Search results for: disaster prediction
888 Using Analytics to Redefine Athlete Resilience
Authors: Phil P. Wagner
Abstract:
There is an overwhelming amount of athlete-centric information available for sport practitioners in this era of tech and big data, but protocols in athletic rehabilitation remain arbitrary. It is a common assumption that the rate at which tissue heals amongst individuals is the same; yielding protocols that are entirely time-based. Progressing athletes through rehab programs that lack individualization can potentially expose athletes to stimuli they are not prepared for or unnecessarily lengthen their recovery period. A 7-year aggregated and anonymous database was used to develop reliable and valid assessments to measure athletic resilience. Each assessment utilizes force plate technology with proprietary protocols and analysis to provide key thresholds for injury risk and recovery. Using a T score to analyze movement qualities, much like the Z score used for bone density from a Dexa scan, specific prescriptions are provided to mitigate the athlete’s inherent injury risk. In addition to obliging to surgical clearance, practitioners must put in place a clearance protocol guided by standardized assessments and achievement in strength thresholds. In order to truly hold individuals accountable (practitioners, athletic trainers, performance coaches, etc.), success in improving pre-defined key performance indicators must be frequently assessed and analyzed.Keywords: analytics, athlete rehabilitation, athlete resilience, injury prediction, injury prevention
Procedia PDF Downloads 226887 Research on the Dynamic Characteristics of Multi-Condition Penetration of Concrete by Warhead-Fuze Systems
Authors: Shaoxiang Wang, Xiangjin Zhang
Abstract:
This study focuses on the overload environment and dynamic response of the core components (i.e., sensors) within the fuze of a warhead-fuze system during penetration of typical targets. Considering the connection structure between the warhead and the fuze, as well as the internal structure of the fuze, a finite element model of the warhead-fuze system penetrating a semi-infinite thick concrete target was constructed using the finite element analysis software LS-DYNA for numerical simulation. The results reveal that the response signal of the sensors inside the warhead-fuze system is larger in magnitude and exhibits greater vibration disturbances compared to the acceleration signal of the warhead. Moreover, the study uncovers the dynamic response characteristics of the sensors within the warhead-fuze system under multi-condition scenarios involving different target strengths and penetration angles. The research findings provide a sound basis for the rapid and effective prediction of the dynamic response and overload characteristics of critical modules within the fuze under different working conditions, offering technical references for the integrated design of warhead-fuze systems.Keywords: penetration, warhead-fuze system, multi-condition, acceleration overload signal, numerical simulation
Procedia PDF Downloads 22886 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park
Abstract:
Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes
Procedia PDF Downloads 306885 Fuzzy Neuro Approach for Integrated Water Management System
Authors: Stuti Modi, Aditi Kambli
Abstract:
This paper addresses the need for intelligent water management and distribution system in smart cities to ensure optimal consumption and distribution of water for drinking and sanitation purposes. Water being a limited resource in cities require an effective system for collection, storage and distribution. In this paper, applications of two mostly widely used particular types of data-driven models, namely artificial neural networks (ANN) and fuzzy logic-based models, to modelling in the water resources management field are considered. The objective of this paper is to review the principles of various types and architectures of neural network and fuzzy adaptive systems and their applications to integrated water resources management. Final goal of the review is to expose and formulate progressive direction of their applicability and further research of the AI-related and data-driven techniques application and to demonstrate applicability of the neural networks, fuzzy systems and other machine learning techniques in the practical issues of the regional water management. Apart from this the paper will deal with water storage, using ANN to find optimum reservoir level and predicting peak daily demands.Keywords: artificial neural networks, fuzzy systems, peak daily demand prediction, water management and distribution
Procedia PDF Downloads 185884 Fire Resilient Cities: The Impact of Fire Regulations, Technological and Community Resilience
Authors: Fanny Guay
Abstract:
Building resilience, sustainable buildings, urbanization, climate change, resilient cities, are just a few examples of where the focus of research has been in the last few years. It is obvious that there is a need to rethink how we are building our cities and how we are renovating our existing buildings. However, the question remaining is how can we assure that we are building sustainable yet resilient cities? There are many aspects one can touch upon when discussing resilience in cities, but after the event of Grenfell in June 2017, it has become clear that fire resilience must be a priority. We define resilience as a holistic approach including communities, society and systems, focusing not only on resisting the effects of a disaster, but also how it will cope and recover from it. Cities are an example of such a system, where components such as buildings have an important role to play. A building on fire will have an impact on the community, the economy, the environment, and so the entire system. Therefore, we believe that fire and resilience go hand in hand when we discuss building resilient cities. This article aims at discussing the current state of the concept of fire resilience and suggests actions to support the built of more fire resilient buildings. Using the case of Grenfell and the fire safety regulations in the UK, we will briefly compare the fire regulations in other European countries, more precisely France, Germany and Denmark, to underline the difference and make some suggestions to increase fire resilience via regulation. For this research, we will also include other types of resilience such as technological resilience, discussing the structure of buildings itself, as well as community resilience, considering the role of communities in building resilience. Our findings demonstrate that to increase fire resilience, amending existing regulations might be necessary, for example, how we performed reaction to fire tests and how we classify building products. However, as we are looking at national regulations, we are only able to make general suggestions for improvement. Another finding of this research is that the capacity of the community to recover and adapt after a fire is also an essential factor. Fundamentally, fire resilience, technological resilience and community resilience are closely connected. Building resilient cities is not only about sustainable buildings or energy efficiency; it is about assuring that all the aspects of resilience are included when building or renovating buildings. We must ask ourselves questions as: Who are the users of this building? Where is the building located? What are the components of the building, how was it designed and which construction products have been used? If we want to have resilient cities, we must answer these basic questions and assure that basic factors such as fire resilience are included in our assessment.Keywords: buildings, cities, fire, resilience
Procedia PDF Downloads 168883 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals
Authors: Masoud Ghermezi
Abstract:
Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory
Procedia PDF Downloads 364882 Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).Keywords: time series modelling, stochastic processes, ARIMA model, Karkheh river
Procedia PDF Downloads 287881 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data
Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan
Abstract:
Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data
Procedia PDF Downloads 439880 A Study of Population Growth Models and Future Population of India
Authors: Sheena K. J., Jyoti Badge, Sayed Mohammed Zeeshan
Abstract:
A Comparative Study of Exponential and Logistic Population Growth Models in India India is the second most populous city in the world, just behind China, and is going to be in the first place by next year. The Indian population has remarkably at higher rate than the other countries from the past 20 years. There were many scientists and demographers who has formulated various models of population growth in order to study and predict the future population. Some of the models are Fibonacci population growth model, Exponential growth model, Logistic growth model, Lotka-Volterra model, etc. These models have been effective in the past to an extent in predicting the population. However, it is essential to have a detailed comparative study between the population models to come out with a more accurate one. Having said that, this research study helps to analyze and compare the two population models under consideration - exponential and logistic growth models, thereby identifying the most effective one. Using the census data of 2011, the approximate population for 2016 to 2031 are calculated for 20 Indian states using both the models, compared and recorded the data with the actual population. On comparing the results of both models, it is found that logistic population model is more accurate than the exponential model, and using this model, we can predict the future population in a more effective way. This will give an insight to the researchers about the effective models of population and how effective these population models are in predicting the future population.Keywords: population growth, population models, exponential model, logistic model, fibonacci model, lotka-volterra model, future population prediction, demographers
