Search results for: preposition error detection
3338 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region
Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski
Abstract:
Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.Keywords: lightning, urbanization, thunderstorms, climatology
Procedia PDF Downloads 783337 Molecular Epidemiology of Egyptian Biomphalaria Snail: The Identification of Species, Diagnostic of the Parasite in Snails and Host Parasite Relationship
Authors: Hanaa M. Abu El Einin, Ahmed T. Sharaf El- Din
Abstract:
Biomphalaria snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis. Two species of Biomphalaria were reported from Egypt, Biomphalaria alexandrina and Biomphalaria glabrata, and later on a hybrid of B. alexandrina and B. glabrata was reported in streams at Nile Delta. All were known to be excellent hosts of S. mansoni. Host-parasite relationship can be viewed in terms of snail susceptibility and parasite infectivity. The objective of this study will highlight the progress that has been made in using molecular approaches to describe the correct identification of snail species that participating in transmission of schistosomiasis, rapid diagnose of infection in addition to susceptibility and resistance type. Snails were identified using of molecular methods involving Randomly Amplified Polymorphic DNA (RAPD), Polymerase Chain Reaction, Restriction Fragment Length Polymorphisms (PCR-RFLP) and Species - specific- PCR. Molecular approaches to diagnose parasite in snails from Egypt: Nested PCR assay and small subunit (SSU) rRNA gene. Also RAPD PCR for study susceptible and resistance phenotype. The results showed that RAPD- PCR, PCR-RFLP and species-specific-PCR techniques were confirmed that: no evidence for the presence of B. glabrata in Egypt, All Biomphalaria snails collected identified as B. alexandrina snail i-e B alexandrinia is a common and no evidence for hybridization with B. glabrata. The adopted specific nested PCR assay revealed much higher sensitivity which enables the detection of S. mansoni infected snails down to 3 days post infection. Nested PCR method for detection of infected snails using S. mansoni fructose -1,6- bisphosphate aldolase (SMALDO) primer, these primers are specific only for S. mansoni and not cross reactive with other schistosomes or molluscan aldolases Nested PCR for such gene is sensitive enough to detect one cercariae. Genetic variations between B. alexandrina strains that are susceptible and resistant to Schistosoma infec¬tion using a RAPD-PCR showed that 39.8% of the examined snails collected from the field were resistant, while 60.2% of these snails showed high infection rates. In conclusion the genetics of the intermediate host plays a more important role in the epidemiological control of schistosomiasis.Keywords: biomphalaria, molecular differentiation, parasite detection, schistosomiasis
Procedia PDF Downloads 1993336 Row Detection and Graph-Based Localization in Tree Nurseries Using a 3D LiDAR
Authors: Ionut Vintu, Stefan Laible, Ruth Schulz
Abstract:
Agricultural robotics has been developing steadily over recent years, with the goal of reducing and even eliminating pesticides used in crops and to increase productivity by taking over human labor. The majority of crops are arranged in rows. The first step towards autonomous robots, capable of driving in fields and performing crop-handling tasks, is for robots to robustly detect the rows of plants. Recent work done towards autonomous driving between plant rows offers big robotic platforms equipped with various expensive sensors as a solution to this problem. These platforms need to be driven over the rows of plants. This approach lacks flexibility and scalability when it comes to the height of plants or distance between rows. This paper proposes instead an algorithm that makes use of cheaper sensors and has a higher variability. The main application is in tree nurseries. Here, plant height can range from a few centimeters to a few meters. Moreover, trees are often removed, leading to gaps within the plant rows. The core idea is to combine row detection algorithms with graph-based localization methods as they are used in SLAM. Nodes in the graph represent the estimated pose of the robot, and the edges embed constraints between these poses or between the robot and certain landmarks. This setup aims to improve individual plant detection and deal with exception handling, like row gaps, which are falsely detected as an end of rows. Four methods were developed for detecting row structures in the fields, all using a point cloud acquired with a 3D LiDAR as an input. Comparing the field coverage and number of damaged plants, the method that uses a local map around the robot proved to perform the best, with 68% covered rows and 25% damaged plants. This method is further used and combined with a graph-based localization algorithm, which uses the local map features to estimate