Search results for: detecting of envelope modulation on noise
642 Transient Performance Evaluation and Control Measures for Oum Azza Pumping Station Case Study
Authors: Itissam Abuiziah
Abstract:
This work presents a case study of water-hammer analysis and control for the Oum Azza pumping station project in the coastal area of Rabat to Casablanca from the dam Sidi Mohamed Ben Abdellah (SMBA). This is a typical pumping system with a long penstock and is currently at design and executions stages. Since there is no ideal location for construction of protection devices, the protection devices were provisionally designed to protect the whole conveying pipeline. The simulation results for the transient conditions caused by a sudden pumping stopping without including any protection devices, show that there is a negative beyond 1300m to the station 5725m near the arrival of the reservoir, therefore; there is a need for the protection devices to protect the conveying pipeline. To achieve the goal behind the transient flow analysis which is to protect the conveying pipeline system, four scenarios had been investigated in this case study with two types of protecting devices (pressure relief valve and desurging tank with automatic air control). The four scenarios are conceders as with pressure relief valve, with pressure relief valve and a desurging tank with automatic air control, with pressure relief valve and tow desurging tanks with automatic air control and with pressure relief valve and three desurging tanks with automatic air control. The simulation result for the first scenario shows that overpressure corresponding to an instant pumping stopping is reduced from 263m to 240m, and the minimum hydraulic grad line for the length approximately from station 1300m to station 5725m is still below the pipeline profile which means that the pipe must be equipped with another a protective devices for smoothing depressions. The simulation results for the second scenario show that the minimum and maximum pressures envelopes are decreases especially in the depression phase but not effectively protects the conduct in this case study. The minimum pressure increased from -77.7m for the previous scenario to -65.9m for the current scenario. Therefore the pipeline is still requiring additional protective devices; another desurging tank with automatic air control is installed at station2575.84m. The simulation results for the third scenario show that the minimum and maximum pressures envelopes are decreases but not effectively protects the conduct in this case study since the depression is still exist and varies from -0.6m to– 12m. Therefore the pipeline is still requiring additional protective devices; another desurging tank with automatic air control is installed at station 5670.32 m. Examination of the envelope curves of the minimum pressuresresults for the fourth scenario, we noticed that the piezometric pressure along the pipe remains positive over the entire length of the pipe. We can, therefore, conclude that such scenario can provide effective protection for the pipeline.Keywords: analysis methods, protection devices, transient flow, water hammer
Procedia PDF Downloads 188641 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors
Authors: Duc V. Nguyen
Abstract:
Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest benet based on their requirements. These are the key requirements of a robust prognostics and health management system.Keywords: fault detection, FFT, induction motor, predictive maintenance
Procedia PDF Downloads 170640 Levels of Selected Adipokines in Women with Gestational Diabetes and Type 2 Diabetes, Their Relationship to Metabolic Parameters
Authors: David Karasek, Veronika Kubickova, Ondrej Krystynik, Dominika Goldmannova, Lubica Cibickova, Jan Schovanek
Abstract:
Introduction: Adiponectin, adipocyte-fatty acid-binding protein (A-FABP), and Wnt1 inducible signaling pathway protein-1 (WISP-1) are adipokines particularly associated with insulin resistance. The aim of the study was to compare their levels in women with gestational diabetes (GDM), type 2 diabetes mellitus (T2DM) and healthy controls and determine their relation with metabolic parameters. Methods: Fifty women with GDM, 50 women with T2DM, and 35 healthy women were included in the study. In addition to adipokines, anthropometric, lipid parameters, and markers, insulin resistance, and glucose control were assessed in all participants. Results: Compared to healthy controls only significantly lower levels of adiponectin were detected in women with GDM, whereas lower levels of adiponectin, higher levels of A-FABP and of WISP-1 were present in women with T2DM. Women with T2DM had also lower levels of adiponectin and higher levels of A-FABP compared to women with GDM. In women with GDM or T2DM adiponectin correlated negatively with body mass index (BMI), triglycerides (TG), C-peptide and positively with HDL-cholesterol; A-FABP positively correlated with BMI, TG, waist, and C-peptide. Moreover, there was a positive correlation between WISP-1 and C-peptide in women with T2DM. Conclusion: Adverse adipokines production detecting dysfunctional fat tissue is in women with GDM less presented than in women with T2DM, but more expressed compared to healthy women. Acknowledgment: Supported by AZV NV18-01-00139 and MH CZ DRO (FNOl, 00098892).Keywords: adiponectin, adipocyte-fatty acid binding protein, wnt1 inducible signaling pathway protein-1, gestational diabetes, type 2 diabetes mellitus
