Search results for: slag structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7775

Search results for: slag structure

5855 Between the House and the City: An Investigation of the Structure of the Family/Society and the Role of the Public Housing in Tokyo and Berlin

Authors: Abudjana Babiker

Abstract:

The middle of twenty century witnessed an explosion in public housing. After the great depression, some of the capitalists and communist countries have launched policies and programs to produce public housing in the urban areas. Concurrently, modernity was the leading architecture style at the time excessively supported the production, and principally was the instrument for the success of the public housing program due to the modernism manifesto for manufactured architecture as an international style that serves the society and parallelly connect it to the other design industries which allowed for the production of the architecture elements. After the second world war, public housing flourished, especially in communist’s countries. The idea of public housing was conceived as living spaces at the time, while the Workplaces performed as the place for production and labor. Michel Foucault - At the end of the twenty century- the introduction of biopolitics has had highlighted the alteration in the production and labor inter-function. The house does not precisely perform as the sanctuary, from the production, for the family, it opens the house to be -part of the city as- a space for production, not only to produce objects but to reproduce the family as a total part of the production mechanism in the city. While the public housing kept altering from one country to another after the failure of the modernist’s public housing in the late 1970s, the society continued changing parallelly with the socio-economic condition in each political-economical system, and the public housing thus followed. The family structure in the major cities has been dramatically changing, single parenting and the long working hours, for instance, have been escalating the loneliness in the major cities such as London, Berlin, and Tokyo and the public housing for the families is no longer suits the single lifestyle for the individuals. This Paper investigates the performance of both the single/individual lifestyle and the family/society structure in Tokyo and Berlin in a relation to the utilization of public housing under economical policies and the socio-political environment that produced the individuals and the collective. The study is carried through the study of the undercurrent individual/society and case studies to examine the performance of the utilization of the housing. The major finding is that the individual/collective are revolving around the city; the city identified and acts as a system that magnetized and blurred the line between production and reproduction lifestyle. The mass public housing for families is shifting to be a combination between neo-liberalism and socialism housing.

Keywords: loneliness, production reproduction, work live, publichousing

Procedia PDF Downloads 173
5854 Genetic Structure Analysis through Pedigree Information in a Closed Herd of the New Zealand White Rabbits

Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi

Abstract:

The New Zealand White breed of rabbit is one of the most commonly used, well adapted exotic breeds in India. Earlier studies were limited only to analyze the environmental factors affecting the growth and reproductive performance. In the present study, the population of the New Zealand White rabbits in a closed herd was evaluated for its genetic structure. Data on pedigree information (n=2508) for 18 years (1995-2012) were utilized for the study. Pedigree analysis and the estimates of population genetic parameters based on gene origin probabilities were performed using the software program ENDOG (version 4.8). The analysis revealed that the mean values of generation interval, coefficients of inbreeding and equivalent inbreeding were 1.489 years, 13.233 percent and 17.585 percent, respectively. The proportion of population inbred was 100 percent. The estimated mean values of average relatedness and the individual increase in inbreeding were 22.727 and 3.004 percent, respectively. The percent increase in inbreeding over generations was 1.94, 3.06 and 3.98 estimated through maximum generations, equivalent generations, and complete generations, respectively. The number of ancestors contributing the most of 50% genes (fₐ₅₀) to the gene pool of reference population was 4 which might have led to the reduction in genetic variability and increased amount of inbreeding. The extent of genetic bottleneck assessed by calculating the effective number of founders (fₑ) and the effective number of ancestors (fₐ), as expressed by the fₑ/fₐ ratio was 1.1 which is indicative of the absence of stringent bottlenecks. Up to 5th generation, 71.29 percent pedigree was complete reflecting the well-maintained pedigree records. The maximum known generations were 15 with an average of 7.9 and the average equivalent generations traced were 5.6 indicating of a fairly good depth in pedigree. The realized effective population size was 14.93 which is very critical, and with the increasing trend of inbreeding, the situation has been assessed to be worse in future. The proportion of animals with the genetic conservation index (GCI) greater than 9 was 39.10 percent which can be used as a scale to use such animals with higher GCI to maintain balanced contribution from the founders. From the study, it was evident that the herd was completely inbred with very high inbreeding coefficient and the effective population size was critical. Recommendations were made to reduce the probability of deleterious effects of inbreeding and to improve the genetic variability in the herd. The present study can help in carrying out similar studies to meet the demand for animal protein in developing countries.

Keywords: effective population size, genetic structure, pedigree analysis, rabbit genetics

Procedia PDF Downloads 282
5853 Characterization of 2,4,6-Trinitrotoluene (Tnt)-Metabolizing Bacillus Cereus Sp TUHP2 Isolated from TNT-Polluted Soils in the Vellore District, Tamilnadu, India

Authors: S. Hannah Elizabeth, A. Panneerselvam

Abstract:

Objective: The main objective was to evaluate the degradative properties of Bacillus cereus sp TUHP2 isolated from TNT-Polluted soils in the Vellore District, Tamil Nadu, India. Methods: Among the 3 bacterial genera isolated from different soil samples, one potent TNT degrading strain Bacillus cereus sp TUHP2 was identified. The morphological, physiological and the biochemical properties of the strain Bacillus cereus sp TUHP2 was confirmed by conventional methods and genotypic characterization was carried out using 16S r-DNA partial gene amplification and sequencing. The broken down by products of DNT in the extract was determined by Gas Chromatogram- Mass spectrometry (GC-MS). Supernatant samples from the broth studied at 24 h interval were analyzed by HPLC analysis and the effect on various nutritional and environmental factors were analysed and optimized for the isolate. Results: Out of three isolates one strain TUHP2 were found to have potent efficiency to degrade TNT and revealed the genus Bacillus. 16S rDNA gene sequence analysis showed highest homology (98%) with Bacillus cereus and was assigned as Bacillus cereus sp TUHP2. Based on the energy of the predicted models, the secondary structure predicted by MFE showed the more stable structure with a minimum energy. Products of TNT Transformation showed colour change in the medium during cultivation. TNT derivates such as 2HADNT and 4HADNT were detected by HPLC chromatogram and 2ADNT, 4ADNT by GC/MS analysis. Conclusion: Hence this study presents the clear evidence for the biodegradation process of TNT by strain Bacillus cereus sp TUHP2.