the robot’s position inside the greater field. Testing the upgraded algorithm in a variety of simulated fields shows that the additional information obtained from localization provides a boost in performance over methods that rely purely on perception to navigate. The final algorithm achieved a row coverage of 80% and an accuracy of 27% damaged plants. Future work would focus on achieving a perfect score of 100% covered rows and 0% damaged plants. The main challenges that the algorithm needs to overcome are fields where the height of the plants is too small for the plants to be detected and fields where it is hard to distinguish between individual plants when they are overlapping. The method was also tested on a real robot in a small field with artificial plants. The tests were performed using a small robot platform equipped with wheel encoders, an IMU and an FX10 3D LiDAR. Over ten runs, the system achieved 100% coverage and 0% damaged plants. The framework built within the scope of this work can be further used to integrate data from additional sensors, with the goal of achieving even better results.Keywords: 3D LiDAR, agricultural robots, graph-based localization, row detection
Procedia PDF Downloads 1413335 Web Proxy Detection via Bipartite Graphs and One-Mode Projections
Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo
Abstract:
With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.Keywords: bipartite graph, one-mode projection, clustering, web proxy detection
Procedia PDF Downloads 2493334 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network
Authors: Ashima Anurag Sharma
Abstract:
Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 5313333 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management
Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro
Abstract:
This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization
Procedia PDF Downloads 563332 Durian Marker Kit for Durian (Durio zibethinus Murr.) Identity
Authors: Emma K. Sales
Abstract:
Durian is the flagship fruit of Mindanao and there is an abundance of several cultivars with many confusing identities/ names. The project was conducted to develop procedure for reliable and rapid detection and sorting of durian planting materials. Moreover, it is also aimed to establish specific genetic or DNA markers for routine testing and authentication of durian cultivars in question. The project developed molecular procedures for routine testing. SSR primers were also screened and identified for their utility in discriminating durian cultivars collected. Results of the study showed the following accomplishments; 1. Twenty (29) SSR primers were selected and identified based on their ability to discriminate durian cultivars, 2. Optimized and established standard procedure for identification and authentication of Durian cultivars 3. Genetic profile of durian is now available at Biotech Unit. Our results demonstrate the relevance of using molecular techniques in evaluating and identifying durian clones. The most polymorphic primers tested in this study could be useful tools for detecting variation even at the early stage of the plant especially for commercial purposes. The process developed combines the efficiency of the microsatellites development process with the optimization of non-radioactive detection process resulting in a user-friendly protocol that can be performed in two (2) weeks and easily incorporated into laboratories about to start microsatellite development projects. This can be of great importance to extend microsatellite analyses to other crop species where minimal genetic information is currently available. With this, the University can now be a service laboratory for routine testing and authentication of durian clones.Keywords: DNA, SSR analysis, genotype, genetic diversity, cultivars
Procedia PDF Downloads 4563331 Clinical Impact of Ultra-Deep Versus Sanger Sequencing Detection of Minority Mutations on the HIV-1 Drug Resistance Genotype Interpretations after Virological Failure
Authors: S. Mohamed, D. Gonzalez, C. Sayada, P. Halfon
Abstract:
Drug resistance mutations are routinely detected using standard Sanger sequencing, which does not detect minor variants with a frequency below 20%. The impact of detecting minor variants generated by ultra-deep sequencing (UDS) on HIV drug-resistance (DR) interpretations has not yet been studied. Fifty HIV-1 patients who experienced virological failure were included in this retrospective study. The HIV-1 UDS protocol allowed the detection and quantification of HIV-1 protease and reverse transcriptase variants related to genotypes A, B, C, E, F, and G. DeepChek®-HIV simplified DR interpretation software was used to compare Sanger sequencing and UDS. The total time required for the UDS protocol was found to be approximately three times longer than Sanger sequencing with equivalent reagent costs. UDS detected all of the mutations found by population