Procedia PDF Downloads 122879 Study of Slum Redevelopment Initiatives for Dharavi Slum, Mumbai and Its Effectiveness in Implementation in Other Cities
Authors: Anurag Jha
Abstract:
Dharavi is the largest slum in Asia, for which many redevelopment projects have been put forth, to improve the housing conditions of the locals. And yet, these projects are met with much-unexpected resistance from the locals. The research analyses the why and the how of the resistances these projects face and analyses these programs and points out the flaws and benefits of such projects, by predicting its impact on the regulars of Dharavi. The research aims to analyze various aspects of Dharavi, which affect its socio-cultural backdrops, such as its history, and eventual growth into a mega slum. Through various surveys, the research aims to analyze the life of a slum dweller, the street life, and the effect of such settlement on the urban fabric. Various development projects such as Dharavi Museum Movement, are analyzed, and a feasibility and efficiency analysis of the proposals for redevelopment of Dharavi Slums has been theorized. Flaws and benefits of such projects, by predicting its impact on the regulars of Dharavi has been the major approach to the research. Also, prediction the implementation of these projects in another prominent slum area, Anand Nagar, Bhopal, with the use of generated hypothetical model has been done. The research provides a basic framework for a comparative analysis of various redevelopment projects and the effect of implementation of such projects on the general populace. Secondly, it proposes a hypothetical model for feasibility of such projects in certain slum areas.Keywords: Anand Nagar, Bhopal slums, Dharavi, slum redevelopment programmes
Procedia PDF Downloads 329878 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations
Authors: Shank Kulkarni, Alireza Tabarraei
Abstract:
The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test
Procedia PDF Downloads 241877 Prediction of Malawi Rainfall from Global Sea Surface Temperature Using a Simple Multiple Regression Model
Authors: Chisomo Patrick Kumbuyo, Katsuyuki Shimizu, Hiroshi Yasuda, Yoshinobu Kitamura
Abstract:
This study deals with a way of predicting Malawi rainfall from global sea surface temperature (SST) using a simple multiple regression model. Monthly rainfall data from nine stations in Malawi grouped into two zones on the basis of inter-station rainfall correlations were used in the study. Zone 1 consisted of Karonga and Nkhatabay stations, located in northern Malawi; and Zone 2 consisted of Bolero, located in northern Malawi; Kasungu, Dedza, Salima, located in central Malawi; Mangochi, Makoka and Ngabu stations located in southern Malawi. Links between Malawi rainfall and SST based on statistical correlations were evaluated and significant results selected as predictors for the regression models. The predictors for Zone 1 model were identified from the Atlantic, Indian and Pacific oceans while those for Zone 2 were identified from the Pacific Ocean. The correlation between the fit of predicted and observed rainfall values of the models were satisfactory with r=0.81 and 0.54 for Zone 1 and 2 respectively (significant at less than 99.99%). The results of the models are in agreement with other findings that suggest that SST anomalies in the Atlantic, Indian and Pacific oceans have an influence on the rainfall patterns of Southern Africa.Keywords: Malawi rainfall, forecast model, predictors, SST
Procedia PDF Downloads 389876 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 137875 Predictive Functional Control with Disturbance Observer for Tendon-Driven Balloon Actuator
Authors: Jun-ya Nagase, Toshiyuki Satoh, Norihiko Saga, Koichi Suzumori
Abstract:
In recent years, Japanese society has been aging, engendering a labour shortage of young workers. Robots are therefore expected to perform tasks such as rehabilitation, nursing elderly people, and day-to-day work support for elderly people. The pneumatic balloon actuator is a rubber artificial muscle developed for use in a robot hand in such environments. This actuator has a long stroke, and a high power-to-weight ratio compared with the present pneumatic artificial muscle. Moreover, the dynamic characteristics of this actuator resemble those of human muscle. This study evaluated characteristics of force control of balloon actuator using a predictive functional control (PFC) system with disturbance observer. The predictive functional control is a model-based predictive control (MPC) scheme that predicts the future outputs of the actual plants over the prediction horizon and computes the control effort over the control horizon at every sampling instance. For this study, a 1-link finger system using a pneumatic balloon actuator is developed. Then experiments of PFC control with disturbance observer are performed. These experiments demonstrate the feasibility of its control of a pneumatic balloon actuator for a robot hand.Keywords: disturbance observer, pneumatic balloon, predictive functional control, rubber artificial muscle