Keywords: bioremediation, biodegradation, biotransformation, sequencing

Procedia PDF Downloads 450
5852 The Influence of Human Movement on the Formation of Adaptive Architecture

Authors: Rania Raouf Sedky

Abstract:

Adaptive architecture relates to buildings specifically designed to adapt to their residents and their environments. To design a biologically adaptive system, we can observe how living creatures in nature constantly adapt to different external and internal stimuli to be a great inspiration. The issue is not just how to create a system that is capable of change but also how to find the quality of change and determine the incentive to adapt. The research examines the possibilities of transforming spaces using the human body as an active tool. The research also aims to design and build an effective dynamic structural system that can be applied on an architectural scale and integrate them all into the creation of a new adaptive system that allows us to conceive a new way to design, build and experience architecture in a dynamic manner. The main objective was to address the possibility of a reciprocal transformation between the user and the architectural element so that the architecture can adapt to the user, as the user adapts to architecture. The motivation is the desire to deal with the psychological benefits of an environment that can respond and thus empathize with human emotions through its ability to adapt to the user. Adaptive affiliations of kinematic structures have been discussed in architectural research for more than a decade, and these issues have proven their effectiveness in developing kinematic structures, responsive and adaptive, and their contribution to 'smart architecture'. A wide range of strategies have been used in building complex kinetic and robotic systems mechanisms to achieve convertibility and adaptability in engineering and architecture. One of the main contributions of this research is to explore how the physical environment can change its shape to accommodate different spatial displays based on the movement of the user’s body. The main focus is on the relationship between materials, shape, and interactive control systems. The intention is to develop a scenario where the user can move, and the structure interacts without any physical contact. The soft form of shifting language and interaction control technology will provide new possibilities for enriching human-environmental interactions. How can we imagine a space in which to construct and understand its users through physical gestures, visual expressions, and response accordingly? How can we imagine a space whose interaction depends not only on preprogrammed operations but on real-time feedback from its users? The research also raises some important questions for the future. What would be the appropriate structure to show physical interaction with the dynamic world? This study concludes with a strong belief in the future of responsive motor structures. We imagine that they are developing the current structure and that they will radically change the way spaces are tested. These structures have obvious advantages in terms of energy performance and the ability to adapt to the needs of users. The research highlights the interface between remote sensing and a responsive environment to explore the possibility of an interactive architecture that adapts to and responds to user movements. This study ends with a strong belief in the future of responsive motor structures. We envision that it will improve the current structure and that it will bring a fundamental change to the way in which spaces are tested.

Keywords: adaptive architecture, interactive architecture, responsive architecture, tensegrity

Procedia PDF Downloads 140
5851 Fault Tolerant Control of the Dynamical Systems Based on Internal Structure Systems

Authors: Seyed Mohammad Hashemi, Shahrokh Barati

Abstract:

The problem of fault-tolerant control (FTC) by accommodation method has been studied in this paper. The fault occurs in any system components such as actuators, sensors or internal structure of the system and leads to loss of performance and instability of the system. When a fault occurs, the purpose of the fault-tolerant control is designate strategy that can keep the control loop stable and system performance as much as possible perform it without shutting down the system. Here, the section of fault detection and isolation (FDI) system has been evaluated with regard to actuator's fault. Designing a fault detection and isolation system for a multi input-multi output (MIMO) is done by an unknown input observer, so the system is divided to several subsystems as the effect of other inputs such as disturbing given system state equations. In this observer design method, the effect of these disturbances will weaken and the only fault is detected on specific input. The results of this approach simulation can confirm the ability of the fault detection and isolation system design. After fault detection and isolation, it is necessary to redesign controller based on a suitable modification. In this regard after the use of unknown input observer theory and obtain residual signal and evaluate it, PID controller parameters redesigned for iterative. Stability of the closed loop system has proved in the presence of this method. Also, In order to soften the volatility caused by Annie variations of the PID controller parameters, modifying Sigma as a way acceptable solution used. Finally, the simulation results of three tank popular example confirm the accuracy of performance.

Keywords: fault tolerant control, fault detection and isolation, actuator fault, unknown input observer

Procedia PDF Downloads 440
5850 Remote Controlled of In-Situ Forming Thermo-sensitive Hydrogel Nanocomposite for Hyperthermia Therapy Application: Synthesis and Characterizations

Authors: Elbadawy A. Kamoun

Abstract:

Magnetically responsive hydrogel nanocomposite (NCH) based on composites of superparamagnetic of Fe3O4 nano-particles and temperature responsive hydrogel matrices were developed. The nanocomposite hydrogel system based on the temperature sensitive N-isopropylacrylamide hydrogels crosslinked by poly(ethylene glycol)-400 dimethacrylate (PEG400DMA) incorporating with chitosan derivative, was synthesized and characterized. Likewise, the NCH system was synthesized by visible-light free radical photopolymerization, using carboxylated camphorquinone-amine system to avoid the common risks of the use of UV-light especially in hyperthermia treatment. Superparamagnetic of iron oxide nanoparticles were introduced into the hydrogel system by polymerizing mixture technique and monomer solution. FT-IR with Raman spectroscopy and Wide angle-XRD analysis were utilized to verify the chemical structure of NCH and exfoliation reaction for nanoparticles, respectively. Additionally, morphological structure of NCH was investigated using SEM and TEM photographs. The swelling responsive of the current nanocomposite hydrogel system with different crosslinking conditions, temperature, magnetic field efficiency, and the presence effect of magnetic nanoparticles were evaluated. Notably, hydrolytic degradation of this system was proved in vitro application. While, in-vivo release profile behavior is under investigation nowadays. Moreover, the compatibility and cytotoxicity tests were previously investigated in our studies for photoinitiating system. These systems show promised polymeric material candidate devices and are expected to have a wide applicability in various biomedical applications as mildly.