Procedia PDF Downloads 134639 Competitors’ Influence Analysis of a Retailer by Using Customer Value and Huff’s Gravity Model
Authors: Yepeng Cheng, Yasuhiko Morimoto
Abstract:
Customer relationship analysis is vital for retail stores, especially for supermarkets. The point of sale (POS) systems make it possible to record the daily purchasing behaviors of customers as an identification point of sale (ID-POS) database, which can be used to analyze customer behaviors of a supermarket. The customer value is an indicator based on ID-POS database for detecting the customer loyalty of a store. In general, there are many supermarkets in a city, and other nearby competitor supermarkets significantly affect the customer value of customers of a supermarket. However, it is impossible to get detailed ID-POS databases of competitor supermarkets. This study firstly focused on the customer value and distance between a customer's home and supermarkets in a city, and then constructed the models based on logistic regression analysis to analyze correlations between distance and purchasing behaviors only from a POS database of a supermarket chain. During the modeling process, there are three primary problems existed, including the incomparable problem of customer values, the multicollinearity problem among customer value and distance data, and the number of valid partial regression coefficients. The improved customer value, Huff’s gravity model, and inverse attractiveness frequency are considered to solve these problems. This paper presents three types of models based on these three methods for loyal customer classification and competitors’ influence analysis. In numerical experiments, all types of models are useful for loyal customer classification. The type of model, including all three methods, is the most superior one for evaluating the influence of the other nearby supermarkets on customers' purchasing of a supermarket chain from the viewpoint of valid partial regression coefficients and accuracy.Keywords: customer value, Huff's Gravity Model, POS, Retailer
Procedia PDF Downloads 123638 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation
Authors: Aicha Majda, Abdelhamid El Hassani
Abstract:
Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.Keywords: graph cuts, lung CT scan, lung parenchyma segmentation, patch-based similarity metric
Procedia PDF Downloads 169637 Evaluation of Alpha-Glucosidase Inhibitory Effect of Two Plants from Brazilian Cerrado
Authors: N. A. P. Camaforte, P. M. P. Vareda, L. L. Saldanha, A. L. Dokkedal, J. M. Rezende-Neto, M. R. Senger, F. P. Silva-Jr, J. R. Bosqueiro
Abstract:
Diabetes mellitus is a disease characterized by deficiency of insulin secretion and/or action which results in hyperglycemia. Nowadays, acarbose is a medicine used by diabetic people to inhibit alpha-glucosidases leading to the decreasing of post-feeding glycaemia, but with low effectiveness and many side effects. Medicinal plants have been used for the treatment of many diseases including diabetes and their action occurs through the modulation of insulin-depending processes, pancreas regeneration or inhibiting glucose absorption by the intestine. Previous studies in our laboratory showed that the treatment using two crude extracts of plants from Brazilian cerrado was able to decrease fasting blood glucose and improve glucose tolerance in streptozotocin-diabetic mice. Because of this and the importance of the search for new alternatives to decrease the hyperglycemia, we decided to evaluate the inhibitory action of two plants from Brazilian cerrado - B.H. and Myrcia bella. The enzymatic assay was performed in 50 µL of final volume using pancreatic α-amylase and maltase together with theirs commercial substrates. The inhibition potency (IC50) was determined by the incubation of eight different concentrations of both extracts and the enzymes for 5 minutes at 37ºC. After, the substrate was added to start the reaction. Glucosidases assay was evaluated measuring the quantity of p-nitrophenol in 405 nmin 384 wells automatic reader. The in vitro assay with the extracts of B.H. and M. bella showed an IC50 of 28,04µg/mL and 16,93 µg/mL for α-amilase, and 43,01µg/mL and 17 µg/mL for maltase, respectively. M. bella extract showed a higher inhibitory activity for those enzymes than B.H. extract. The crude extracts tested showed a higher inhibition rate to α-amylase, but were less effective against maltase in comparison to acarbose (IC50 36µg/mL and 9 µg/mL, respectively). In conclusion, the crude extract of B.H. and M. bella showed a potent inhibitory effect against α-amylase and showed promising results to the possible development of new medicines to treat diabetes with less or even without side effects.Keywords: alfa-glucosidases, diabetes mellitus, glycaemia, medicinal plants
Procedia PDF Downloads 238636 Low Volume High Intensity Interval Training Effect on Liver Enzymes in Chronic Hepatitis C Patients
Authors: Aya Gamal Khattab
Abstract:
Chronic infection with the hepatitis C virus (HCV) is now the leading cause of liver-related morbidity and mortality; Currently, alanine aminotransferase ALT measurement is not only widely used in detecting the incidence, development, and prognosis of liver disease with obvious clinical symptoms, but also provides reference on screening the overall health status during health check-ups. Exercise is a low-cost, reliable and sustainable therapy for many chronic diseases. Low-volume high intensity interval training HIT is time efficient while also having wider application to different populations including people at risk for chronic inflammatory diseases. Purpose of this study was to investigate the effect of low volume high intensity interval training on ALT, AST in HCV patients. All practical work was done in outpatient physiotherapy clinic of Suez Canal Authority Hospitals. Forty patients both gender (27 male, 13 female), age ranged (40-60) years old submitted to low volume high intensity interval training on treadmill for two months three sessions per week. Each session consisting of five min warming up, two bouts for 10 min each bout consisting of 30 sec - 1 min of high intensity (75%-85%) HRmax then two to four min active recovery at intensity (40%-60%) HRmax, so the sum of high intensity intervals was one to two min for each session and four to eight min active recovery, and ends with five min cooling down. ALT and AST were measured before starting exercise session and 2 months later after finishing the total exercise sessions through blood samples. Results showed significant decrease in ALT, AST with improvement percentage (18.85%), (23.87%) in the study, so the study concluded that low volume high intensity interval training had a significant effect in lowering the level of circulating liver enzymes (ALT, AST) which means protection of hepatic cells and restoration of its function.Keywords: alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepatitis C (HCV), low volume high intensity interval training
Procedia PDF Downloads 299635 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes
Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park
Abstract:
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy
Procedia PDF Downloads 123634 Cognitive Dissonance in Robots: A Computational Architecture for Emotional Influence on the Belief System
Authors: Nicolas M. Beleski, Gustavo A. G. Lugo
Abstract:
Robotic agents are taking more and increasingly important roles in society. In order to make these robots and agents more autonomous and efficient, their systems have grown to be considerably complex and convoluted. This growth in complexity has led recent researchers to investigate forms to explain the AI behavior behind these systems in search for more trustworthy interactions. A current problem in explainable AI is the inner workings with the logic inference process and how to conduct a sensibility analysis of the process of valuation and alteration of beliefs. In a social HRI (human-robot interaction) setup, theory of mind is crucial to ease the intentionality gap and to achieve that we should be able to infer over observed human behaviors, such as cases of cognitive dissonance. One specific case inspired in human cognition is the role emotions play on our belief system and the effects caused when observed behavior does not match the expected outcome. In such scenarios emotions can make a person wrongly assume the antecedent P for an observed consequent Q, and as a result, incorrectly assert that P is true. This form of cognitive dissonance where an unproven cause is taken as truth induces changes in the belief base which can directly affect future decisions and actions. If we aim to be inspired by human thoughts in order to apply levels of theory of mind to these artificial agents, we must find the conditions to replicate these observable cognitive mechanisms. To achieve this, a computational architecture is proposed to model the modulation effect emotions have on the belief system and how it affects logic inference process and consequently the decision making of an agent. To validate the model, an experiment based on the prisoner's dilemma is currently under development. The hypothesis to be tested involves two main points: how emotions, modeled as internal argument strength modulators, can alter inference outcomes, and how can explainable outcomes be produced under specific forms of cognitive dissonance.Keywords: cognitive architecture, cognitive dissonance, explainable ai, sensitivity analysis, theory of mind
Procedia PDF Downloads 132633 Magnetophotonics 3D MEMS/NEMS System for Quantitative Mitochondrial DNA Defect Profiling
Authors: Dar-Bin Shieh, Gwo-Bin Lee, Chen-Ming Chang, Chen Sheng Yeh, Chih-Chia Huang, Tsung-Ju Li
Abstract:
Mitochondrial defects have a significant impact in many human diseases and aging associated phenotypes. The pathogenic mitochondrial DNA (mtDNA) mutations are diverse and usually present as heteroplasmic. mtDNA 4977bps deletion is one of the common mtDNA defects, and the ratio of mutated versus normal copy is significantly associated with clinical symptoms thus their quantitative detection has become an important unmet needs for advanced disease diagnosis and therapeutic guidelines. This study revealed a Micro-electro-mechanical-system (MEMS) enabled automatic microfluidic chip that only required minimal sample. The system integrated multiple laboratory operation steps into a Lab-on-a-Chip for high-sensitive and prompt measurement. The entire process including magnetic nanoparticle based mtDNA extraction