Search results for: intent detection
1681 Assessing Sydney Tar Ponds Remediation and Natural Sediment Recovery in Nova Scotia, Canada
Authors: Tony R. Walker, N. Devin MacAskill, Andrew Thalhiemer
Abstract:
Sydney Harbour, Nova Scotia has long been subject to effluent and atmospheric inputs of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) from a large coking operation and steel plant that operated in Sydney for nearly a century until closure in 1988. Contaminated effluents from the industrial site resulted in the creation of the Sydney Tar Ponds, one of Canada’s largest contaminated sites. Since its closure, there have been several attempts to remediate this former industrial site and finally, in 2004, the governments of Canada and Nova Scotia committed to remediate the site to reduce potential ecological and human health risks to the environment. The Sydney Tar Ponds and Coke Ovens cleanup project has become the most prominent remediation project in Canada today. As an integral part of remediation of the site (i.e., which consisted of solidification/stabilization and associated capping of the Tar Ponds), an extensive multiple media environmental effects program was implemented to assess what effects remediation had on the surrounding environment, and, in particular, harbour sediments. Additionally, longer-term natural sediment recovery rates of select contaminants predicted for the harbour sediments were compared to current conditions. During remediation, potential contributions to sediment quality, in addition to remedial efforts, were evaluated which included a significant harbour dredging project, propeller wash from harbour traffic, storm events, adjacent loading/unloading of coal and municipal wastewater treatment discharges. Two sediment sampling methodologies, sediment grab and gravity corer, were also compared to evaluate the detection of subtle changes in sediment quality. Results indicated that overall spatial distribution pattern of historical contaminants remains unchanged, although at much lower concentrations than previously reported, due to natural recovery. Measurements of sediment indicator parameter concentrations confirmed that natural recovery rates of Sydney Harbour sediments were in broad agreement with predicted concentrations, in spite of ongoing remediation activities. Overall, most measured parameters in sediments showed little temporal variability even when using different sampling methodologies, during three years of remediation compared to baseline, except for the detection of significant increases in total PAH concentrations noted during one year of remediation monitoring. The data confirmed the effectiveness of mitigation measures implemented during construction relative to harbour sediment quality, despite other anthropogenic activities and the dynamic nature of the harbour.Keywords: contaminated sediment, monitoring, recovery, remediation
Procedia PDF Downloads 2361680 Disrupting Traditional Industries: A Scenario-Based Experiment on How Blockchain-Enabled Trust and Transparency Transform Nonprofit Organizations
Authors: Michael Mertel, Lars Friedrich, Kai-Ingo Voigt
Abstract:
Based on principle-agent theory, an information asymmetry exists in the traditional donation process. Consumers cannot comprehend whether nonprofit organizations (NPOs) use raised funds according to the designated cause after the transaction took place (hidden action). Therefore, charity organizations have tried to appear transparent and gain trust by using the same marketing instruments for decades (e.g., releasing project success reports). However, none of these measures can guarantee consumers that charities will use their donations for the purpose. With awareness of misuse of donations rising due to the Ukraine conflict (e.g., funding crime), consumers are increasingly concerned about the destination of their charitable purposes. Therefore, innovative charities like the Human Rights Foundation have started to offer donations via blockchain. Blockchain technology has the potential to establish profound trust and transparency in the donation process: Consumers can publicly track the progress of their donation at any time after deciding to donate. This ensures that the charity is not using donations against its original intent. Hence, the aim is to investigate the effect of blockchain-enabled transactions on the willingness to donate. Sample and Design: To investigate consumers' behavior, we use a scenario-based experiment. After removing participants (e.g., due to failed attention checks), 3192 potential donors participated (47.9% female, 62.4% bachelor or above). Procedure: We randomly assigned the participants to one of two scenarios. In all conditions, the participants read a scenario about a fictive charity organization called "Helper NPO." Afterward, the participants answered questions regarding their perception of the charity. Manipulation: The first scenario (n = 1405) represents a typical donation