Keywords: hydrogel nanocomposites, tempretaure-responsive hydrogel, superparamagnetic nanoparticles, hyperthermia therapy

Procedia PDF Downloads 262
5849 Code Embedding for Software Vulnerability Discovery Based on Semantic Information

Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson

Abstract:

Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.

Keywords: code representation, deep learning, source code semantics, vulnerability discovery

Procedia PDF Downloads 142
5848 Progressive Collapse of Cooling Towers

Authors: Esmaeil Asadzadeh, Mehtab Alam

Abstract:

Well documented records of the past failures of the structures reveals that the progressive collapse of structures is one of the major reasons for dramatic human loss and economical consequences. Progressive collapse is the failure mechanism in which the structure fails gradually due to the sudden removal of the structural elements. The sudden removal of some structural elements results in the excessive redistributed loads on the others. This sudden removal may be caused by any sudden loading resulted from local explosion, impact loading and terrorist attacks. Hyperbolic thin walled concrete shell structures being an important part of nuclear and thermal power plants are always prone to such terrorist attacks. In concrete structures, the gradual failure would take place by generation of initial cracks and its propagation in the supporting columns along with the tower shell leading to the collapse of the entire structure. In this study the mechanism of progressive collapse for such high raised towers would be simulated employing the finite element method. The aim of this study would be providing clear conceptual step-by-step descriptions of various procedures for progressive collapse analysis using commercially available finite element structural analysis software’s, with the aim that the explanations would be clear enough that they will be readily understandable and will be used by practicing engineers. The study would be carried out in the following procedures: 1. Provide explanations of modeling, simulation and analysis procedures including input screen snapshots; 2. Interpretation of the results and discussions; 3. Conclusions and recommendations.

Keywords: progressive collapse, cooling towers, finite element analysis, crack generation, reinforced concrete

Procedia PDF Downloads 472
5847 Rethink Urban Resilience: An Introductory Study Towards Resilient Spatial Structure of Refugees Neighborhoods

Authors: Salwa Mohammad Alawneh

Abstract:

The ongoing humanitarian crises spur rapid and unpredicted refugee influxes resulting in demographic changes in cities. Regarding different urban systems are vulnerable in refugee neighborhoods. With the consequent social, economic, and spatial challenges, cities must respond with a more durable and sustainable approach based on urban resilience. The paper systematically approaches urban resilience to contribute to refugee spaces by reflecting on the overall urban systems of their neighborhoods. The research will review the urban resilience literature to develop an evaluation framework. The developed framework applies urban resilience more holistically in refugee neighborhoods and expands to the urban systems of social, economic, and spatial. However, the main highlight of this paper is the resilient spatial structure in refugee neighborhoods to face the internal and complex stress of refugee waves and their demographic changes. Finding a set of resilient spatial measurements and focusing on urban forms at a neighborhood scale provide vulnerability reduction and enhance adaptation capacity. As a model example, the paper applies these measurements and facilitates geospatial technologies to one of the refugee neighborhoods in Amman, Jordan, namely Al-Jubilee. The application in Al-Jubilee helps to demonstrate a road map towards a developmental pattern in design and planning by different decision-makers of inter-governmental and humanitarian organizations. In this regard, urban resilience improves the humanitarian assistantship of refugee settings beyond providing the essential needs. In conclusion, urban resilience responds to the different challenges of refugee neighborhoods by supporting urban stability, improving livability, and maintaining both urban functions and security.

Keywords: urban resilience of refugee, resilient urban form, refugee neighborhoods, humanitarian assistantship, refugee in Jordan

Procedia PDF Downloads 145
5846 The Effect of Silanization on Alumina for Improving the Compatibility with Poly(Methacrylic Acid) Matrix for Dental Restorative Materials

Authors: Andrei Tiberiu Cucuruz, Ecaterina Andronescu, Cristina Daniela Ghitulica, Andreia Cucuruz

Abstract:

In modern dentistry, the application of resin-based composites continues to increase and in the majority of countries has completely replaced mercury amalgams. Alumina (Al2O3) is a representative bioinert ceramic with a variety of applications in industry as well as in medicine. Alumina has the potential to improve electrical resistivity and thermal conductivity of polymers. The application of poly(methacrylic acid) (PMAA) in medicine was poorly investigated in the past but can lead to good results by the incorporation of alumina particles that can bring bioinertness to the composite. However, because of the differences related to chemical bonding of these materials, the interaction is very weak at the interface leading to no significant values in practical situations. The aim of this work was to modify the structure of alumina with silane coupling agents and to study the influence of silanization on the physicomechanical properties of the resulting composite materials. Two silanes were used in this study: 3-aminopropyl-trimethoxysilane (APTMS) and dichlorodimethylsilane (DCDMS). Both silanes proved to have a significant effect on the overall performance of composites by establishing bonds with the polymer matrix and the filler. All these improvements in dental adhesive systems made for bonding resin composites to tooth structure have enhanced the clinical application of polymeric restorative materials to the position that they are now considered the material of choice for esthetic restoration.