in chip, mutation selective photonic DNA cleavage, and nanoparticle accelerated photonic quantitative polymerase chain reaction (qPCR). All subsystems were packed inside a miniature three-dimensional micro structured system and operated in an automatic manner. Integration of magnetic beads with microfluidic transportation could promptly extract and enrich the specific mtDNA. The near infrared responsive magnetic nanoparticles enabled micro-PCR to be operated by pulse-width-modulation controlled laser pulsing to amplify the desired mtDNA while quantified by fluorescence intensity captured by a complementary metal oxide system array detector. The proportions of pathogenic mtDNA in total DNA were thus obtained. Micro capillary electrophoresis module was used to analyze the amplicone products. In conclusion, this study demonstrated a new magnetophotonic based qPCR MEMS system that successfully detects and quantify specific disease related DNA mutations thus provides a promising future for rapid diagnosis of mitochondria diseases.Keywords: mitochondrial DNA, micro-electro-mechanical-system, magnetophotonics, PCR
Procedia PDF Downloads 218632 Inversion of Gravity Data for Density Reconstruction
Authors: Arka Roy, Chandra Prakash Dubey
Abstract:
Inverse problem generally used for recovering hidden information from outside available data. Vertical component of gravity field we will be going to use for underneath density structure calculation. Ill-posing nature is main obstacle for any inverse problem. Linear regularization using Tikhonov formulation are used for appropriate choice of SVD and GSVD components. For real time data handle, signal to noise ratios should have to be less for reliable solution. In our study, 2D and 3D synthetic model with rectangular grid are used for gravity field calculation and its corresponding inversion for density reconstruction. Fine grid also we have considered to hold any irregular structure. Keeping in mind of algebraic ambiguity factor number of observation point should be more than that of number of data point. Picard plot is represented here for choosing appropriate or main controlling Eigenvalues for a regularized solution. Another important study is depth resolution plot (DRP). DRP are generally used for studying how the inversion is influenced by regularizing or discretizing. Our further study involves real time gravity data inversion of Vredeforte Dome South Africa. We apply our method to this data. The results include density structure is in good agreement with known formation in that region, which puts an additional support of our method.Keywords: depth resolution plot, gravity inversion, Picard plot, SVD, Tikhonov formulation
Procedia PDF Downloads 212631 Monitoring of Latent Tree Mortality after Forest Fires: A Biosensor Approach
Authors: Alessio Giovannelli, Claudia Cocozza, Enrico Marchi, Valerio Giorgio Muzzini, Eleftherios Touloupakis, Raffaella Margherita Zampieri
Abstract:
In Mediterranean countries, forest fires are recurrent events that need to be considered as a central component of regional and global forest management strategies and biodiversity restoration programmes. The response of tree function to fire damage can vary widely, also taking into account species, season, age of the tree, etc. Trees that survive fire may have different levels of physiological functionality, which may result in reduced growth or increased susceptibility to delayed mortality. An approach to assessing irreversible physiological injury in trees could help to inform management decisions at burned sites for biodiversity restoration, environmental safety and understanding of ecosystem functional adaptations. Physiological proxies for latent tree mortality, such as cambial cell death, reduced or absent starch and soluble sugar content in C sinks, and ethanol accumulation in the phloem, are considered proxies for cell death. However, their determination requires time-consuming laboratory protocols, making the approach unfeasible as a practical option in the field, but recent findings have shown that biosensors could be usefully applied to overcome these limitations. The study will focus on the development of amperometric biosensors capable of detecting a few target molecules in the phloem and xylem (such as ethanol and glucose) that have recently been identified as proxies for latent tree mortality. The results of a specific experiment on a stand of Pinus pinaster subjected to prescribed fire are reported.Keywords: enzymes, glucose, ethanol, prescribed fires
Procedia PDF Downloads 17630 Brain Tumor Segmentation Based on Minimum Spanning Tree
Authors: Simeon Mayala, Ida Herdlevær, Jonas Bull Haugsøen, Shamundeeswari Anandan, Sonia Gavasso, Morten Brun
Abstract:
In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient.Keywords: brain tumor, brain tumor segmentation, minimum spanning tree, segmentation, image processing
Procedia PDF Downloads 122629 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 114628 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism
Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng
Abstract:
Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition
Procedia PDF Downloads 183627 Characterization and Pcr Detection of Selected Strains of Psychrotrophic Bacteria Isolated From Raw Milk
Authors: Kidane workelul, Li xu, Xiaoyang Pang, Jiaping Lv