process, where consumers donate money without any option to track and trace. The second scenario (n = 1787) represents a donation process via blockchain, where consumers can track and trace their donations respectively. Using t-statistics, the findings demonstrate a positive effect of donating via blockchain on participants’ willingness to donate (mean difference = 0.667, p < .001, Cohen’s d effect size = 0.482). A mediation analysis shows significant effects for the mediation of transparency (Estimate = 0.199, p < .001), trust (Estimate = 0.144, p < .001), and transparency and trust (Estimate = 0.158, p < .001). The total effect of blockchain usage on participants’ willingness to donate (Estimate = 0.690, p < .001) consists of the direct effect (Estimate = 0.189, p < .001) and the indirect effects of transparency and trust (Estimate = 0.501, p < .001). Furthermore, consumers' affinity for technology moderates the direct effect of blockchain usage on participants' willingness to donate (Estimate = 0.150, p < .001). Donating via blockchain is a promising way for charities to engage consumers for several reasons: (1) Charities can emphasize trust and transparency in their advertising campaigns. (2) Established charities can target new customer segments by specifically engaging technology-affine consumers in the future. (3) Charities can raise international funds without previous barriers (e.g., setting up bank accounts). Nevertheless, increased transparency can also backfire (e.g., disclosure of costs). Such cases require further research.Keywords: blockchain, social sector, transparency, trust
Procedia PDF Downloads 991679 The Role of Maladaptive Personality Traits in Obesity Treatment – Quantitative Study
Authors: Judita Konečná, Dagmar Halo, Martin Matoulek
Abstract:
Background: Personality pathology does not have to be a contraindication nor an obstacle in obesity treatment, or eventually, surgical treatment. Detection of specific maladaptive personality traits can help us understand the manner of behavior leading to obesity as well as to address the treatment better. Objective: Using The Personality Inventory for DSM-5 (PID-5) in combination with clinical interviews with the goal of gaining a psychological evaluation to set the treatment procedure. Data was collected from more than 400 patients to detect differences in constellations of maladaptive personality traits based on BMI, DM2 and gender. Conclusions: Besides the fact that a psychological evaluation can help address the treatment better, analyses showed that it is also useful to detect specific groups of patients. Implications for clinical practice are discussed, as well as recommendations for group education programs based on quantitative research.Keywords: bariatric surgery, obesity, personality traits, PID-5, treatment
Procedia PDF Downloads 2281678 Multimodal Employee Attendance Management System
Authors: Khaled Mohammed
Abstract:
This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio
Procedia PDF Downloads 1551677 Automated Computer-Vision Analysis Pipeline of Calcium Imaging Neuronal Network Activity Data
Authors: David Oluigbo, Erik Hemberg, Nathan Shwatal, Wenqi Ding, Yin Yuan, Susanna Mierau
Abstract:
Introduction: Calcium imaging is an established technique in neuroscience research for detecting activity in neural networks. Bursts of action potentials in neurons lead to transient increases in intracellular calcium visualized with fluorescent indicators. Manual identification of cell bodies and their contours by experts typically takes 10-20 minutes per calcium imaging recording. Our aim, therefore, was to design an automated pipeline to facilitate and optimize calcium imaging data analysis. Our pipeline aims to accelerate cell body and contour identification and production of graphical representations reflecting changes in neuronal calcium-based fluorescence. Methods: We created a Python-based pipeline that uses OpenCV (a computer vision Python package) to accurately (1) detect neuron contours, (2) extract the mean fluorescence within the contour, and (3) identify transient changes in the fluorescence due to neuronal activity. The pipeline consisted of 3 Python scripts that could both be easily accessed through a Python Jupyter notebook. In total, we tested this pipeline on ten separate calcium imaging datasets from murine dissociate cortical cultures. We next compared our automated pipeline outputs with the outputs of manually labeled data for neuronal cell location and corresponding fluorescent times series generated by an expert neuroscientist. Results: Our results show that our automated pipeline efficiently pinpoints neuronal cell body location and neuronal contours and provides a graphical representation of neural network metrics accurately reflecting changes in neuronal calcium-based fluorescence. The pipeline detected the shape, area, and location of most neuronal cell body contours by using binary thresholding and grayscale image conversion to