Keywords: alumina, compressive strength, dental materials, silane coupling agents, poly(methacrylic acid)

Procedia PDF Downloads 336
5845 The Production of Collagen and Collagen Peptides from Nile Tilapia Skin Using Membrane Technology

Authors: M. Thuanthong, W. Youravong, N. Sirinupong

Abstract:

Nile tilapia (Oreochromis niloticus) is one of fish species cultured in Thailand with a high production volume. A lot of skin is generated during fish processing. In addition, there are many research reported that fish skin contains abundant of collagen. Thus, the use of Nile tilapia skin as collagen source can increase the benefit of industrial waste. In this study, Acid soluble collagen (ASC) was extracted at 5, 15 or 25 ˚C with 0.5 M acetic acid then the acid was removed out and collagen was concentrated by ultrafiltration-diafiltration (UFDF). The triple helix collagen from UFDF process was used as substrate to produce collagen peptides by alcalase hydrolysis in an enzymatic membrane reactor (EMR) coupling with 1 kDa molecular weight cut off (MWCO) polysulfone hollow fiber membrane. The results showed that ASC extracted at high temperature (25 ˚C) with 0.5 M acetic acid for 5 h still preserved triple helix structure. In the UFDF process, the acid removal was higher than 90 % without any effect on ASC properties, particularly triple helix structure as indicated by circular dichroism spectrum. Moreover, Collagen from UFDF was used to produce collagen peptides by EMR. In EMR, collagen was pre-hydrolyzed by alcalase for 60 min before introduced to membrane separation. The EMR operation was operated for 10 h and provided a good of protein conversion stability. The results suggested that there is a successfulness of UF in application for acid removal to produce ASC with desirable preservation of its quality. In addition, the EMR was proven to be an effective process to produce low molecular weight peptides with ACE-inhibitory activity properties.

Keywords: acid soluble collagen, ultrafiltration-diafiltration, enzymatic membrane reactor, ace-inhibitory activity

Procedia PDF Downloads 462
5844 High Performance Wood Shear Walls and Dissipative Anchors for Damage Limitation

Authors: Vera Wilden, Benno Hoffmeister, Georgios Balaskas, Lukas Rauber, Burkhard Walter

Abstract:

Light-weight timber frame elements represent an efficient structural solution for wooden multistory buildings. The wall elements of such buildings – which act as shear diaphragms- provide lateral stiffness and resistance to wind and seismic loads. The tendency towards multi-story structures leads to challenges regarding the prediction of stiffness, strength and ductility of the buildings. Lightweight timber frame elements are built up of several structural parts (sheeting, fasteners, frame, support and anchorages); each of them contributing to the dynamic response of the structure. This contribution describes the experimental and numerical investigation and development of enhanced lightweight timber frame buildings. These developments comprise high-performance timber frame walls with the variable arrangements of sheathing planes and dissipative anchors at the base of the timber buildings, which reduce damages to the timber structure and can be exchanged after significant earthquakes. In order to prove the performance of the developed elements in the context of a real building a full-scale two-story building core was designed and erected in the laboratory and tested experimentally for its seismic performance. The results of the tests and a comparison of the test results to the predicted behavior are presented. Observation during the test also reveals some aspects of the design and details which need to consider in the application of the timber walls in the context of the complete building.

Keywords: dissipative anchoring, full scale test, push-over-test, wood shear walls

Procedia PDF Downloads 229
5843 Insight into the Binding Theme of CA-074Me to Cathepsin B: Molecular Dynamics Simulations and Scaffold Hopping to Identify Potential Analogues as Anti-Neurodegenerative Diseases

Authors: Tivani Phosa Mashamba-Thompson, Mahmoud E. S. Soliman

Abstract:

To date, the cause of neurodegeneration is not well understood and diseases that stem from neurodegeneration currently have no known cures. Cathepsin B (CB) enzyme is known to be involved in the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases (NDs). CA-074Me is a membrane-permeable irreversible selective cathepsin B (CB) inhibitor as confirmed by in vivo studies. Due to the lack of the crystal structure, the binding mode of CA-074Me with the human CB at molecular level has not been previously reported. The main aim of this study is to gain an insight into the binding mode of CB CA-074Me to human CB using various computational tools. Herein, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition analysis were employed to accomplish the aim of the study. Another objective was to identify novel CB inhibitors based on the structure of CA-074Me using fragment based drug design using scaffold hoping drug design approach. Results showed that two of the designed ligands (hit 1 and hit 2) were found to have better binding affinities than the prototype inhibitor, CA-074Me, by ~2-3 kcal/mol. Per-residue energy decomposition showed that amino acid residues Cys29, Gly196, His197 and Val174 contributed the most towards the binding. The Van der Waals binding forces were found to be the major component of the binding interactions. The findings of this study should assist medicinal chemist towards the design of potential irreversible CB inhibitors.

Keywords: cathepsin B, scaffold hopping, docking, molecular dynamics, binding-free energy, neurodegerative diseases

Procedia PDF Downloads 365
5842 Environmental Interactions in Riparian Vegetation Cover in an Urban Stream Corridor: A Case Study of Duzce Asar Suyu

Authors: Engin Eroğlu, Oktay Yıldız, Necmi Aksoy, Akif Keten, Mehmet Kıvanç Ak, Şeref Keskin, Elif Atmaca, Sertaç Kaya

Abstract:

Nowadays, green spaces in urban areas are under threat and decreasing their percentages in the urban areas because of increasing population, urbanization, migration, and some cultural changes in quality. An important element of the natural landscape water and water-related natural ecosystems are exposed to corruption due to these pressures. A landscape has owned many different types of elements or units, a more dominant structure than other landscapes as good or bad perceptible extent different direction and variable reveals a unique structure and character of the landscape. Whereas landscapes deal with two main groups as urban and rural according to their location on the world, especially intersection areas of urban and rural named semi-urban or semi-rural present variety landscape features. The main components of the landscape are defined as patch-matrix-corridor. The corridors include quite various vegetation types such as riparian, wetland and the others. In urban areas, natural water corridors are an important elements of the diversity of the riparian vegetation cover. In particular, water corridors attract attention with a natural diversity and lack of fragmentation, degradation and artificial results. Thanks to these features, without a doubt, water corridors are the important component of all cities in the world. These corridors not only divide the city into two separate sides, but also assured the ecological connectivity between the two sides of the city. The main objective of this study is to determine the vegetation and habitat features of urban stream corridor according to environmental interactions. Within this context, this study will be realized that 'Asar Suyu' is an important component of the city of Düzce. Moreover, the riparian zone touched contiguous area borders of the city and overlaid the urban development limits of the city, determining of characteristics of the corridor will be carried out as floristic and habitat analysis. Consequently, vegetation structure and habitat features which play an important role between riparian zone vegetation covers and environmental interaction will be determined. This study includes first results of The Scientific and Technological Research Council of Turkey (TUBITAK-116O596; 'Determining of Landscape Character of Urban Water Corridors as Visual and Ecological; A Case Study of Asar Suyu in Duzce').

