. J. S. Sonneveld, Jacqueline E. W. Broerse
Abstract:
Smallholder farmers are important drivers of agriculture productivity, food security, and poverty reduction in Sub-Saharan Africa. However, they are faced with myriad challenges in their efforts at participating in agribusiness markets. How the geographic explicit factors existing at the local level interact to impede smallholder farmers' decision to participates (or not) in agribusiness markets is not well understood. Deconstructing the spatial complexity of the local environment could provide a deeper insight into how geographically explicit determinants promote or impede resource-poor smallholder farmers from participating in agribusiness. This paper’s objective was to identify, map, and analyze local spatial autocorrelation in factors that impede poor smallholders from participating in agribusiness markets. Data were collected using geocoded researcher-administered survey questionnaires from 392 households in Western Kenya. Three spatial statistics methods in geographic information system (GIS) were used to analyze data -Global Moran’s I, Cluster and Outliers Analysis (Anselin Local Moran’s I), and geographically weighted regression. The results of Global Moran’s I reveal the presence of spatial patterns in the dataset that was not caused by spatial randomness of data. Subsequently, Anselin Local Moran’s I result identified spatially and statistically significant local spatial clustering (hot spots and cold spots) in factors hindering smallholder participation. Finally, the geographically weighted regression results unearthed those specific geographic explicit factors impeding market participation in the study area. The results confirm that geographically explicit factors are indispensable in influencing the smallholder farming decisions, and policymakers should take cognizance of them. Additionally, this research demonstrated how geospatial explicit analysis conducted at the local level, using geographically disaggregated data, could help in identifying households and localities where the most impoverished and resource-poor smallholder households reside. In designing spatially targeted interventions, policymakers could benefit from geospatial analysis methods in understanding complex geographic factors and processes that interact to influence smallholder farmers' decision-making processes and choices.Keywords: agribusiness markets, GIS, smallholder farmers, spatial statistics, disaggregated spatial data
Procedia PDF Downloads 13925822 Survey on Data Security Issues Through Cloud Computing Amongst Sme’s in Nairobi County, Kenya
Authors: Masese Chuma Benard, Martin Onsiro Ronald
Abstract:
Businesses have been using cloud computing more frequently recently because they wish to take advantage of its advantages. However, employing cloud computing also introduces new security concerns, particularly with regard to data security, potential risks and weaknesses that could be exploited by attackers, and various tactics and strategies that could be used to lessen these risks. This study examines data security issues on cloud computing amongst sme’s in Nairobi county, Kenya. The study used the sample size of 48, the research approach was mixed methods, The findings show that data owner has no control over the cloud merchant's data management procedures, there is no way to ensure that data is handled legally. This implies that you will lose control over the data stored in the cloud. Data and information stored in the cloud may face a range of availability issues due to internet outages; this can represent a significant risk to data kept in shared clouds. Integrity, availability, and secrecy are all mentioned.Keywords: data security, cloud computing, information, information security, small and medium-sized firms (SMEs)
Procedia PDF Downloads 8525821 Cloud Design for Storing Large Amount of Data
Authors: M. Strémy, P. Závacký, P. Cuninka, M. Juhás
Abstract:
Main goal of this paper is to introduce our design of private cloud for storing large amount of data, especially pictures, and to provide good technological backend for data analysis based on parallel processing and business intelligence. We have tested hypervisors, cloud management tools, storage for storing all data and Hadoop to provide data analysis on unstructured data. Providing high availability, virtual network management, logical separation of projects and also rapid deployment of physical servers to our environment was also needed.Keywords: cloud, glusterfs, hadoop, juju, kvm, maas, openstack, virtualization
Procedia PDF Downloads 35325820 Varieties of Capitalism and Small Business CSR: A Comparative Overview
Authors: Stéphanie Looser, Walter Wehrmeyer
Abstract:
Given the limited research on Small and Mediumsized Enterprises’ (SMEs) contribution to Corporate Social Responsibility (CSR) and even scarcer research on Swiss SMEs, this paper helps to fill these gaps by enabling the identification of supranational SME parameters and to make a contribution to the evolving field of these topics. Thus, the paper investigates the current state of SME practices in Switzerland and across 15 other countries. Combining the degree to which SMEs demonstrate an explicit (or business case) approach or see CSR as an implicit moral activity with the assessment of their attributes for “variety of capitalism” defines the framework of this comparative analysis. According to previous studies, liberal market economies, e.g. in the United States (US) or United Kingdom (UK), are aligned with extrinsic CSR, while coordinated market systems (in Central European or Asian countries) evolve implicit CSR agendas. To outline Swiss small business CSR patterns in particular, 40 SME owner-managers were interviewed. The transcribed interviews were coded utilising MAXQDA for qualitative content analysis. A secondary data analysis of results from different countries (i.e., Australia, Austria, Chile, Cameroon, Catalonia (notably a part of Spain that seeks autonomy), China, Finland, Germany, Hong Kong (a special administrative region of China), Italy, Netherlands, Singapore, Spain, Taiwan, UK, US) lays groundwork for this comparative study on small business CSR. Applying the same coding categories (in MAXQDA) for the interview analysis as well as for the secondary data research while following grounded theory rules to refine and keep track of ideas generated testable hypotheses and comparative power on implicit (and the lower likelihood of explicit) CSR in SMEs retrospectively. The paper identifies Swiss small business CSR as deep, profound, “soul”, and an implicit part of the day-to-day business. Similar to most Central European, Mediterranean, Nordic, and Asian countries, explicit CSR is still very rare in Swiss SMEs. Astonishingly, also UK and US SMEs follow this pattern in spite of their strong and distinct liberal market economies. Though other findings show that nationality matters this research concludes that SME culture and its informal CSR agenda are strongly formative and superseding even forces of market economies, nationally cultural patterns, and language. In a world of “big business”, explicit “business case” CSR, and the mantra that “CSR must pay”, this study points to a distinctly implicit small business CSR model built on trust, physical closeness, and virtues that is largely detached from the bottom line. This pattern holds for different cultural contexts and it is concluded that SME culture is stronger than nationality leading to a supra-national, monolithic SME CSR approach. Hence, classifications of countries by their market system or capitalism, as found in the comparative capitalism literature, do not match the CSR practices in SMEs as they do not mirror the peculiarities of their business. This raises questions on the universality and generalisability of management concepts.Keywords: CSR, comparative study, cultures of capitalism, small, medium-sized enterprises
Procedia PDF Downloads 43325819 Microbioreactor System for Cell Behavior Analysis Focused on Nerve Tissue Engineering
Authors: Yusser Olguín, Diego Benavente, Fernando Dorta, Nicole Orellana, Cristian Acevedo
Abstract:
One of the greatest challenges of tissue engineering is the generation of materials in which the highest possible number of conditions can be incorporated to stimulate the proliferation and differentiation of cells, which will be transformed together with the material into new functional tissue. In this sense, considering the properties of microfluidics and its relationship with cellular micro-environments, the possibility of controlling flow patterns and the ability to design diverse patterns in the chips, a microfluidic cell culture system can be established as a means for the evaluation of the effect of different parameters in a controlled and precise manner. Specifically in relation to the study and development of alternatives in peripheral nervous tissue engineering, it is necessary to consider different physical and chemical neurotrophic stimuli that promote cell growth and differentiation. Chemical stimuli include certain vitamins, glucocorticoids, gangliosides, and growth factors, while physical stimuli include topological stimuli, mechanical forces of the cellular environment and electrical stimulation. In this context, the present investigation shows the results of cell stimulation in a microbioreactor using electrical and chemical stimuli, where the differentiation of PC12 cells as a neuronal model is evidenced by neurite expression, dependent on the stimuli and their combination. The results were analysed with a multi-factor statistical approach, showing several relationships and dependencies between different parameters. Chip design, operating parameters and concentrations of neurotrophic chemical factors were found to be preponderant, based on the characteristics of the electrical stimuli.Keywords: microfluidics, nerve tissue engineering, microbioreactor, electrical stimuli
Procedia PDF Downloads 8525818 Moving beyond Medical Tourism: An Analysis of Intra-Regional Medical Mobility in the Global South
Authors: Tyler D. Cesarone, Tatiana M. Wugalter
Abstract:
The movement of patients from the Global North to the Global South in pursuit of inexpensive healthcare and touristic experiences dominates the academic discourse on international medical travel (IMT). However, medical travel exists in higher numbers between Global South countries as patients who lack trust in, and feel disenfranchised by, their national healthcare systems seek treatment in nearby countries. Through a review of the existing literature, this paper examines patterns of IMT in the Middle East, Southeast Asia, and Southern Africa, distinguishing North-South medical tourism from South-South intra-regional medical mobility (IRMM). Evidence from these case studies demonstrates that notions of medical distrust and disenfranchisement, rooted in low-resourced and poor quality healthcare systems, are key drivers of IRMM in the Global South. The movement of patients from lower income to proximate higher income countries not only reveals tensions between patients and their healthcare systems but widens gaps in the quality of healthcare between departing and destination countries. In analyzing these cross-regional similarities, the paper moves beyond the current literature’s focus on singular case studies to expose global patterns of South-South IRMM. This presents a shift from the traditional focus on North-South medical tourism, demonstrating how disparities in healthcare systems both influence and are influenced by IRMM.Keywords: global South, healthcare quality, international medical travel (IMT), intra-regional medical mobility (IRMM), medical disenfranchisement, medical distrust, medical tourism
Procedia PDF Downloads 39925817 Estimation of Missing Values in Aggregate Level Spatial Data
Authors: Amitha Puranik, V. S. Binu, Seena Biju
Abstract:
Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis
Procedia PDF Downloads 38225816 Impact of Customer Experience Quality on Loyalty of Mobile and Fixed Broadband Services: Case Study of Telecom Egypt Group
Authors: Nawal Alawad, Passent Ibrahim Tantawi, Mohamed Abdel Salam Ragheb
Abstract:
Providing customers with quality experiences has been confirmed to be a sustainable, competitive advantage with a distinct financial impact for companies. The success of service providers now relies on their ability to provide customer-centric services. The importance of perceived service quality and customer experience is widely recognized. The focus of this research is in the area of mobile and fixed broadband services. This study is of dual importance both academically and practically. Academically, this research applies a new model investigating the impact of customer experience quality on loyalty based on modifying the multiple-item scale for measuring customers’ service experience in a new area and did not depend on the traditional models. The integrated scale embraces four dimensions: service experience, outcome focus, moments of truth and peace of mind. In addition, it gives a scientific explanation for this relationship so this research fill the gap in such relations in which no one correlate or give explanations for these relations before using such integrated model and this is the first time to apply such modified and integrated new model in telecom field. Practically, this research gives insights to marketers and practitioners to improve customer loyalty through evolving the experience quality of broadband customers which is interpreted to suggested outcomes: purchase, commitment, repeat purchase and word-of-mouth, this approach is one of the emerging topics in service marketing. Data were collected through 412 questionnaires and analyzed by using structural equation modeling.Findings revealed that both outcome focus and moments of truth have a significant impact on loyalty while both service experience and peace of mind have insignificant impact on loyalty.In addition, it was found that 72% of the variation occurring in loyalty is explained by the model. The researcher also measured the net prompters score and gave explanation for the results. Furthermore, assessed customer’s priorities of broadband services. The researcher recommends that the findings of this research will extend to be considered in the future plans of Telecom Egypt Group. In addition, to be applied in the same industry especially in the developing countries that have the same circumstances with similar service settings. This research is a positive contribution in service marketing, particularly in telecom industry for making marketing more reliable as managers can relate investments in service experience directly with the performance closest to income for instance, repurchasing behavior, positive word of mouth and, commitment. Finally, the researcher recommends that future studies should consider this model to explain significant marketing outcomes such as share of wallet and ultimately profitability.Keywords: broadband services, customer experience quality, loyalty, net promoters score
Procedia PDF Downloads 26725815 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images
Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav
Abstract:
Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining
Procedia PDF Downloads 16325814 Association Rules Mining and NOSQL Oriented Document in Big Data
Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub
Abstract:
Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL
Procedia PDF Downloads 16225813 Understanding the Classification of Rain Microstructure and Estimation of Z-R Relationship using a Micro Rain Radar in Tropical Region
Authors: Tomiwa, Akinyemi Clement
Abstract:
Tropical regions experience diverse and complex precipitation patterns, posing significant challenges for accurate rainfall estimation and forecasting. This study addresses the problem of effectively classifying tropical rain types and refining the Z-R (Reflectivity-Rain Rate) relationship to enhance rainfall estimation accuracy. Through a combination of remote sensing, meteorological analysis, and machine learning, the research aims to develop an advanced classification framework capable of distinguishing between different types of tropical rain based on their unique characteristics. This involves utilizing high-resolution satellite imagery, radar data, and atmospheric parameters to categorize precipitation events into distinct classes, providing a comprehensive understanding of tropical rain systems. Additionally, the study seeks to improve the Z-R relationship, a crucial aspect of rainfall estimation. One year of rainfall data was analyzed using a Micro Rain Radar (MRR) located at The Federal University of Technology Akure, Nigeria, measuring rainfall parameters from ground level to a height of 4.8 km with a vertical resolution of 0.16 km. Rain rates were classified into low (stratiform) and high (convective) based on various microstructural attributes such as rain rates, liquid water content, Drop Size Distribution (DSD), average fall speed of the drops, and radar reflectivity. By integrating diverse datasets and employing advanced statistical techniques, the study aims to enhance the precision of Z-R models, offering a more reliable means of estimating rainfall rates from radar reflectivity data. This refined Z-R relationship holds significant potential for improving our understanding of tropical rain systems and enhancing forecasting accuracy in regions prone to heavy precipitation.Keywords: remote sensing, precipitation, drop size distribution, micro rain radar
Procedia PDF Downloads 3525812 Immunization-Data-Quality in Public Health Facilities in the Pastoralist Communities: A Comparative Study Evidence from Afar and Somali Regional States, Ethiopia
Authors: Melaku Tsehay
Abstract:
The Consortium of Christian Relief and Development Associations (CCRDA), and the CORE Group Polio Partners (CGPP) Secretariat have been working with Global Alliance for Vac-cines and Immunization (GAVI) to improve the immunization data quality in Afar and Somali Regional States. The main aim of this study was to compare the quality of immunization data before and after the above interventions in health facilities in the pastoralist communities in Ethiopia. To this end, a comparative-cross-sectional study was conducted on 51 health facilities. The baseline data was collected in May 2019, while the end line data in August 2021. The WHO data quality self-assessment tool (DQS) was used to collect data. A significant improvment was seen in the accuracy of the pentavalent vaccine (PT)1 (p = 0.012) data at the health posts (HP), while PT3 (p = 0.010), and Measles (p = 0.020) at the health centers (HC). Besides, a highly sig-nificant improvment was observed in the accuracy of tetanus toxoid (TT)2 data at HP (p < 0.001). The level of over- or under-reporting was found to be < 8%, at the HP, and < 10% at the HC for PT3. The data completeness was also increased from 72.09% to 88.89% at the HC. Nearly 74% of the health facilities timely reported their respective immunization data, which is much better than the baseline (7.1%) (p < 0.001). These findings may provide some hints for the policies and pro-grams targetting on improving immunization data qaulity in the pastoralist communities.Keywords: data quality, immunization, verification factor, pastoralist region
Procedia PDF Downloads 12425811 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms
Authors: Bliss Singhal
Abstract:
Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression
Procedia PDF Downloads 8225810 Innovative Technologies of Management of Personnel Processes in the Public Civil Service
Authors: O. V. Jurieva, O. U. Jurieva, R. H. Yagudin, P. B. Chursin
Abstract:
In the recent scientific researches on the problems of public service the idea of the use of innovative technologies of management of personnel processes is accurately formulated. Authors made an attempt to analyze the changes in the public service organizations and to understand how the studied situation is interpreted by the government employees themselves. For this purpose the strategy of sociological research was carried out on the basis of application of questionnaire developed by M. Rokich and focus group research. For the research purposes it was necessary to get to microlevel in order to include daily activities of employees of an organization, their life experience and values in the focus of the analysis. Based on P. Bourdieu's methodology, authors investigated the established patterns of consciousness and behavior of officials (doxa) and also analyzed the tendencies of re-thinking (change) of the settled content of values (heterodoxy) by them. The distinctive feature of the conducted research is that the public servants who have different length of service in the public service took part in the research procedure. The obtained data helped to answer the following question: what are the specifics of doxs of the public servants who work in the public civil service more than 7-10 years and what perception of values of civil service have junior experts whose work experience doesn't exceed 3 years. Respondents were presented by two groups: (1) public servants of the level of main positions in the public civil service of the Republic of Tatarstan. (2) Public servants of the level of lower positions in the ministries and departments of the Republic of Tatarstan. For the study of doxa or of the existing values of public servants, the research with use of the questionnaire based on M. Rokich's system is conducted. Two types of values are emphasised: terminal and instrumental, which are united by us in the collective concept doxa. Doxa: the instrument of research of the established patterns of consciousness and behavior which can either resist to changes in the organization or, on the contrary, support their implementation. In the following stage an attempt to deepen our understanding of the essence and specifics of doxa of officials by means of the applied sociological research which is carried out by focus group method is made. Information obtained by authors during the research convinces that for the success of policy of changes in the organizations of public service it is necessary to develop special technologies of informing employees about the essence and inevitability of the developed innovations, to involve them in the process of changes, to train and to develop the younger generation of civil servants, seriously to perceive additional training and retraining of officials.Keywords: innovative technologies, public service organizations, public servants
Procedia PDF Downloads 27325809 The Impact of Gender Differences on the Expressions of Refusal in Jordanian Arabic
Authors: Hanan Yousef, Nisreen Naji Al-Khawaldeh
Abstract:
The present study investigates the use of the expression of refusal by native speakers of Jordanian Arabic (NSsJA) in different social situations (i.e. invitations, suggestions, and offers). It also investigates the influence of gender on the refusal realization patterns within the Jordanian culture to provide a better insight into the relation between situations, strategies and gender in the Jordanian culture. To that end, a group of 70 participants, including 35 male and 35 female students from different departments at the Hashemite University (HU) participated in this study using mixed methods (i.e. Discourse Completion Test (DCT), interviews and naturally occurring data). Data were analyzed in light of a developed coding scheme. The results showed that NSsJA preferred indirect strategies which mitigate the interaction such as "excuse, reason and, explanation" strategy more than other strategies which aggravate the interaction such as "face-threatening" strategy. Moreover, the analysis of this study has revealed a considerable impact of gender on the use of linguistic forms expressing refusal among NSsJA. Significant differences in the results of the Chi-square test relating the effect of participants' gender indicate that both males and females were conscious of the gender of their interlocutors. The findings provide worthwhile insights into the relation amongst types of communicative acts and the rapport between people in social interaction. They assert that refusal should not be labeled as face threatening act since it does not always pose a threat in some cases especially where refusal is expressed among friends, relatives and family members. They highlight some distinctive culture-specific features of the communicative acts of refusal.Keywords: gender, Jordanian Arabic, politeness, refusals, speech act
Procedia PDF Downloads 16625808 The Effect of Technology on International Marketing Trading Researches and Analysis
Authors: Karim Monir Halim Salib
Abstract:
The article discusses the use of modern technology to achieve environmental marketing goals in business and customer relations. The purpose of this article is to show the possibilities of the application of modern technology. In B2C relationships, marketing departments face challenges arising from the need to quickly segment customers and share information across multiple systems, which seriously hinders the achievement of marketing objectives. Therefore, the Article states that modern IT solutions are used in the marketing of business activities, taking into account environmental objectives. For this reason, its importance in the economic and social development of developing countries has increased. While traditional companies emphasize profit as the most important business principle, social enterprises have to address social issues at the expense of profit. This mindset gives social enterprises more than traditional businesses to meet the needs of those at the bottom of the pyramid. This also poses a great challenge for social business, as social business works for the public good on the one hand and financial stability on the other. Otherwise, the company cannot be evacuated. Cultures are involved in business communication and research. Using the example of language in international relations, the article poses the problem of cultural discourse in management and linguistic and cultural studies. After reviewing current research on language in international relations, this article presents communication methods in the international economy from a linguistic perspective and attempts to explain communication problems in business from the perspective of linguistic research. A step towards multidisciplinary research combining research in management and linguistics.Keywords: international marketing, marketing mix, marketing research, small and medium-sized enterprises, strategic marketing, B2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis consumer behavior, experience, experience marketing, marketing employee organizational performance, internal marketing, internal customer, direct marketing, mobile phones mobile marketing, Sms advertising.
Procedia PDF Downloads 4125807 The Role of Group Dynamics in Creativity: A Study Case from Italy
Authors: Sofya Komarova, Frashia Ndungu, Alessia Gavazzoli, Roberta Mineo
Abstract:
Modern society requires people to be flexible and to develop innovative solutions to unexpected situations. Creativity refers to the “interaction among aptitude, process, and the environment by which an individual or group produces a perceptible product that is both novel and useful as defined within a social context”. It allows humans to produce novel ideas, generate new solutions, and express themselves uniquely. Only a few scientific studies have examined group dynamics' influence on individuals' creativity. There exist some gaps in the research on creative thinking, such as the fact that collaborative effort frequently results in the enhanced production of new information and knowledge. Therefore, it is critical to evaluate creativity via social settings. The study aimed at exploring the group dynamics of young adults in small group settings and the influence of these dynamics on their creativity. The study included 30 participants aged 20 to 25 who were attending university after completing a bachelor's degree. The participants were divided into groups of three, in gender homogenous and heterogeneous groups. The groups’ creative task was tied to the Lego mosaic created for the Scintillae laboratory at the Reggio Children Foundation. Group dynamics were operationalized into patterns of behaviors classified into three major categories: 1) Social Interactions, 2) Play, and 3) Distraction. Data were collected through audio and video recording and observation. The qualitative data were converted into quantitative data using the observational coding system; then, they were analyzed, revealing correlations between behaviors using median points and averages. For each participant and group, the percentages of represented behavior signals were computed. The findings revealed a link between social interaction, creative thinking, and creative activities. Other findings revealed that the more intense the social interaction, the lower the amount of creativity demonstrated. This study bridges the research gap between group dynamics and creativity. The approach calls for further research on the relationship between creativity and social interaction.Keywords: group dynamics, creative thinking, creative action, social interactions, group play
Procedia PDF Downloads 12725806 Identifying Critical Success Factors for Data Quality Management through a Delphi Study
Authors: Maria Paula Santos, Ana Lucas
Abstract:
Organizations support their operations and decision making on the data they have at their disposal, so the quality of these data is remarkably important and Data Quality (DQ) is currently a relevant issue, the literature being unanimous in pointing out that poor DQ can result in large costs for organizations. The literature review identified and described 24 Critical Success Factors (CSF) for Data Quality Management (DQM) that were presented to a panel of experts, who ordered them according to their degree of importance, using the Delphi method with the Q-sort technique, based on an online questionnaire. The study shows that the five most important CSF for DQM are: definition of appropriate policies and standards, control of inputs, definition of a strategic plan for DQ, organizational culture focused on quality of the data and obtaining top management commitment and support.Keywords: critical success factors, data quality, data quality management, Delphi, Q-Sort