allow computer vision to better distinguish between cells and non-cells. Its results were also comparable to manually analyzed results but with significantly reduced result acquisition times of 2-5 minutes per recording versus 10-20 minutes per recording. Based on these findings, our next step is to precisely measure the specificity and sensitivity of the automated pipeline’s cell body and contour detection to extract more robust neural network metrics and dynamics. Conclusion: Our Python-based pipeline performed automated computer vision-based analysis of calcium image recordings from neuronal cell bodies in neuronal cell cultures. Our new goal is to improve cell body and contour detection to produce more robust, accurate neural network metrics and dynamic graphs.Keywords: calcium imaging, computer vision, neural activity, neural networks
Procedia PDF Downloads 821676 A Conglomerate of Multiple Optical Character Recognition Table Detection and Extraction
Authors: Smita Pallavi, Raj Ratn Pranesh, Sumit Kumar
Abstract:
Information representation as tables is compact and concise method that eases searching, indexing, and storage requirements. Extracting and cloning tables from parsable documents is easier and widely used; however, industry still faces challenges in detecting and extracting tables from OCR (Optical Character Recognition) documents or images. This paper proposes an algorithm that detects and extracts multiple tables from OCR document. The algorithm uses a combination of image processing techniques, text recognition, and procedural coding to identify distinct tables in the same image and map the text to appropriate the corresponding cell in dataframe, which can be stored as comma-separated values, database, excel, and multiple other usable formats.Keywords: table extraction, optical character recognition, image processing, text extraction, morphological transformation
Procedia PDF Downloads 1431675 Forensic Challenges in Source Device Identification for Digital Videos
Authors: Mustapha Aminu Bagiwa, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris, Suleman Khan
Abstract:
Video source device identification has become a problem of concern in numerous domains especially in multimedia security and digital investigation. This is because videos are now used as evidence in legal proceedings. Source device identification aim at identifying the source of digital devices using the content they produced. However, due to affordable processing tools and the influx in digital content generating devices, source device identification is still a major problem within the digital forensic community. In this paper, we discuss source device identification for digital videos by identifying techniques that were proposed in the literature for model or specific device identification. This is aimed at identifying salient open challenges for future research.Keywords: video forgery, source camcorder, device identification, forgery detection
Procedia PDF Downloads 6311674 A Comparison between Reagents Extracted from Tree Leaves for Spectrophotometric Determination of Hafnium(IV)
Authors: A. Boveiri Monji, H. Yousefnia, S. Zolghadri, B. Salimi
Abstract:
The main goal of this paper was to make use of green reagents as a substitute of perilous synthetic reagents and organic solvents for spectrophotometric determination of hafnium(IV). The extracts taken from six different kinds of tree leaves including Acer negundo, Ficus carica, Cerasus avium, Chimonanthus, Salix babylonica and Pinus brutia, were applied as green reagents for the experiments. In 6-M hydrochloric acid, hafnium reacted with the reagent to form a yellow product and showed maximum absorbance at 421 nm. Among tree leaves, Chimonanthus showed satisfactory results with a molar absorptivity value of 0.61 × 104 l mol-1 cm-1 and the method was linear in the 0.3-9 µg mL -1 concentration range. The detection limit value was 0.064 µg mL-1. The proposed method was simple, low cost, clean, and selective.Keywords: hafnium, spectrophotometric determination, synthetic reagents, tree leaves
Procedia PDF Downloads 1881673 Clinical Validation of C-PDR Methodology for Accurate Non-Invasive Detection of Helicobacter pylori Infection
Authors: Suman Som, Abhijit Maity, Sunil B. Daschakraborty, Sujit Chaudhuri, Manik Pradhan
Abstract:
Background: Helicobacter pylori is a common and important human pathogen and the primary cause of peptic ulcer disease and gastric cancer. Currently H. pylori infection is detected by both invasive and non-invasive way but the diagnostic accuracy is not up to the mark. Aim: To set up an optimal diagnostic cut-off value of 13C-Urea Breath Test to detect H. pylori infection and evaluate a novel c-PDR methodology to overcome of inconclusive grey zone. Materials and Methods: All 83 subjects first underwent upper-gastrointestinal endoscopy followed by rapid urease test and histopathology and depending on these results; we classified 49 subjects as H. pylori positive and 34 negative. After an overnight, fast patients are taken 4 gm of citric acid in 200 ml water solution and 10 minute after ingestion of the test meal, a baseline exhaled breath sample was collected. Thereafter an oral dose of 75 mg 13C-Urea dissolved in 50 ml water was given and breath samples were collected upto 90 minute for 15 minute intervals and analysed by laser based high precisional cavity enhanced spectroscopy. Results: We studied the excretion kinetics of 13C isotope enrichment (expressed as δDOB13C ‰) of exhaled breath samples and found maximum enrichment around 30 minute of H. pylori positive patients, it is due to the acid mediated stimulated urease enzyme activity and maximum acidification happened within 30 minute but no such significant isotopic enrichment observed for H. pylori negative individuals. Using Receiver Operating Characteristic (ROC) curve an optimal diagnostic cut-off value, δDOB13C ‰ = 3.14 was determined at 30 minute exhibiting 89.16% accuracy. Now to overcome grey zone problem we explore percentage dose of 13C recovered per hour, i.e. 13C-PDR (%/hr) and cumulative percentage dose of 13C recovered, i.e. c-PDR (%) in exhaled breath samples for the present 13C-UBT. We further explored the diagnostic accuracy of 13C-UBT by constructing ROC curve using c-PDR (%) values and an optimal cut-off value was estimated to be c-PDR = 1.47 (%) at 60 minute, exhibiting 100 % diagnostic sensitivity , 100 % specificity and 100 % accuracy of 13C-UBT for detection of H. pylori infection. We also elucidate the gastric emptying process of present 13C-UBT for H. pylori positive patients. The maximal emptying rate found at 36 minute and half empting time of present 13C-UBT was found at 45 minute. Conclusions: The present study exhibiting the importance of c-PDR methodology to overcome of grey zone problem in 13C-UBT for accurate determination of infection without any risk of diagnostic errors and making it sufficiently robust and novel method for an accurate and fast non-invasive diagnosis of H. pylori infection for large scale screening purposes.Keywords: 13C-Urea breath test, c-PDR methodology, grey zone, Helicobacter pylori
Procedia PDF Downloads 3011672 An Automated R-Peak Detection Method Using Common Vector Approach
Authors: Ali Kirkbas
Abstract:
R peaks in an electrocardiogram (ECG) are signs of cardiac activity in individuals that reveal valuable information about cardiac abnormalities, which can lead to mortalities in some cases. This paper examines the problem of detecting R-peaks in ECG signals, which is a two-class pattern classification problem in fact. To handle this problem with a reliable high accuracy, we propose to use the common vector approach which is a successful machine learning algorithm. The dataset used in the proposed method is obtained from MIT-BIH, which is publicly available. The results are compared with the other popular methods under the performance metrics. The obtained results show that the proposed method shows good performance than that of the other. methods compared in the meaning of diagnosis accuracy and simplicity which can be operated on wearable devices.Keywords: ECG, R-peak classification, common vector approach, machine learning
Procedia PDF Downloads 641671 Detection of Tetracycline Resistance Genes in Lactococcus garvieae Strains Isolated from Rainbow Trout
Authors: M. Raissy, M. Shahrani
Abstract:
The present study was done to evaluate the presence of tetracycline resistance genes in Lactococcus garvieae isolated from cultured rainbow trout, West Iran. The isolates were examined for antimicrobial resistance using disc diffusion method. Of the 49 strains tested, 19 were resistant to tetracycline (38.7%), 32 to enrofloxacin (65.3%), 21 to erythromycin (42.8%), 20 to chloramphenicol and trimetoprim-sulfamethoxazole (40.8%). The strains were then characterized for their genotypic resistance profiles. The results revealed that all 49 isolates contained at least one of the tetracycline resistance genes. Tet (A) was found in 89.4% of tetracycline resistant isolates and the frequency of other gene were as follow: tet (E) 42.1%, tet (B) 47.3%, tet (D) 15.7%, tet (L) 26.3%, tet (K) 52.6%, tet (G) 36.8%, tet (34) 21%, tet (S) 63.1%, tet (C) 57.8%, tet (M) 73.6%, tet (O) 42.1%. The results revealed high levels of antibiotic resistance in L. garvieae strains which is a potential danger for trout culture as well as for public health.Keywords: Lactococcus garvieae, tetracycline resistance genes, rainbow trout, antimicrobial resistance
Procedia PDF Downloads 5181670 Realistic Study Discover Some Posture Deformities According to Some Biomechanical Variables for Schoolchildren
Authors: Basman Abdul Jabbar
Abstract:
The researchers aimed to improve the importance of the good posture without any divisions & deformities. The importance of research lied in the discovery posture deformities early so easily treated before its transformation into advanced abnormalities difficult to treat and may need surgical intervention. Research problem was noting that some previous studies were based on the discovery of posture deformities, which was dependent on the (self-evaluation) which this type did not have accuracy to discover deformities. The Samples were (500) schoolchildren aged (9-11 years, males) at Baghdad al Karak. They were students at primary schools. The measure included all posture deformities. The researcher used video camera to analyze the posture deformities according to biomechanical variables by Kinovea software for motion analysis. The researcher recommended the need to use accurate scientific methods for early detection of posture deformities in children which contribute to the prevention and reduction of distortions.Keywords: biomechanics, children, deformities, posture
Procedia PDF Downloads 2851669 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences
Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui
Abstract:
The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.Keywords: recognition of shape, generalized hough transformation, histogram, spatiogram, learning
Procedia PDF Downloads 1581668 Conception of a Predictive Maintenance System for Forest Harvesters from Multiple Data Sources
Authors: Lazlo Fauth, Andreas Ligocki
Abstract:
For cost-effective use of harvesters, expensive repairs and unplanned downtimes must be reduced as far as possible. The predictive detection of failing systems and the calculation of intelligent service intervals, necessary to avoid these factors, require in-depth knowledge of the machines' behavior. Such know-how needs permanent monitoring of the machine state from different technical perspectives. In this paper, three approaches will be presented as they are currently pursued in the publicly funded project PreForst at Ostfalia University of Applied Sciences. These include the intelligent linking of workshop and service data, sensors on the harvester, and a special online hydraulic oil condition monitoring system. Furthermore the paper shows potentials as well as challenges for the use of these data in the conception of a predictive maintenance system.Keywords: predictive maintenance, condition monitoring, forest harvesting, forest engineering, oil data, hydraulic data
Procedia PDF Downloads 1451667 Functionalization of Nanomaterials for Bio-Sensing Applications: Current Progress and Future Prospective
Authors: Temesgen Geremew Tefery
Abstract:
Nanomaterials, due to their unique properties, have revolutionized the field of biosensing. Their functionalization, or modification with specific molecules, is crucial for enhancing their biocompatibility, selectivity, and sensitivity. This review explores recent advancements in nanomaterial functionalization for biosensing applications. We discuss various strategies, including covalent and non-covalent modifications, and their impact on biosensor performance. The use of biomolecules like antibodies, enzymes, and nucleic acids for targeted detection is highlighted. Furthermore, the integration of nanomaterials with different sensing modalities, such as electrochemical, optical, and mechanical, is examined. The future outlook for nanomaterial-based biosensing is promising, with potential applications in healthcare, environmental monitoring, and food safety. However, challenges related to biocompatibility, scalability, and cost-effectiveness need to be addressed. Continued research and development in this area will likely lead to even more sophisticated and versatile biosensing technologies.Keywords: biosensing, nanomaterials, biotechnology, nanotechnology
Procedia PDF Downloads 271666 Development of Method for Detecting Low Concentration of Organophosphate Pesticides in Vegetables Using near Infrared Spectroscopy
Authors: Atchara Sankom, Warapa Mahakarnchanakul, Ronnarit Rittiron, Tanaboon Sajjaanantakul, Thammasak Thongket
Abstract:
Vegetables are frequently contaminated with pesticides residues resulting in the most food safety concern among agricultural products. The objective of this work was to develop a method to detect the organophosphate (OP) pesticides residues in vegetables using Near Infrared (NIR) spectroscopy technique. Low concentration (ppm) of OP pesticides in vegetables were investigated. The experiment was divided into 2 sections. In the first section, Chinese kale spiked with different concentrations of chlorpyrifos pesticide residues (0.5-100 ppm) was chosen as the sample model to demonstrate the appropriate conditions of sample preparation, both for a solution or solid sample. The spiked samples were extracted with acetone. The sample extracts were applied as solution samples, while the solid samples were prepared by the dry-extract system for infrared (DESIR) technique. The DESIR technique was performed by embedding the solution sample on filter paper (GF/A) and then drying. The NIR spectra were measured with the transflectance mode over wavenumber regions of 12,500-4000 cm⁻¹. The QuEChERS method