Procedia PDF Downloads 452874 A Case Study of Control of Blast-Induced Ground Vibration on Adjacent Structures
Authors: H. Mahdavinezhad, M. Labbaf, H. R. Tavakoli
Abstract:
In recent decades, the study and control of the destructive effects of explosive vibration in construction projects has received more attention, and several experimental equations in the field of vibration prediction as well as allowable vibration limit for various structures are presented. Researchers have developed a number of experimental equations to estimate the peak particle velocity (PPV), in which the experimental constants must be obtained at the site of the explosion by fitting the data from experimental explosions. In this study, the most important of these equations was evaluated for strong massive conglomerates around Dez Dam by collecting data on explosions, including 30 particle velocities, 27 displacements, 27 vibration frequencies and 27 acceleration of earth vibration at different distances; they were recorded in the form of two types of detonation systems, NUNEL and electric. Analysis showed that the data from the explosion had the best correlation with the cube root of the explosive, R2=0.8636, but overall the correlation coefficients are not much different. To estimate the vibration in this project, data regression was performed in the other formats, which resulted in the presentation of new equation with R2=0.904 correlation coefficient. Finally according to the importance of the studied structures in order to ensure maximum non damage to adjacent structures for each diagram, a range of application was defined so that for distances 0 to 70 meters from blast site, exponent n=0.33 and for distances more than 70 m, n =0.66 was suggested.Keywords: blasting, blast-induced vibration, empirical equations, PPV, tunnel
Procedia PDF Downloads 129873 Analytical Model to Predict the Shear Capacity of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Conditions
Authors: Rajai Al-Rousan
Abstract:
This paper presents a proposed analytical model for predicting the shear strength of reinforced concrete beams strengthened with CFRP composites as external reinforcement. The proposed analytical model can predict the shear contribution of CFRP composites of RC beams with an acceptable coefficient of correlation with the tested results. Based on the comparison of the proposed model with the published well-known models (ACI model, Triantafillou model, and Colotti model), the ACI model had a wider range of 0.16 to 10.08 for the ratio between tested and predicted ultimate shears at failure. Also, an acceptable range of 0.27 to 2.78 for the ratio between tested and predicted ultimate shears by the Triantafillou model. Finally, the best prediction (the ratio between the tested and predicted ones) of the ultimate shear capacity is observed by using Colotti model with a range of 0.20 to 1.78. Thus, the contribution of the CFRP composites as external reinforcement can be predicted with high accuracy by using the proposed analytical model.Keywords: predicting, shear capacity, reinforced concrete, beams, strengthened, externally, CFRP composites
Procedia PDF Downloads 227872 Predicting Long-Term Meat Productivity for the Kingdom of Saudi Arabia
Authors: Ahsan Abdullah, Ahmed A. S. Bakshwain
Abstract:
Livestock is one of the fastest-growing sectors in agriculture. If carefully managed, have potential opportunities for economic growth, food sovereignty and food security. In this study we mainly analyse and compare long-term i.e. for year 2030 climate variability impact on predicted productivity of meat i.e. beef, mutton and poultry for the Kingdom of Saudi Arabia w.r.t three factors i.e. i) climatic-change vulnerability ii) CO2 fertilization and iii) water scarcity and compare the results with two countries of the region i.e. Iraq and Yemen. We do the analysis using data from diverse sources, which was extracted, transformed and integrated before usage. The collective impact of the three factors had an overall negative effect on the production of meat for all the three countries, with adverse impact on Iraq. High similarity was found between CO2 fertilization (effecting animal fodder) and water scarcity i.e. higher than that between production of beef and mutton for the three countries considered. Overall, the three factors do not seem to be favorable for the three Middle-East countries considered. This points to possibility of a vegetarian year 2030 based on dependency on indigenous live-stock population.Keywords: prediction, animal-source foods, pastures, CO2 fertilization, climatic-change vulnerability, water scarcity