Keywords: corridor, Duzce, landscape ecology, riparian vegetation

Procedia PDF Downloads 326
5841 A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks

Authors: Qinglin Liu, Zhiyong Lin, Zongheng Wei, Jianfeng Wen, Congming Yi, Hai Liu

Abstract:

The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).

Keywords: channel hopping, blind rendezvous, cognitive radio networks, quaternary-quinary coding

Procedia PDF Downloads 76
5840 Influences of Plunge Speed on Axial Force and Temperature of Friction Stir Spot Welding in Thin Aluminum A1100

Authors: Suwarsono, Ario S. Baskoro, Gandjar Kiswanto, Budiono

Abstract:

Friction Stir Welding (FSW) is a relatively new technique for joining metal. In some cases on aluminum joining, FSW gives better results compared with the arc welding processes, including the quality of welds and produces less distortion.FSW welding process for a light structure and thin materials requires small forces as possible, to avoid structure deflection. The joining process on FSW occurs because of melting temperature and compressive forces, the temperature generation of caused by material deformation and friction between the cutting tool and material. In this research, High speed rotation of spindle was expected to reduce the force required for deformation. The welding material was Aluminum A1100, with thickness of 0.4 mm. The tool was made of HSS material which was shaped by micro grinding process. Tool shoulder diameter is 4 mm, and the length of pin was 0.6 mm (with pin diameter= 1.5 mm). The parameters that varied were the plunge speed (2 mm/min, 3 mm/min, 4 mm/min). The tool speed is fixed at 33,000 rpm. Responses of FSSW parameters to analyze were Axial Force (Z-Force), Temperature and the Shear Strength of welds. Research found the optimum µFSSW parameters, it can be concluded that the most important parameters in the μFSSW process was plunge speed. lowest plunge speed (2 mm / min) causing the lowest axial force (110.40 Newton). The increases of plunge speed will increase the axial force (maximum Z-Farce= 236.03 Newton), and decrease the shear strength of welds.

Keywords: friction stir spot welding, aluminum A1100, plunge speed, axial force, shear strength

Procedia PDF Downloads 299
5839 Evaluation of Synthesis and Structure Elucidation of Some Benzimidazoles as Antimicrobial Agents

Authors: Ozlem Temiz Arpaci, Meryem Tasci, Hakan Goker

Abstract:

Benzimidazole, a structural isostere of indol and purine nuclei that can interact with biopolymers, can be identified as master key. So that benzimidazole compounds are important fragments in medicinal chemistry because of their wide range of biological activities including antimicrobial activity. We planned to synthesize some benzimidazole compounds for developing new antimicrobial drug candidates. In this study, we put some heterocyclic rings on second position and an amidine group on the fifth position of benzimidazole ring and synthesized them using a multiple step procedure. For the synthesis of the compounds, as the first step, 4-chloro-3-nitrobenzonitrile was reacted with cyclohexylamine in dimethyl formamide. Imidate esters (compound 2) were then prepared with absolute ethanol saturated with dry HCl gas. These imidate esters which were not too stable were converted to compound 3 by passing ammonia gas through ethanol. At the Pd / C catalyst, the nitro group is reduced to the amine group (compound 4). Finally, various aldehyde derivatives were reacted with sodium metabisulfite addition products to give compound 5-20. Melting points were determined on a Buchi B-540 melting point apparatus in open capillary tubes and are uncorrected. Elemental analyses were done a Leco CHNS 932 elemental analyzer. 1H-NMR and 13C-NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer using DMSO-d6. Mass spectra were acquired on a Waters Micromass ZQ using the ESI(+) method. The structures of them were supported by spectral data. The 1H-NMR, 13C NMR and mass spectra and elemental analysis results agree with those of the proposed structures. Antimicrobial activity studies of the synthesized compounds are under the investigation.

Keywords: benzimidazoles, synthesis, structure elucidation, antimicrobial

Procedia PDF Downloads 142
5838 The Markers -mm and dämmo in Amharic: Developmental Approach

Authors: Hayat Omar

Abstract:

Languages provide speakers with a wide range of linguistic units to organize and deliver information. There are several ways to verbally express the mental representations of events. According to the linguistic tools they have acquired, speakers select the one that brings out the most communicative effect to convey their message. Our study focuses on two markers, -mm and dämmo, in Amharic (Ethiopian Semitic language). Our aim is to examine, from a developmental perspective, how they are used by speakers. We seek to distinguish the communicative and pragmatic functions indicated by means of these markers. To do so, we created a corpus of sixty narrative productions of children from 5-6, 7-8 to 10-12 years old and adult Amharic speakers. The experimental material we used to collect our data is a series of pictures without text 'Frog, Where are you?'. Although -mm and dämmo are each used in specific contexts, they are sometimes analyzed as being interchangeable. The suffix -mm is complex and multifunctional. It marks the end of the negative verbal structure, it is found in the relative structure of the imperfect, it creates new words such as adverbials or pronouns, it also serves to coordinate words, sentences and to mark the link between macro-propositions within a larger textual unit. -mm was analyzed as marker of insistence, topic shift marker, element of concatenation, contrastive focus marker, 'bisyndetic' coordinator. On the other hand, dämmo has limited function and did not attract the attention of many authors. The only approach we could find analyzes it in terms of 'monosyndetic' coordinator. The paralleling of these two elements made it possible to understand their distinctive functions and refine their description. When it comes to marking a referent, the choice of -mm or dämmo is not neutral, depending on whether the tagged argument is newly introduced, maintained, promoted or reintroduced. The presence of these morphemes explains the inter-phrastic link. The information is seized by anaphora or presupposition: -mm goes upstream while dämmo arrows downstream, the latter requires new information. The speaker uses -mm or dämmo according to what he assumes to be known to his interlocutors. The results show that -mm and dämmo, although all the speakers use them both, do not always have the same scope according to the speaker and vary according to the age. dämmo is mainly used to mark a contrastive topic to signal the concomitance of events. It is more commonly used in young children’s narratives (F(3,56) = 3,82, p < .01). Some values of -mm (additive) are acquired very early while others are rather late and increase with age (F(3,56) = 3,2, p < .03). The difficulty is due not only because of its synthetic structure but primarily because it is multi-purpose and requires a memory work. It highlights the constituent on which it operates to clarify how the message should be interpreted.