followed by gas chromatography-mass spectrometry (GC-MS) was performed as the standard method. The results from the first section showed that the DESIR technique with NIR spectroscopy demonstrated good accurate calibration result with R² of 0.93 and RMSEP of 8.23 ppm. However, in the case of solution samples, the prediction regarding the NIR-PLSR (partial least squares regression) equation showed poor performance (R² = 0.16 and RMSEP = 23.70 ppm). In the second section, the DESIR technique coupled with NIR spectroscopy was applied to the detection of OP pesticides in vegetables. Vegetables (Chinese kale, cabbage and hot chili) were spiked with OP pesticides (chlorpyrifos ethion and profenofos) at different concentrations ranging from 0.5 to 100 ppm. Solid samples were prepared (based on the DESIR technique), then samples were scanned by NIR spectrophotometer at ambient temperature (25+2°C). The NIR spectra were measured as in the first section. The NIR- PLSR showed the best calibration equation for detecting low concentrations of chlorpyrifos residues in vegetables (Chinese kale, cabbage and hot chili) according to the prediction set of R2 and RMSEP of 0.85-0.93 and 8.23-11.20 ppm, respectively. For ethion residues, the best calibration equation of NIR-PLSR showed good indexes of R² and RMSEP of 0.88-0.94 and 7.68-11.20 ppm, respectively. As well as the results for profenofos pesticide, the NIR-PLSR also showed the best calibration equation for detecting the profenofos residues in vegetables according to the good index of R² and RMSEP of 0.88-0.97 and 5.25-11.00 ppm, respectively. Moreover, the calibration equation developed in this work could rapidly predict the concentrations of OP pesticides residues (0.5-100 ppm) in vegetables, and there was no significant difference between NIR-predicted values and actual values (data from GC-MS) at a confidence interval of 95%. In this work, the proposed method using NIR spectroscopy involving the DESIR technique has proved to be an efficient method for the screening detection of OP pesticides residues at low concentrations, and thus increases the food safety potential of vegetables for domestic and export markets.Keywords: NIR spectroscopy, organophosphate pesticide, vegetable, food safety
Procedia PDF Downloads 1501665 Zero Cross-Correlation Codes Based on Balanced Incomplete Block Design: Performance Analysis and Applications
Authors: Garadi Ahmed, Boubakar S. Bouazza
Abstract:
The Zero Cross-Correlation (C, w) code is a family of binary sequences of length C and constant Hamming-weight, the cross correlation between any two sequences equal zero. In this paper, we evaluate the performance of ZCC code based on Balanced Incomplete Block Design (BIBD) for Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA) system using direct detection. The BER obtained is better than 10-9 for five simultaneous users.Keywords: spectral amplitude coding-optical code-division-multiple-access (SAC-OCDMA), phase induced intensity noise (PIIN), balanced incomplete block design (BIBD), zero cross-correlation (ZCC)
Procedia PDF Downloads 3661664 Estimating 3D-Position of a Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals
Authors: Katsumi Hirata
Abstract:
To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position
Procedia PDF Downloads 3591663 Detection of Selected Heavy Metals in Raw Milk: Lahore, Pakistan
Authors: Huma Naeem, Saif-Ur-Rehman Kashif, Muhammad Nawaz Chaudhry
Abstract:
Milk plays a significant role in the dietary requirements of human beings as it is a single source that provides various essential nutrients. A study was conducted to evaluate the heavy metal concentration in the raw milk marketed in Data Gunj Baksh Town of Lahore. A total of 180 samples of raw milk were collected in pre-monsoon, monsoon and post-monsoon season from five colonies of Data Gunj Baksh Town, Lahore. The milk samples were subjected to heavy metal analysis (Cr, Cu) by atomic absorption spectrophotometer. Results indicated high levels of Cr and Cu in post-monsoon seasons. Heavy metals were detected in milk in all samples under study and exceeded the standards given by FAO.Keywords: atomic absorption spectrophotometer, chromium, copper, heavy metal
Procedia PDF Downloads 4331662 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System
Authors: Afaneen Anwer, Samara M. Kamil
Abstract:
Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system
Procedia PDF Downloads 5831661 Interferometric Demodulation Scheme Using a Mode-Locker Fiber Laser
Authors: Liang Zhang, Yuanfu Lu, Yuming Dong, Guohua Jiao, Wei Chen, Jiancheng Lv
Abstract:
We demonstrated an interferometric demodulation scheme using a mode-locked fiber laser. The mode-locked fiber laser is launched into a two-beam interferometer. When the ratio between the fiber path imbalance of interferometer and the laser cavity length is close to an integer, an interferometric fringe emerges as a result of vernier effect, and then the phase shift of the interferometer can be demodulated. The mode-locked fiber laser provides a large bandwidth and reduces the cost for wavelength division multiplexion (WDM). The proposed interferometric demodulation scheme can be further applied in multi-point sensing system such as fiber optics hydrophone array, seismic wave detection network with high sensitivity and low cost.Keywords: fiber sensing, interferometric demodulation, mode-locked fiber laser, vernier effect
Procedia PDF Downloads 3291660 The Detection of Antibodies Against Shuni Virus in Cattle From Western Kenya
Authors: Barbra Bhebhe, Melvyn Quan
Abstract:
A serological survey was done to detect antibodies against Shuni virus (SHUV) from cattle in Western Kenya. In Kenya the disease status of SHUV in cattle has never been established. It is a zoonotic virus and even though studies have been carried out as early as the 1960s, little research has been published and SHUV is still not a well-recognised Orthobunyavirus. One hundred serum samples were collected from healthy cattle in Kenya and tested for antibodies against SHUV by a serum neutralization assay. All antibody titre values were greater than 1:160, with most of the samples greater than 1:320. Of the samples tested, 87 % had titres greater than 1:320, 12% had a titre of 1:320 and 2% had a titre of 1:160. Samples were classified as positive if the antibody titre was ≥ 1:10 and negative if < 1:10. This study suggests that cattle are exposed commonly to SHUV, which may be endemic in Kenya.Keywords: Shuni virus, Orthobunyavuruses, serum neutralization test, cell-culture
Procedia PDF Downloads 751659 An Adaptive CFAR Algorithm Based on Automatic Censoring in Heterogeneous Environments
Authors: Naime Boudemagh
Abstract:
In this work, we aim to improve the detection performances of radar systems. To this end, we propose and analyze a novel censoring technique of undesirable samples, of priori unknown positions, that may be present in the environment under investigation. Therefore, we consider heterogeneous backgrounds characterized by the presence of some irregularities such that clutter edge transitions and/or interfering targets. The proposed detector, termed automatic censoring constant false alarm (AC-CFAR), operates exclusively in a Gaussian background. It is built to allow the segmentation of the environment to regions and switch automatically to the appropriate detector; namely, the cell averaging CFAR (CA-CFAR), the censored mean level CFAR (CMLD-CFAR) or the order statistic CFAR (OS-CFAR). Monte Carlo simulations show that the AC-CFAR detector performs like the CA-CFAR in a homogeneous background. Moreover, the proposed processor exhibits considerable robustness in a heterogeneous background.Keywords: CFAR, automatic censoring, heterogeneous environments, radar systems
Procedia PDF Downloads 6021658 Highly Selective Polymeric Fluorescence Sensor for Cd(II) Ions
Authors: Soner Cubuk, Ozge Yilmaz, Ece Kok Yetimoglu, M. Vezir Kahraman
Abstract:
In this work, a polymer based highly selective fluorescence sensor membrane was prepared by the photopolymerization technique for the determination Cd(II) ion. Sensor characteristics such as effects of pH, response time and foreign ions on the fluorescence intensity of the sensor were also studied. Under optimized conditions, the polymeric sensor shows a rapid, stable and linear response for 4.45x10-⁹ mol L-¹ - 4.45x10-⁸ mol L-¹ Cd(II) ion with the detection limit of 6.23x10-¹⁰ mol L-¹. In addition, sensor membrane was selective which is not affected by common foreign metal ions. The concentrations of the foreign ions such as Pb²+, Co²+, Ag+, Zn²+, Cu²+, Cr³+ are 1000-fold higher than Cd(II) ions. Moreover, the developed polymeric sensor was successfully applied to the determination of cadmium ions in food and water samples. This work was supported by Marmara University, Commission of Scientific Research Project.Keywords: cadmium(II), fluorescence, photopolymerization, polymeric sensor
Procedia PDF Downloads 5661657 Eu³⁺ PVC Membrane Sensor Based on 1,2-Diaminopropane-N,N,N',N'-Tetraacetic Acid
Authors: Noshin Mehrabian, Mohammad Reza Abedi, Hassan Ali Zamani
Abstract:
A highly selective poly(vinyl chloride)-based membrane sensor produced by using 1,2-Diaminopropane-N,N,N',N'-tetraacetic acid (DAPTA) as active material is described. The electrode displays Nernstian behavior over the concentration range 1.0×10⁻⁶ to 1.0×10⁻² M. The detection limit of the electrode is 7.2×10⁻⁷ M. The best performance was obtained with the membrane containing 30% polyvinyl chloride (PVC), 65% nitrobenzene (NB), 2% sodium tetra phenyl borate (Na TPB), 3% DAPTA. The potentiometric response of the proposed electrode is pH independent in the range of 2.5–9.1. The proposed sensor displays a fast response time 'less than 10s'. The electrode shows a good selectivity for Eu (III) ion with respect to most common cations including alkali, alkaline earth, transition, and heavy metal ions. It was used as an indicator electrode in potentiometric titration of 25 mL of a 1.0×10⁻⁴ M Eu (III) solution with a 1.0×10⁻² M EDTA solution.Keywords: potentiometry, PVC membrane, sensor, ion-selective electrode