Procedia PDF Downloads 21725805 Investigating Complement Clause Choice in Written Educated Nigerian English (ENE)
Authors: Juliet Udoudom
Abstract:
Inappropriate complement selection constitutes one of the major features of non-standard complementation in the Nigerian users of English output of sentence construction. This paper investigates complement clause choice in Written Educated Nigerian English (ENE) and offers some results. It aims at determining preferred and dispreferred patterns of complement clause selection in respect of verb heads in English by selected Nigerian users of English. The complementation data analyzed in this investigation were obtained from experimental tasks designed to elicit complement categories of Verb – Noun -, Adjective – and Prepositional – heads in English. Insights from the Government – Binding relations were employed in analyzing data, which comprised responses obtained from one hundred subjects to a picture elicitation exercise, a grammaticality judgement test, and a free composition task. The findings indicate a general tendency for clausal complements (CPs) introduced by the complementizer that to be preferred by the subjects studied. Of the 235 tokens of clausal complements which occurred in our corpus, 128 of them representing 54.46% were CPs headed by that, while whether – and if-clauses recorded 31.07% and 8.94%, respectively. The complement clause-type which recorded the lowest incidence of choice was the CP headed by the Complementiser, for with a 5.53% incident of occurrence. Further findings from the study indicate that semantic features of relevant embedding verb heads were not taken into consideration in the choice of complementisers which introduce the respective complement clauses, hence the that-clause was chosen to complement verbs like prefer. In addition, the dispreferred choice of the for-clause is explicable in terms of the fact that the respondents studied regard ‘for’ as a preposition, and not a complementiser.Keywords: complement, complement clause complement selection, complementisers, government-binding
Procedia PDF Downloads 18825804 Navigating the Nexus of HIV/AIDS Care: Leveraging Statistical Insight to Transform Clinical Practice and Patient Outcomes
Authors: Nahashon Mwirigi
Abstract:
The management of HIV/AIDS is a global challenge, demanding precise tools to predict disease progression and guide tailored treatment. CD4 cell count dynamics, a crucial immune function indicator, play an essential role in understanding HIV/AIDS progression and enhancing patient care through effective modeling. While several models assess disease progression, existing methods often fall short in capturing the complex, non-linear nature of HIV/AIDS, especially across diverse demographics. A need exists for models that balance predictive accuracy with clinical applicability, enabling individualized care strategies based on patient-specific progression rates. This study utilizes patient data from Kenyatta National Hospital (2003–2014) to model HIV/AIDS progression across six CD4-defined states. The Exponential, 2-Parameter Weibull, and 3-Parameter Weibull models are employed to analyze failure rates and explore progression patterns by age and gender. Model selection is based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to identify models best representing disease progression variability across demographic groups. The 3-Parameter Weibull model emerges as the most effective, accurately capturing HIV/AIDS progression dynamics, particularly by incorporating delayed progression effects. This model reflects age and gender-specific variations, offering refined insights into patient trajectories and facilitating targeted interventions. One key finding is that older patients progress more slowly through CD4-defined stages, with a delayed onset of advanced stages. This suggests that older patients may benefit from extended monitoring intervals, allowing providers to optimize resources while maintaining consistent care. Recognizing slower progression in this demographic helps clinicians reduce unnecessary interventions, prioritizing care for faster-progressing groups. Gender-based analysis reveals that female patients exhibit more consistent progression, while male patients show greater variability. This highlights the need for gender-specific treatment approaches, as men may require more frequent assessments and adaptive treatment plans to address their variable progression. Tailoring treatment by gender can improve outcomes by addressing distinct risk patterns in each group. The model’s ability to account for both accelerated and delayed progression equips clinicians with a robust tool for estimating the duration of each disease stage. This supports individualized treatment planning, allowing clinicians to optimize antiretroviral therapy (ART) regimens based on demographic factors and expected disease trajectories. Aligning ART timing with specific progression patterns can enhance treatment efficacy and adherence. The model also has significant implications for healthcare systems, as its predictive accuracy enables