Keywords: acquisition, cohesion, connection, contrastive topic, contrastive focus, discourse marker, pragmatics

Procedia PDF Downloads 125
5837 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall

Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi

Abstract:

Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.

Keywords: steel plate shear wall, abacus software, finite element method, , boundary element, seismic structural improvement, von misses stress

Procedia PDF Downloads 82
5836 Political Corruption in an Authoritarian Regime: a Story from the Kingdom of Morocco

Authors: Noureddine Radouai

Abstract:

Corruption is an endemic phenomenon in many countries around the globe. Morocco, as an authoritarian regime, relies on corruption for monarchy survival. I analyze the Makhzen structure and methods that it follows to exchange corruption for political loyalty. The abuse of power in Morocco is sponsored by the monarch itself as it is its way to remain its importance in the regime.

Keywords: corruption, Clientelism, authoritarian regime, Morocco

Procedia PDF Downloads 125
5835 Windphil Poetic in Architecture: Energy Efficient Strategies in Modern Buildings of Iran

Authors: Sepideh Samadzadehyazdi, Mohammad Javad Khalili, Sarvenaz Samadzadehyazdi, Mohammad Javad Mahdavinejad

Abstract:

The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings.

Keywords: natural ventilation strategies, wind catchers, wind flow, Iranian modern buildings

Procedia PDF Downloads 322
5834 Opto-Electronic Properties and Structural Phase Transition of Filled-Tetrahedral NaZnAs

Authors: R. Khenata, T. Djied, R. Ahmed, H. Baltache, S. Bin-Omran, A. Bouhemadou

Abstract:

We predict structural, phase transition as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound in this study. Calculations are carried out by employing the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme developed within the structure of density functional theory (DFT). Exchange-correlation energy/potential (EXC/VXC) functional is treated using Perdew-Burke and Ernzerhof (PBE) parameterization for generalized gradient approximation (GGA). In addition to Trans-Blaha (TB) modified Becke-Johnson (mBJ) potential is incorporated to get better precision for optoelectronic properties. Geometry optimization is carried out to obtain the reliable results of the total energy as well as other structural parameters for each phase of NaZnAs compound. Order of the structural transitions as a function of pressure is found as: Cu2Sb type → β → α phase in our study. Our calculated electronic energy band structures for all structural phases at the level of PBE-GGA as well as mBJ potential point out; NaZnAs compound is a direct (Γ–Γ) band gap semiconductor material. However, as compared to PBE-GGA, mBJ potential approximation reproduces higher values of fundamental band gap. Regarding the optical properties, calculations of real and imaginary parts of the dielectric function, refractive index, reflectivity coefficient, absorption coefficient and energy loss-function spectra are performed over a photon energy ranging from 0.0 to 30.0 eV by polarizing incident radiation in parallel to both [100] and [001] crystalline directions.

Keywords: NaZnAs, FP-LAPW+lo, structural properties, phase transition, electronic band-structure, optical properties

Procedia PDF Downloads 417
5833 The Influence of the Regional Sectoral Structure on the Socio-Economic Development of the Arkhangelsk Region

Authors: K. G. Sorokozherdyev, E. A. Efimov

Abstract:

The socio-economic development of regions and countries is an important research issue. Today, in the face of many negative events in the global and regional economies, it is especially important to identify those areas that can serve as sources of economic growth and the basis for the well-being of the population. This study aims to identify the most important sectors of the economy of the Arkhangelsk region that can contribute to the socio-economic development of the region as a whole. For research, the Arkhangelsk region was taken as one of the typical Russian regions that do not have significant reserves of hydrocarbons nor there are located any large industrial complexes. In this regard, the question of possible origins of economic growth seems especially relevant. The basis of this study constitutes the distributed lag regression model (ADL model) developed by the authors, which is based on quarterly data on the socio-economic development of the Arkhangelsk region for the period 2004-2016. As a result, we obtained three equations reflecting the dynamics of three indicators of the socio-economic development of the region -the average wage, the regional GRP, and the birth rate. The influencing factors are the shares in GRP of such sectors as agriculture, mining, manufacturing, construction, wholesale and retail trade, hotels and restaurants, as well as the financial sector. The study showed that the greatest influence on the socio-economic development of the region is exerted by such industries as wholesale and retail trade, construction, and industrial sectors. The study can be the basis for forecasting and modeling the socio-economic development of the Arkhangelsk region in the short and medium term. It also can be helpful while analyzing the effectiveness of measures aimed at stimulating those or other industries of the region. The model can be used in developing a regional development strategy.