Procedia PDF Downloads 1911656 Design and Characterization of a CMOS Process Sensor Utilizing Vth Extractor Circuit
Authors: Rohana Musa, Yuzman Yusoff, Chia Chieu Yin, Hanif Che Lah
Abstract:
This paper presents the design and characterization of a low power Complementary Metal Oxide Semiconductor (CMOS) process sensor. The design is targeted for implementation using Silterra’s 180 nm CMOS process technology. The proposed process sensor employs a voltage threshold (Vth) extractor architecture for detection of variations in the fabrication process. The process sensor generates output voltages in the range of 401 mV (fast-fast corner) to 443 mV (slow-slow corner) at nominal condition. The power dissipation for this process sensor is 6.3 µW with a supply voltage of 1.8V with a silicon area of 190 µm X 60 µm. The preliminary result of this process sensor that was fabricated indicates a close resemblance between test and simulated results.Keywords: CMOS process sensor, PVT sensor, threshold extractor circuit, Vth extractor circuit
Procedia PDF Downloads 1751655 Effect of Design Parameters on Porpoising Instability of a High Speed Planing Craft
Authors: Lokeswara Rao P., Naga Venkata Rakesh N., V. Anantha Subramanian
Abstract:
It is important to estimate, predict, and avoid the dynamic instability of high speed planing crafts. It is known that design parameters like relative location of center of gravity with respect to the dynamic lift centre and length to beam ratio of the craft have influence on the tendency to porpoise. This paper analyzes the hydrodynamic performance on the basis of the semi-empirical Savitsky method and also estimates the same by numerical simulations based on Reynolds Averaged Navier Stokes (RANS) equations using a commercial code namely, STAR- CCM+. The paper examines through the same numerical simulation considering dynamic equilibrium, the changing running trim, which results in porpoising. Some interesting results emerge from the study and this leads to early detection of the instability.Keywords: CFD, planing hull, porpoising, Savitsky method
Procedia PDF Downloads 1801654 Ab initio Simulation of Y2O3 -Doped Cerium Using Heyd–Scuseria–Ernzerhof HSE Hybrid Functional and DFT+U Approaches
Authors: M. Taibeche, L. Guerbous, M. Kechouane, R. Nedjar, T. Zergoug
Abstract:
It is known that Y2O3 Material is the most important among the sesquioxides within the general class of refractory ceramics. Indeed, this compound has many applications such as sintering optical windows, components for rare-earth doped lasers as well as inorganic scintillators in the detection scintillation. In particular Eu2+ and Ce3+ are favored dopants in many the scintillators due to its allowed optical 5d-4f transition. In this work, we present new results concerning structural and electronic properties of Ce-doped Y2O3, investigated by density functional theory (DFT), using the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional and DFT+U two approaches. When, we compared the results from the two methods we obtain a good agreement available experimental data. Furthermore, the effect of cerium on the material has also been studied and discussed in the same framework.Keywords: DFT, vienne ab initio simulation packages, scintillators, Heyd–Scuseria–Ernzerhof (HSE) hybrid functional
Procedia PDF Downloads 5181653 Cooperative Learning Mechanism in Intelligent Multi-Agent System
Authors: Ayman M. Mansour, Bilal Hawashin, Mohammed A. Mansour
Abstract:
In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life.Keywords: intelligent, multi-agent system, cooperative, fuzzy, learning
Procedia PDF Downloads 6851652 Detection of Heroin and Its Metabolites in Urine Samples: A Chemiluminescence Approach
Authors: Sonu Gandhi, Neena Capalash, Prince Sharma, C. Raman Suri
Abstract:
A sensitive chemiluminescence immunoassay (CIA) for heroin and its major metabolites is reported. The method is based on the competitive reaction of horseradish peroxidase (HRP)-labeled anti-MAM antibody and free drug in spiked urine samples. A hapten-protein conjugate was synthesized by using acidic derivative of monoacetyl morphine (MAM) coupled to carrier protein BSA and was used as an immunogen for the generation of anti-MAM (monoacetyl morphine) antibody. A high titer of antibody (1:64,0000) was obtained and the relative affinity constant (Kaff) of antibody was 3.1×107 l/mol. Under the optimal conditions, linear range and reactivity for heroin, mono acetyl morphine (MAM), morphine and codeine were 0.08, 0.09, 0.095 and 0.092 ng/mL respectively. The developed chemiluminescence inhibition assay could detect heroin and its metabolites in standard and urine samples up to 0.01 ng/ml.Keywords: heroin, metabolites, chemiluminescence immunoassay, horse radish peroxidase
Procedia PDF Downloads 270