Procedia PDF Downloads 319871 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network
Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin
Abstract:
In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network. The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters. Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output. This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc. From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.Keywords: project profitability, multi-objective optimization, genetic algorithm, Pareto set, neural networks
Procedia PDF Downloads 445870 Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis
Authors: Adrian-Gabriel Chifu, Sebastien Fournier
Abstract:
One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.Keywords: sentiment analysis, difficulty, classification, machine learning
Procedia PDF Downloads 86869 Frequency Analysis Using Multiple Parameter Probability Distributions for Rainfall to Determine Suitable Probability Distribution in Pakistan
Authors: Tasir Khan, Yejuan Wang
Abstract:
The study of extreme rainfall events is very important for flood management in river basins and the design of water conservancy infrastructure. Evaluation of quantiles of annual maximum rainfall (AMRF) is required in different environmental fields, agriculture operations, renewable energy sources, climatology, and the design of different structures. Therefore, the annual maximum rainfall (AMRF) was performed at different stations in Pakistan. Multiple probability distributions, log normal (LN), generalized extreme value (GEV), Gumbel (max), and Pearson type3 (P3) were used to find out the most appropriate distributions in different stations. The L moments method was used to evaluate the distribution parameters. Anderson darling test, Kolmogorov- Smirnov test, and chi-square test showed that two distributions, namely GUM (max) and LN, were the best appropriate distributions. The quantile estimate of a multi-parameter PD offers extreme rainfall through a specific location and is therefore important for decision-makers and planners who design and construct different structures. This result provides an indication of these multi-parameter distribution consequences for the study of sites and peak flow prediction and the design of hydrological maps. Therefore, this discovery can support hydraulic structure and flood management.Keywords: RAMSE, multiple frequency analysis, annual maximum rainfall, L-moments
Procedia PDF Downloads 80868 Discovery of Two-dimensional Hexagonal MBene HfBO
Authors: Nanxi Miao, Junjie Wang
Abstract:
The discovery of 2D materials with distinct compositions and properties has been a research aim since the report of graphene. One of the latest members of the 2D material family is MXene, which is produced from the topochemical deintercalation of the A layer from a laminate MAX phase. Recently, analogous 2D MBenes (transitional metal borides) have been predicted by theoretical calculations as excellent alternatives in applications such as metal-ion batteries, magnetic devices, and catalysts. However, the practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of in from h-MAB Hf2InB2. The synthesized 2D HfBO delivered a specific capacity of 420 mAh g-1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications.Keywords: 2D materials, DFT calculations, high-throughput screening, lithium-ion batteries
Procedia PDF Downloads 70867 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel
Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali
Abstract:
The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.Keywords: cold formed steel 'CFS', shear wall panel, strip method, finite elements
Procedia PDF Downloads 307866 Prediction of Changes in Optical Quality by Tissue Redness after Pterygium Surgery
Authors: Mohd Radzi Hilmi, Mohd Zulfaezal Che Azemin, Khairidzan Mohd Kamal, Azrin Esmady Ariffin, Mohd Izzuddin Mohd Tamrin, Norfazrina Abdul Gaffur, Tengku Mohd Tengku Sembok
Abstract:
Purpose: The purpose of this study is to predict optical quality changes after pterygium surgery using tissue redness grading. Methods: Sixty-eight primary pterygium participants were selected from patients who visited an ophthalmology clinic. We developed a semi-automated computer program to measure the pterygium fibrovascular redness from digital pterygium images. The outcome of this software is a continuous scale grading of 1 (minimum redness) to 3 (maximum redness). The region of interest (ROI) was selected manually using the software. Reliability was determined by repeat grading of all 68 images and its association with contrast sensitivity function (CSF) and visual acuity (VA) was examined. Results: The mean and standard deviation of redness of the pterygium fibrovascular images was 1.88 ± 0.55. Intra- and inter-grader reliability estimates were high with intraclass correlation ranging from 0.97 to 0.98. The new grading was positively associated with CSF (p<0.01) and VA (p<0.01). The redness grading was able to predict 25% and 23% of the variance in the CSF and the VA respectively. Conclusions: The new grading of pterygium fibrovascular redness can be reliably measured from digital images and show a good correlation with CSF and VA. The redness grading can be used in addition to the existing pterygium grading.Keywords: contrast sensitivity, pterygium, redness, visual acuity