Keywords: regional economic development, regional sectoral structure, ADL model, Arkhangelsk region

Procedia PDF Downloads 90
5832 Microwave Synthesis and Molecular Docking Studies of Azetidinone Analogous Bearing Diphenyl Ether Nucleus as a Potent Antimycobacterial and Antiprotozoal Agent

Authors: Vatsal M. Patel, Navin B. Patel

Abstract:

The present studies deal with the developing a series bearing a diphenyl ethers nucleus using structure-based drug design concept. A newer series of diphenyl ether based azetidinone namely N-(3-chloro-2-oxo-4-(3-phenoxyphenyl)azetidin-1-yl)-2-(substituted amino)acetamide (2a-j) have been synthesized by condensation of m-phenoxybenzaldehyde with 2-(substituted-phenylamino)acetohydrazide followed by the cyclisation of resulting Schiff base (1a-j) by conventional method as well as microwave heating approach as a part of an environmentally benign synthetic protocol. All the synthesized compounds were characterized by spectral analysis and were screened for in vitro antimicrobial, antitubercular and antiprotozoal activity. The compound 2f was found to be most active M. tuberculosis (6.25 µM) MIC value in the primary screening as well as this same derivative has been found potency against L. mexicana and T. cruzi with MIC value 2.09 and 6.69 µM comparable to the reference drug Miltefosina and Nifurtimox. To provide understandable evidence to predict binding mode and approximate binding energy of a compound to a target in the terms of ligand-protein interaction, all synthesized compounds were docked against an enoyl-[acyl-carrier-protein] reductase of M. tuberculosis (PDB ID: 4u0j). The computational studies revealed that azetidinone derivatives have a high affinity for the active site of enzyme which provides a strong platform for new structure-based design efforts. The Lipinski’s parameters showed good drug-like properties and can be developed as an oral drug candidate.

Keywords: antimycobacterial, antiprotozoal, azetidinone, diphenylether, docking, microwave

Procedia PDF Downloads 145
5831 Preparation of Conductive Composite Fiber by the Reduction of Silver Particles onto Hydrolyzed Polyacrylonitrile Fiber

Authors: Z. Okay, M. Kalkan Erdoğan, M. Şahin, M. Saçak

Abstract:

Polyacrylonitrile (PAN) is one of the most common and cheap fiber-forming polymers because of its high strength and high abrasion resistance properties. The result of alkaline hydrolysis of PAN fiber could be formed the products with conjugated sequences of –C=N–, acrylamide, sodium acrylate, and amidine. In this study, PAN fiber was hydrolyzed in a solution of sodium hydroxide, and this hydrolyzed PAN (HPAN) fiber was used to prepare conductive composite fiber by silver particles. The electrically conductive PAN fiber has the usage potential to produce variety of materials such as antistatic materials, life jackets and static charge reducing products. We monitored the change in the weight loss values of the PAN fiber with hydrolysis time. It was observed that a 60 % of weight loss was obtained in the fiber weight after 7h hydrolysis under the investigated conditions, but the fiber lost its fibrous structure. The hydrolysis time of 5h was found to be suitable in terms of preserving its fibrous structure. The change in the conductivity values of the composite with the preparation conditions such as hydrolysis time, silver ion concentration was studied. PAN fibers with different degrees of hydrolysis were treated with aqueous solutions containing different concentrations of silver ions by continuous stirring at 20 oC for 30 min, and the composite having the maximum conductivity of 2 S/cm could be prepared. The antibacterial property of the conductive HPAN fibers participated silver was also investigated. While the hydrolysis of the PAN fiber was characterized with FTIR and SEM techniques, the silver reduction process of the HPAN fiber was investigated with SEM and TGA-DTA techniques. The SEM micrographs showed that the surface of HPAN fiber was rougher and much more corroded than that of the PAN fiber. Composite, Conducting polymer, Fiber, Polyacrylonitrile.

Keywords: composite, conducting polymer, fiber, polyacrylonitrile

Procedia PDF Downloads 459
5830 The Future of the Architect's Profession in France with the Emergence of Building Information Modelling

Authors: L. Mercier, D. Beladjine, K. Beddiar

Abstract:

The digital transition of building in France brings many changes which some have been able to face very quickly, while others are struggling to find their place and the interest that BIM can bring in their profession. BIM today is already adopted or initiated by construction professionals. However, this change, which can be drastic for some, prevents them from integrating it definitively. This is the case with architects. The profession is shared on the practice of BIM in its exercise. The risk of not adopting this new working method now and of not wanting to switch to its new digital tools leads us to question the future of the profession in view of the gap that is likely to be created within project management. In order to deal with the subject efficiently, our work was based on a documentary watch on BIM and then on the profession of architect, which allowed us to establish links on these two subjects. The observation of the economic model towards which the agencies tend and the trend of the sought after profiles made it possible to develop the opportunities and the brakes likely to impact the future of the profession of architect. The centralization of research directs work towards the conclusion that the model implemented by companies does not allow to integrate BIM within their structure. A solution hypothesis was then issued, focusing on the development of agencies through the diversity of profiles, skills to be integrated internally with the aim of diversifying their skills, and their business practices. In order to address this hypothesis of a multidisciplinary agency model, we conducted a survey of architectural firms. It is built on the model of Anglo-Saxon countries, which do not have the same functioning in comparison to the French model. The results obtained showed a risk of gradual disappearance on the market from small agencies in favor of those who will have and could take this BIM working method. This is why the architectural profession must, first of all, look at what is happening within its training before absolutely wanting to diversify the profiles to integrate into its structure. This directs the study on the training of architects. The schools of French architects are generally behind schedule if we allow the comparison to the schools of engineers. The latter is currently experiencing a slight improvement with the emergence of masters and BIM options during the university course. If the training of architects develops towards learning BIM and the agencies have the desire to integrate different but complementary profiles, then they will develop their skills internally and therefore open their profession to new functions. The place of BIM Management on projects will allow the architect to remain in control of the project because of their overall vision of the project. In addition, the integration of BIM and more generally of the life cycle analysis of the structure will make it possible to guarantee eco-design or eco-construction by approaching the constraints of sustainable development omnipresent on the planet.