proactive patient management, reducing the frequency of advanced-stage complications. For resource limited providers, this capability facilitates strategic intervention timing, ensuring that high-risk patients receive timely care while resources are allocated efficiently. Anticipating progression stages enhances both patient care and resource management, reinforcing the model’s value in supporting sustainable HIV/AIDS healthcare strategies. This study underscores the importance of models that capture the complexities of HIV/AIDS progression, offering insights to guide personalized, data-informed care. The 3-Parameter Weibull model’s ability to accurately reflect delayed progression and demographic risk variations presents a valuable tool for clinicians, supporting the development of targeted interventions and resource optimization in HIV/AIDS management.Keywords: HIV/AIDS progression, 3-parameter Weibull model, CD4 cell count stages, antiretroviral therapy, demographic-specific modeling
Procedia PDF Downloads 825803 Performance Evaluation of Production Schedules Based on Process Mining
Authors: Kwan Hee Han
Abstract:
External environment of enterprise is rapidly changing majorly by global competition, cost reduction pressures, and new technology. In these situations, production scheduling function plays a critical role to meet customer requirements and to attain the goal of operational efficiency. It deals with short-term decision making in the production process of the whole supply chain. The major task of production scheduling is to seek a balance between customer orders and limited resources. In manufacturing companies, this task is so difficult because it should efficiently utilize resource capacity under the careful consideration of many interacting constraints. At present, many computerized software solutions have been utilized in many enterprises to generate a realistic production schedule to overcome the complexity of schedule generation. However, most production scheduling systems do not provide sufficient information about the validity of the generated schedule except limited statistics. Process mining only recently emerged as a sub-discipline of both data mining and business process management. Process mining techniques enable the useful analysis of a wide variety of processes such as process discovery, conformance checking, and bottleneck analysis. In this study, the performance of generated production schedule is evaluated by mining event log data of production scheduling software system by using the process mining techniques since every software system generates event logs for the further use such as security investigation, auditing and error bugging. An application of process mining approach is proposed for the validation of the goodness of production schedule generated by scheduling software systems in this study. By using process mining techniques, major evaluation criteria such as utilization of workstation, existence of bottleneck workstations, critical process route patterns, and work load balance of each machine over time are measured, and finally, the goodness of production schedule is evaluated. By using the proposed process mining approach for evaluating the performance of generated production schedule, the quality of production schedule of manufacturing enterprises can be improved.Keywords: data mining, event log, process mining, production scheduling
Procedia PDF Downloads 27925802 Evaluation of the Urban Landscape Structures and Dynamics of Hawassa City, Using Satellite Images and Spatial Metrics Approaches, Ethiopia
Authors: Berhanu Terfa, Nengcheng C.
Abstract:
The study deals with the analysis of urban expansion and land transformation of Hawass City using remote sensing data and landscape metrics during last three decades (1987–2017). Remote sensing data from Various multi-temporal satellite images viz., TM (1987), TM (1995), ETM+ (2005) and OLI (2017) were used to examine the urban expansion, growth types, and spatial isolation within the urban landscape to develop an understanding the trends of built-up growth in Hawassa City, Ethiopia. Landscape metrics and built-up density were employed to analyze the pattern, process and overall growth status. The area under investigation was divided into concentric circles with a consecutive circle of 1 km incremental radius from the central pixel (Central Business District) for analysis. The result exhibited that the built-up area had increased by 541.32% between 1987 and 2017and an extension growth types (more than 67 %) was observed. The major growth took place in north-west direction followed by north direction in haphazard manner during 1987–1995 period, whereas predominant built-up development was observed in south and southwest direction during 1995–2017 period. Land scape metrics result revealed that the of urban patches density, total edge and edge density increased, while mean nearest neighbors’ distance decreased showing the tendency of sprawl.Keywords: landscape metrics, spatial patterns, remote sensing, multi-temporal, urban sprawl
Procedia PDF Downloads 286