Procedia PDF Downloads 512865 Fear of Negative Evaluation, Social Support and Wellbeing in People with Vitiligo
Authors: Rafia Rafique, Mutmina Zainab
Abstract:
The present study investigated the relationship between fear of negative evaluation (FNE), social support and well-being in people with Vitiligo. It was hypothesized that low level of FNE and greater social support is likely to predict well-being. It was also hypothesized that social support is likely to moderate the relationship between FNE and well-being. Correlational research design was used for the present study. Non-probability purposive sampling technique was used to collect a sample (N=122) of people with Vitiligo. Hierarchical Moderated Regression analysis was used to test prediction and moderation. Brief Fear of Negative Evaluation Scale, Multidimensional Scale of Perceived Social Support (MSPSS) and Mental Health Continuum-Short form (MHC-SF) were used to evaluate the study variables. Fear of negative evaluation negatively predicted well-being (emotional and psychological). Social support from significant others and friends predicted social well-being. Social Support from family predicted emotional and psychological well-being. It was found that social support from significant others moderated the relationship between FNE and emotional well-being and social support from family moderated the relationship between FNE and social well-being. Dermatologists treating people with Vitiligo need to educate them and their families about the buffering role of social support (family and significant others). Future studies need to focus on other important mediating factors that can possibly explain the relationship between fear of negative evaluation and wellbeing.Keywords: fear of negative evaluation, hierarchical moderated regression, vitiligo, well-being
Procedia PDF Downloads 301864 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio
Authors: Urvee B. Trivedi, U. D. Dalal
Abstract:
As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.Keywords: cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary user (PU), secondary user (SU), fast Fourier transform (FFT), signal to noise ratio (SNR)
Procedia PDF Downloads 344863 A Study on Reliability of Gender and Stature Determination by Odontometric and Craniofacial Anthropometric Parameters
Authors: Churamani Pokhrel, C. B. Jha, S. R. Niraula, P. R. Pokharel
Abstract:
Human identification is one of the most challenging subjects that man has confronted. The determination of adult sex and stature are two of the four key factors (sex, stature, age, and race) in identification of an individual. Craniofacial and odontometric parameters are important tools for forensic anthropologists when it is not possible to apply advanced techniques for identification purposes. The present study provides anthropometric correlation of the parameters with stature and gender and also devises regression formulae for reconstruction of stature. A total of 312 Nepalese students with equal distribution of sex i.e., 156 male and 156 female students of age 18-35 years were taken for the study. Total of 10 parameters were measured (age, sex, stature, head circumference, head length, head breadth, facial height, bi-zygomatic width, mesio-distal canine width and inter-canine distance of both maxilla and mandible). Co-relation and regression analysis was done to find the association between the parameters. All parameters were found to be greater in males than females and each was found to be statistically significant. Out of total 312 samples, the best regressor for the determination of stature was head circumference and mandibular inter-canine width and that for gender was head circumference and right mandibular teeth. The accuracy of prediction was 83%. Regression equations and analysis generated from craniofacial and odontometric parameters can be a supplementary approach for the estimation of stature and gender when extremities are not available.Keywords: craniofacial, gender, odontometric, stature
Procedia PDF Downloads 190862 Predictive Analytics of Student Performance Determinants
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.Keywords: student performance, supervised machine learning, classification, cross-validation, prediction