Abstract:
Dairy products are exceptionally ideal media for the growth of microorganisms because of their high nutritional content. There are several ways that milk might get contaminated throughout the milking process, including how the raw milk is transported and stored, as well as how long it is kept before being processed. Psychrotrophic bacteria are among the one which can deteriorate the quality of milk mainly their heat resistance proteas and lipase enzyme. For this research purpose 8 selected strains of Psychrotrophic bacteria (Entrococcus hirae, Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas putida, Exiguobacterium indicum, Pseudomonas paralactice, Acinetobacter indicum, Serratia liquefacients)are chosen and try to determine their characteristics based on the research methodology protocol. Thus, the 8 selected strains are cultured, plated incubate, extracted their genomic DNA and genome DNA was amplified, the purpose of the study was to identify their Psychrotrophic properties, lipase hydrolysis positive test, their optimal incubation temperature, designed primer using the noble strain P,flourescens conserved region area in target with lipA gene, optimized primer specificity as well as sensitivity and PCR detection for lipase positive strains using the design primers. Based on the findings both the selected 8 strains isolated from stored raw milk are Psychrotrophic bacteria, 6 of the selected strains except the 2 strains are positive for lipase hydrolysis, their optimal temperature is 20 to 30 OC, the designed primer specificity is very accurate and amplifies for those strains only with lipase positive but could not amplify for the others. Thus, the result is promising and could help in detecting the Psychrotrophic bacteria producing heat resistance enzymes (lipase) at early stage before the milk is processed and this will safe production loss for the dairy industry.Keywords: dairy industry, heat-resistant, lipA, milk, primer and psychrotrophic
Procedia PDF Downloads 64626 In Vitro and in Vivo Evaluation of Nano Collagen Molecules to Enhance Mesenchymal Stem Cells Differentiate into Insulin Producing Cells
Authors: Chin-Tsu Ma, Yi-Jhen Wu, Hsia Ying Cheng, Han Hsiang Huang, Shyh Ming Kuo
Abstract:
The use of specific molecules including nutrients and pharmacological agents has been tried in modulation of stem cells differentiation (MSCs) to insulin producing cells. The aim of this study is to investigate the ability of nano collagen molecules (nutrient or scaffold) to enhance the MSCs differentiation into insulin-producing cells in combination with nicotinamide and exendin-4 (pharmacological agents) in vitro and in vivo. The results demonstrated that the cells exhibit morphologically islet-like clusters after treatment with nano collagen molecules, nicotinamide and exendin-4. MSCs extra treated with nano collagen molecules showed significant increases in Nkx6.1 and insulin mRNA expression at 14-d and 21-d culture compared with those merely treated with nicotinamide and exendin-4. Early 7-day elevation in PDX-1 mRNA expression was observed. Furthermore, the MSCs exposed to nano collagen molecules produced the highest secretion of insulin (p < 0.05). Type-2 diabetes induced by high-fat diet and low dose of streptozotocin in rat model was built in this study. This rat exhibited higher food intake, water intake, lower glucose tolerance, lower-insulin tolerance, and higher HbA1C (significant increases, p < 0.01) as compared with the normal rat that demonstrated the model of type-2 diabetes was successfully built. Biopsy examinations also showed that obvious destruction of islet. After injection of differentiated MSCs into the destructed pancreas of diabetes rat, more regenerated islet were observed at the rats that treated with nano collagen molecules and exhibited much lower HbA1C as compared with the normal rat and diabetes rat after 4 weeks (significant deceases, p < 0.001). These results indicate that the culturing MSCs with nano collagen molecules, nicotinamide, and exendin-4 are beneficial for MSCs differentiation into islet-like cells. These nano collagen molecules may lead to alternations or up-regulation of gene expression and influence the differentiated outcomes induced by nicotinamide and exendin-4.Keywords: nano collagen molecules, nicotinamide, MSCs, diabetes
Procedia PDF Downloads 410625 Aggregation Scheduling Algorithms in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional
Procedia PDF Downloads 229624 Iterative Dynamic Programming for 4D Flight Trajectory Optimization
Authors: Kawser Ahmed, K. Bousson, Milca F. Coelho
Abstract:
4D flight trajectory optimization is one of the key ingredients to improve flight efficiency and to enhance the air traffic capacity in the current air traffic management (ATM). The present paper explores the iterative dynamic programming (IDP) as a potential numerical optimization method for 4D flight trajectory optimization. IDP is an iterative version of the Dynamic programming (DP) method. Due to the numerical framework, DP is very suitable to deal with nonlinear discrete dynamic systems. The 4D waypoint representation of the flight trajectory is similar to the discretization by a grid system; thus DP is a natural method to deal with the 4D flight trajectory optimization. However, the computational time and space complexity demanded by the DP is enormous due to the immense number of grid points required to find the optimum, which prevents the use of the DP in many practical high dimension problems. On the other hand, the IDP has shown potentials to deal successfully with high dimension optimal control problems even with a few numbers of grid points at each stage, which reduces the computational effort over the traditional DP approach. Although the IDP has been applied successfully in chemical engineering problems, IDP is yet to be validated in 4D flight trajectory optimization problems. In this paper, the IDP has been successfully used to generate minimum length 4D optimal trajectory avoiding any obstacle in its path, such as a no-fly zone or residential areas when flying in low altitude to reduce noise pollution.Keywords: 4D waypoint navigation, iterative dynamic programming, obstacle avoidance, trajectory optimization
Procedia PDF Downloads 162623 Acoustic Echo Cancellation Using Different Adaptive Algorithms
Authors: Hamid Sharif, Nazish Saleem Abbas, Muhammad Haris Jamil
Abstract:
An adaptive filter is a filter that self-adjusts its transfer function according to an optimization algorithm driven by an error signal. Because of the complexity of the optimization algorithms, most adaptive filters are digital filters. Adaptive filtering constitutes one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering techniques are used in a wide range of applications, including adaptive noise cancellation and echo cancellation. Acoustic echo cancellation is a common occurrence in today’s telecommunication systems. The signal interference caused by acoustic echo is distracting to both users and causes a reduction in the quality of the communication. In this paper, we review different techniques of adaptive filtering to reduce this unwanted echo. In this paper, we see the behavior of techniques and algorithms of adaptive filtering like Least Mean Square (LMS), Normalized Least Mean Square (NLMS), Variable Step-Size Least Mean Square (VSLMS), Variable Step-Size Normalized Least Mean Square (VSNLMS), New Varying Step Size LMS Algorithm (NVSSLMS) and Recursive Least Square (RLS) algorithms to reduce this unwanted echo, to increase communication quality.Keywords: adaptive acoustic, echo cancellation, LMS algorithm, adaptive filter, normalized least mean square (NLMS), variable step-size least mean square (VSLMS)
Procedia PDF Downloads 80622 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 59621 Acoustic Analysis of Ball Bearings to Identify Localised Race Defect
Authors: M. Solairaju, Nithin J. Thomas, S. Ganesan
Abstract:
Each and every rotating part of a machine element consists of bearings within its structure. In particular, the rolling element bearings such as cylindrical roller bearing and deep groove ball bearings are frequently used. Improper handling, excessive loading, improper lubrication and sealing cause bearing damage. Hence health monitoring of bearings is an important aspect for radiation pattern of bearing vibration is computed using the dipole model. Sound pressure level for defect-free and race defect the prolonged life of machinery and auto motives. This paper presents modeling and analysis of Acoustic response of deep groove ball bearing with localized race defects. Most of the ball bearings, especially in machine tool spindles and high-speed applications are pre-loaded along an axial direction. The present study is carried out with axial preload. Based on the vibration response, the orbit motion of the inner race is studied, and it was found that the oscillation takes place predominantly in the axial direction. Simplified acoustic is estimated. Acoustic response shows a better indication in identifying the defective bearing. The computed sound signal is visualized in diagrammatic representation using Symmetrised Dot Pattern (SDP). SDP gives better visual distinction between the defective and defect-free bearingKeywords: bearing, dipole, noise, sound
Procedia PDF Downloads 294620 TerraEnhance: High-Resolution Digital Elevation Model Generation using GANs
Authors: Siddharth Sarma, Ayush Majumdar, Nidhi Sabu, Mufaddal Jiruwaala, Shilpa Paygude
Abstract:
Digital Elevation Models (DEMs) are digital representations of the Earth’s topography, which include information about the elevation, slope, aspect, and other terrain attributes. DEMs play a crucial role in various applications, including terrain analysis, urban planning, and environmental modeling. In this paper, TerraEnhance is proposed, a distinct approach for high-resolution DEM generation using Generative Adversarial Networks (GANs) combined with Real-ESRGANs. By learning from a dataset of low-resolution DEMs, the GANs are trained to upscale the data by 10 times, resulting in significantly enhanced DEMs with improved resolution and finer details. The integration of Real-ESRGANs further enhances visual quality, leading to more accurate representations of the terrain. A post-processing layer is introduced, employing high-pass filtering to refine the generated DEMs, preserving important details while reducing noise and artifacts. The results demonstrate that TerraEnhance outperforms existing methods, producing high-fidelity DEMs with intricate terrain features and exceptional accuracy. These advancements make TerraEnhance suitable for various applications, such as terrain analysis and precise environmental modeling.Keywords: DEM, ESRGAN, image upscaling, super resolution, computer vision