Keywords: building information modelling, BIM, BIM management, BIM manager, BIM architect

Procedia PDF Downloads 102
5829 A Two-Week and Six-Month Stability of Cancer Health Literacy Classification Using the CHLT-6

Authors: Levent Dumenci, Laura A. Siminoff

Abstract:

Health literacy has been shown to predict a variety of health outcomes. Reliable identification of persons with limited cancer health literacy (LCHL) has been proved questionable with existing instruments using an arbitrary cut point along a continuum. The CHLT-6, however, uses a latent mixture modeling approach to identify persons with LCHL. The purpose of this study was to estimate two-week and six-month stability of identifying persons with LCHL using the CHLT-6 with a discrete latent variable approach as the underlying measurement structure. Using a test-retest design, the CHLT-6 was administered to cancer patients with two-week (N=98) and six-month (N=51) intervals. The two-week and six-month latent test-retest agreements were 89% and 88%, respectively. The chance-corrected latent agreements estimated from Dumenci’s latent kappa were 0.62 (95% CI: 0.41 – 0.82) and .47 (95% CI: 0.14 – 0.80) for the two-week and six-month intervals, respectively. High levels of latent test-retest agreement between limited and adequate categories of cancer health literacy construct, coupled with moderate to good levels of change-corrected latent agreements indicated that the CHLT-6 classification of limited versus adequate cancer health literacy is relatively stable over time. In conclusion, the measurement structure underlying the instrument allows for estimating classification errors circumventing limitations due to arbitrary approaches adopted by all other instruments. The CHLT-6 can be used to identify persons with LCHL in oncology clinics and intervention studies to accurately estimate treatment effectiveness.

Keywords: limited cancer health literacy, the CHLT-6, discrete latent variable modeling, latent agreement

Procedia PDF Downloads 164
5828 Scientific Development as Diffusion on a Social Network: An Empirical Case Study

Authors: Anna Keuchenius

Abstract:

Broadly speaking, scientific development is studied in either a qualitative manner with a focus on the behavior and interpretations of academics, such as the sociology of science and science studies or in a quantitative manner with a focus on the analysis of publications, such as scientometrics and bibliometrics. Both come with a different set of methodologies and few cross-references. This paper contributes to the bridging of this divide, by on the on hand approaching the process of scientific progress from a qualitative sociological angle and using on the other hand quantitative and computational techniques. As a case study, we analyze the diffusion of Granovetter's hypothesis from his 1973 paper 'On The Strength of Weak Ties.' A network is constructed of all scientists that have referenced this particular paper, with directed edges to all other researchers that are concurrently referenced with Granovetter's 1973 paper. Studying the structure and growth of this network over time, it is found that Granovetter's hypothesis is used by distinct communities of scientists, each with their own key-narrative into which the hypothesis is fit. The diffusion within the communities shares similarities with the diffusion of an innovation in which innovators, early adopters, and an early-late majority can clearly be distinguished. Furthermore, the network structure shows that each community is clustered around one or few hub scientists that are disproportionately often referenced and seem largely responsible for carrying the hypothesis into their scientific subfield. The larger implication of this case study is that the diffusion of scientific hypotheses and ideas are not the spreading of well-defined objects over a network. Rather, the diffusion is a process in which the object itself dynamically changes in concurrence with its spread. Therefore it is argued that the methodology presented in this paper has potential beyond the scientific domain, in the study of diffusion of other not well-defined objects, such as opinions, behavior, and ideas.

Keywords: diffusion of innovations, network analysis, scientific development, sociology of science

Procedia PDF Downloads 295
5827 Concrete Compressive Strengths of Major Existing Buildings in Kuwait

Authors: Zafer Sakka, Husain Al-Khaiat

Abstract:

Due to social and economic considerations, owners all over the world desire to keep and use existing structures, including aging ones. However, these structures, especially those that are dear, need accurate condition assessment, and proper safety evaluation. More than half of the budget spent on construction activities in developed countries is related to the repair and maintenance of these reinforced concrete (R/C) structures. Also, periodical evaluation and assessment of relatively old concrete structures are vital and imperative. If the evaluation and assessment of structural components of a particular aging R/C structure reveal that repairs are essential for these components, these repairs should not be delayed. Delaying the repairs has the potential of losing serviceability of the whole structure and/or causing total failure and collapse of the structure. In addition, if repairs are delayed, the cost of maintenance will skyrocket as well. It can also be concluded from the above that the assessment of existing needs to receive more consideration and thought from the structural engineering societies and professionals. Ten major existing structures in Kuwait city that were constructed in the 1970s were assessed for structural reliability and integrity. Numerous concrete samples were extracted from the structural systems of the investigated buildings. This paper presents the results of the compressive strength tests that were conducted on the extracted cores. The results are compared for the buildings’ columns and beams elements and compared with the design strengths. The collected data were statistically analyzed. The average compressive strengths of the concrete cores that were extracted from the ten buildings had a large variation. The lowest average compressive strength for one of the buildings was 158 kg/cm². This building was deemed unsafe and economically unfeasible to be repaired; accordingly, it was demolished. The other buildings had an average compressive strengths fall in the range 215-317 kg/cm². Poor construction practices were the main cause for the strengths. Although most of the drawings and information for these buildings were lost during the invasion of Kuwait in 1990, however, information gathered indicated that the design strengths of the beams and columns for most of these buildings were in the range of 280-400 kg/cm². Following the study, measures were taken to rehabilitate the buildings for safety. The mean compressive strength for all cores taken from beams and columns of the ten buildings was 256.7 kg/cm². The values range was 139 to 394 kg/cm². For columns, the mean was 250.4 kg/cm², and the values ranged from 137 to 394 kg/cm². However, the mean compressive strength for the beams was higher than that of columns. It was 285.9 kg/cm², and the range was 181 to 383 kg/cm². In addition to the concrete cores that were extracted from the ten buildings, the 28-day compressive strengths of more than 24,660 concrete cubes were collected from a major ready-mixed concrete supplier in Kuwait. The data represented four different grades of ready-mix concrete (250, 300, 350, and 400 kg/cm²) manufactured between the year 2003 and 2018. The average concrete compressive strength for the different concrete grades (250, 300, 350 and 400 kg/cm²) was found to be 318, 382, 453 and 504 kg/cm², respectively, and the coefficients of variations were found to be 0.138, 0.140, 0.157 and 0.131, respectively.

Keywords: concrete compressive strength, concrete structures, existing building, statistical analysis.

Procedia PDF Downloads 105
5826 Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications

Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita

Abstract:

Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.

Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution

Procedia PDF Downloads 369