Procedia PDF Downloads 125861 Prediction of Phonon Thermal Conductivity of F.C.C. Al by Molecular Dynamics Simulation
Authors: Leila Momenzadeh, Alexander V. Evteev, Elena V. Levchenko, Tanvir Ahmed, Irina Belova, Graeme Murch
Abstract:
In this work, the phonon thermal conductivity of f.c.c. Al is investigated in detail in the temperature range 100 – 900 K within the framework of equilibrium molecular dynamics simulations making use of the Green-Kubo formalism and one of the most reliable embedded-atom method potentials. It is found that the heat current auto-correlation function of the f.c.c. Al model demonstrates a two-stage temporal decay similar to the previously observed for f.c.c Cu model. After the first stage of decay, the heat current auto-correlation function of the f.c.c. Al model demonstrates a peak in the temperature range 100-800 K. The intensity of the peak decreases as the temperature increases. At 900 K, it transforms to a shoulder. To describe the observed two-stage decay of the heat current auto-correlation function of the f.c.c. Al model, we employ decomposition model recently developed for phonon-mediated thermal transport in a monoatomic lattice. We found that the electronic contribution to the total thermal conductivity of f.c.c. Al dominates over the whole studied temperature range. However, the phonon contribution to the total thermal conductivity of f.c.c. Al increases as temperature decreases. It is about 1.05% at 900 K and about 12.5% at 100 K.Keywords: aluminum, gGreen-Kubo formalism, molecular dynamics, phonon thermal conductivity
Procedia PDF Downloads 411860 Analysis of Cardiovascular Diseases Using Artificial Neural Network
Authors: Jyotismita Talukdar
Abstract:
In this paper, a study has been made on the possibility and accuracy of early prediction of several Heart Disease using Artificial Neural Network. (ANN). The study has been made in both noise free environment and noisy environment. The data collected for this analysis are from five Hospitals. Around 1500 heart patient’s data has been collected and studied. The data is analysed and the results have been compared with the Doctor’s diagnosis. It is found that, in noise free environment, the accuracy varies from 74% to 92%and in noisy environment (2dB), the results of accuracy varies from 62% to 82%. In the present study, four basic attributes considered are Blood Pressure (BP), Fasting Blood Sugar (FBS), Thalach (THAL) and Cholesterol (CHOL.). It has been found that highest accuracy(93%), has been achieved in case of PPI( Post-Permanent-Pacemaker Implementation ), around 79% in case of CAD(Coronary Artery disease), 87% in DCM (Dilated Cardiomyopathy), 89% in case of RHD&MS(Rheumatic heart disease with Mitral Stenosis), 75 % in case of RBBB +LAFB (Right Bundle Branch Block + Left Anterior Fascicular Block), 72% for CHB(Complete Heart Block) etc. The lowest accuracy has been obtained in case of ICMP (Ischemic Cardiomyopathy), about 38% and AF( Atrial Fibrillation), about 60 to 62%.Keywords: coronary heart disease, chronic stable angina, sick sinus syndrome, cardiovascular disease, cholesterol, Thalach
Procedia PDF Downloads 174859 Analysis of the Lung Microbiome in Cystic Fibrosis Patients Using 16S Sequencing
Authors: Manasvi Pinnaka, Brianna Chrisman
Abstract:
Cystic fibrosis patients often develop lung infections that range anywhere in severity from mild to life-threatening due to the presence of thick and sticky mucus that fills their airways. Since many of these infections are chronic, they not only affect a patient’s ability to breathe but also increase the chances of mortality by respiratory failure. With a publicly available dataset of DNA sequences from bacterial species in the lung microbiome of cystic fibrosis patients, the correlations between different microbial species in the lung and the extent of deterioration of lung function were investigated. 16S sequencing technologies were used to determine the microbiome composition of the samples in the dataset. For the statistical analyses, referencing helped distinguish between taxonomies, and the proportions of certain taxa relative to another were determined. It was found that the Fusobacterium, Actinomyces, and Leptotrichia microbial types all had a positive correlation with the FEV1 score, indicating the potential displacement of these species by pathogens as the disease progresses. However, the dominant pathogens themselves, including Pseudomonas aeruginosa and Staphylococcus aureus, did not have statistically significant negative correlations with the FEV1 score as described by past literature. Examining the lung microbiology of cystic fibrosis patients can help with the prediction of the current condition of lung function, with the potential to guide doctors when designing personalized treatment plans for patients.Keywords: bacterial infections, cystic fibrosis, lung microbiome, 16S sequencing
Procedia PDF Downloads 97