Procedia PDF Downloads 8619 A LED Warning Vest as Safety Smart Textile and Active Cooperation in a Working Group for Building a Normative Standard
Authors: Werner Grommes
Abstract:
The institute of occupational safety and health works in a working group for building a normative standard for illuminated warning vests and did a lot of experiments and measurements as basic work (cooperation). Intelligent car headlamps are able to suppress conventional warning vests with retro-reflective stripes as a disturbing light. Illuminated warning vests are therefore required for occupational safety. However, they must not pose any danger to the wearer or other persons. Here, the risks of the batteries (lithium types), the maximum brightness (glare) and possible interference radiation from the electronics on the implant carrier must be taken into account. The all-around visibility, as well as the required range, play an important role here. For the study, many luminance measurements of already commercially available LEDs and electroluminescent warning vests, as well as their electromagnetic interference fields and aspects of electrical safety, were measured. The results of this study showed that LED lighting is all far too bright and causes strong glare. The integrated controls with pulse modulation and switching regulators cause electromagnetic interference fields. Rechargeable lithium batteries can explode depending on the temperature range. Electroluminescence brings even more hazards. A test method was developed for the evaluation of visibility at distances of 50, 100, and 150 m, including the interview of test persons. A measuring method was developed for the detection of glare effects at close range with the assignment of the maximum permissible luminance. The electromagnetic interference fields were tested in the time and frequency ranges. A risk and hazard analysis were prepared for the use of lithium batteries. The range of values for luminance and risk analysis for lithium batteries were discussed in the standards working group. These will be integrated into the standard. This paper gives a brief overview of the topics of illuminated warning vests, which takes into account the risks and hazards for the vest wearer or othersKeywords: illuminated warning vest, optical tests and measurements, risks, hazards, optical glare effects, LED, E-light, electric luminescent
Procedia PDF Downloads 113618 Effects of Inlet Filtration Pressure Loss on Single and Two-Spool Gas Turbine
Authors: Enyia James Diwa, Dodeye Ina Igbong, Archibong Archibong Eso
Abstract:
Gas turbine operators have been faced with the dramatic financial setback resulting from compressor fouling. In a highly deregulated power industry where there is stiffness in the market competition, has made it imperative to improvise means of reducing maintenance cost in other to yield maximum profit. Compressor fouling results from the deposition of contaminants in the presence of oil and moisture on the compressor blade or annulus surfaces, which leads to a loss in flow capacity and compressor efficiency. These combined effects reduce power output, increase heat rate and cause creep life reduction. This paper also contains a model of two gas turbine engines via Cranfield University software known as TURBOMATCH, which is simulation software for detecting engine fouling rate. The model engines are of different configurations and capacities, and are operating in two different modes of constant output power and turbine inlet temperature for a two and three stage filter system. The idea is to investigate the more economically viable filtration systems by gas turbine users based on performance only. It has been demonstrated in the results that the two spool engine is a little more beneficial compared to the single spool. This is as a result of a higher pressure ratio of the two spools as well as the deceleration of the high-pressure compressor and high-pressure turbine speed in a constant TET. Meanwhile, the inlet filtration system was properly designed and balanced with a well-timed and economical compressor washing regime/scheme to control compressor fouling. The different technologies of inlet air filtration and compressor washing are considered and an attempt at optimization with respect to the cost of a combination of both control measures are made.Keywords: inlet filtration, pressure loss, single spool, two spool
Procedia PDF Downloads 322617 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials
Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff
Abstract:
In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.Keywords: redox enzyme, nanomaterials, biosensors, electrical communication
Procedia PDF Downloads 454616 Comparison Between Bispectral Index Guided Anesthesia and Standard Anesthesia Care in Middle Age Adult Patients Undergoing Modified Radical Mastectomy
Authors: Itee Chowdhury, Shikha Modi
Abstract:
Introduction: Cancer is beginning to outpace cardiovascular disease as a cause of death affecting every major organ system with profound implications for perioperative management. Breast cancer is the most common cancer in women in India, accounting for 27% of all cancers. The small changes in analgesic management of cancer patients can greatly improve prognosis and reduce the risk of postsurgical cancer recurrence as opioid-based analgesia has a deleterious effect on cancer outcomes. Shortened postsurgical recovery time facilitates earlier return to intended oncological therapy maximising the chance of successful treatment. Literature reveals that the role of BIS since FDA approval has been assessed in various types of surgeries, but clinical data on its use in oncosurgical patients are scanty. Our study focuses on the role of BIS-guided anaesthesia for breast cancer surgery patients. Methods: A prospective randomized controlled study in patients aged 36-55years scheduled for modified radical mastectomy was conducted in 51 patients in each group who met the inclusion and exclusion criteria, and randomization was done by sealed envelope technique. In BIS guided anaesthesia group (B), sevoflurane was titrated to keep the BIS value 45-60, and thereafter if the patient showed hypertension/tachycardia, an opioid was given. In standard anaesthesia care (group C), sevoflurane was titrated to keep MAC in the range of 0.8-1, and fentanyl was given if the patient showed hypertension/tachycardia. Intraoperative opioid consumption was calculated. Postsurgery recovery characteristics, including Aldrete score, were assessed. Patients were questioned for pain, PONV, and recall of the intraoperative event. A comparison of age, BMI, ASA, recovery characteristics, opioid, and VAS score was made using the non-parametric Mann-Whitney U test. Categorical data like intraoperative awareness of surgery and PONV was studied using the Chi-square test. A comparison of heart rate and MAP was made by an independent sample t-test. #ggplot2 package was used to show the trend of the BIS index for all intraoperative time points for each patient. For a statistical test of significance, the cut-off p-value was set as <0.05. Conclusions: BIS monitoring led to reduced opioid consumption and early recovery from anaesthesia in breast cancer patients undergoing MRM resulting in less postoperative nausea and vomiting and less pain intensity in the immediate postoperative period without any recall of the intraoperative event. Thus, the use of a Bispectral index monitor allows for tailoring of anaesthesia administration with a good outcome.Keywords: bispectral index, depth of anaesthesia, recovery, opioid consumption
Procedia PDF Downloads 127615 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface
Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff
Abstract:
In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.Keywords: biosensor, nanomaterials, redox enzyme, thiol-modified Au surface
Procedia PDF Downloads 329614 Hands-off Parking: Deep Learning Gesture-based System for Individuals with Mobility Needs
Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Joshue Perez, Javier Araluce
Abstract:
Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, the following paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for indepth gesture classification. This tandem of MediaPipe's extraction prowess and MPL's analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System (ROS), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.Keywords: gesture detection, mediapipe, multiperceptron layer, robot operating system
Procedia PDF Downloads 100613 Modelling the Effect of Biomass Appropriation for Human Use on Global Biodiversity
Authors: Karina Reiter, Stefan Dullinger, Christoph Plutzar, Dietmar Moser
Abstract:
Due to population growth and changing patterns of production and consumption, the demand for natural resources and, as a result, the pressure on Earth’s ecosystems are growing. Biodiversity mapping can be a useful tool for assessing species endangerment or detecting hotspots of extinction risks. This paper explores the benefits of using the change in trophic energy flows as a consequence of the human alteration of the biosphere in biodiversity mapping. To this end, multiple linear regression models were developed to explain species richness in areas where there is no human influence (i.e. wilderness) for three taxonomic groups (birds, mammals, amphibians). The models were then applied to predict (I) potential global species richness using potential natural vegetation (NPPpot) and (II) global ‘actual’ species richness after biomass appropriation using NPP remaining in ecosystems after harvest (NPPeco). By calculating the difference between predicted potential and predicted actual species numbers, maps of estimated species richness loss were generated. Results show that biomass appropriation for human use can indeed be linked to biodiversity loss. Areas for which the models predicted high species loss coincide with areas where species endangerment and extinctions are recorded to be particularly high by the International Union for Conservation of Nature and Natural Resources (IUCN). Furthermore, the analysis revealed that while the species distribution maps of the IUCN Red List of Threatened Species used for this research can determine hotspots of biodiversity loss in large parts of the world, the classification system for threatened and extinct species needs to be revised to better reflect local risks of extinction.Keywords: biodiversity loss, biomass harvest, human appropriation of net primary production, species richness
Procedia PDF Downloads 130