sequencing and identified additional resistance variants in all patients. An analysis of DR revealed a total of 643 and 224 clinically relevant mutations by UDS and Sanger sequencing, respectively. Three resistance mutations with > 20% prevalence were detected solely by UDS: A98S (23%), E138A (21%) and V179I (25%). A significant difference in the DR interpretations for 19 antiretroviral drugs was observed between the UDS and Sanger sequencing methods. Y181C and T215Y were the most frequent mutations associated with interpretation differences. A combination of UDS and DeepChek® software for the interpretation of DR results would help clinicians provide suitable treatments. A cut-off of 1% allowed a better characterisation of the viral population by identifying additional resistance mutations and improving the DR interpretation.Keywords: HIV-1, ultra-deep sequencing, Sanger sequencing, drug resistance
Procedia PDF Downloads 3403330 A Gradient Orientation Based Efficient Linear Interpolation Method
Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar
Abstract:
This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing
Procedia PDF Downloads 2633329 Comparison of Serological and Molecular Diagnosis of Cerebral Toxoplasmosis in Blood and Cerebrospinal Fluid in HIV Infected Patients
Authors: Berredjem Hajira, Benlaifa Meriem, Becheker Imene, Bardi Rafika, Djebar Med Reda
Abstract:
Recent acquired or reactivation T.gondii infection is a serious complication in HIV patients. Classical serological diagnosis relies on the detection of anti-Toxoplasma immunoglobulin ; however, serology may be unreliable in HIV immunodeficient patients who fail to produce significant titers of specific antibodies. PCR assays allow a rapid diagnosis of Toxoplasma infection. In this study, we compared the value of the PCR for diagnosing active toxoplasmosis in cerebrospinal fluid and blood samples from HIV patients. Anti-Toxoplasma antibodies IgG and IgM titers were determined by ELISA. In parallel, nested PCR targeting B1 gene and conventional PCR-ELISA targeting P30 gene were used to detect T. gondii DNA in 25 blood samples and 12 cerebrospinal fluid samples from patients in whom toxoplasmic encephalitis was confirmed by clinical investigations. A total of 15 negative controls were used. Serology did not contribute to confirm toxoplasmic infection, as IgG and IgM titers decreased early. Only 8 out 25 blood samples and 5 out 12 cerebrospinal fluid samples PCRs yielded a positive result. 5 patients with confirmed toxoplasmosis had positive PCR results in either blood or cerebrospinal fluid samples. However, conventional nested B1 PCR gave best results than the P30 gene one for the detection of T.gondii DNA in both samples. All samples from control patients were negative. This study demonstrates the unusefulness of the serological tests and the high sensitivity and specificity of PCR in the diagnosis of toxoplasmic encephalitis in HIV patients.Keywords: cerebrospinal fluid, HIV, Toxoplasmosis, PCR
Procedia PDF Downloads 3803328 The Connection Between the Semiotic Theatrical System and the Aesthetic Perception
Authors: Păcurar Diana Istina
Abstract:
The indissoluble link between aesthetics and semiotics, the harmonization and semiotic understanding of the interactions between the viewer and the object being looked at, are the basis of the practical demonstration of the importance of aesthetic perception within the theater performance. The design of a theater performance includes several structures, some considered from the beginning, art forms (i.e., the text), others being represented by simple, common objects (e.g., scenographic elements), which, if reunited, can trigger a certain aesthetic perception. The audience is delivered, by the team involved in the performance, a series of auditory and visual signs with which they interact. It is necessary to explain some notions about the physiological support of the transformation of different types of stimuli at the level of the cerebral hemispheres. The cortex considered the superior integration center of extransecal and entanged stimuli, permanently processes the information received, but even if it is delivered at a constant rate, the generated response is individualized and is conditioned by a number of factors. Each changing situation represents a new opportunity for the viewer to cope with, developing feelings of different intensities that influence the generation of meanings and, therefore, the management of interactions. In this sense, aesthetic perception depends on the detection of the “correctness” of signs, the forms of which are associated with an aesthetic property. Fairness and aesthetic properties can have positive or negative values. Evaluating the emotions that generate judgment and implicitly aesthetic perception, whether we refer to visual emotions or auditory emotions, involves the integration of three areas of interest: Valence, arousal and context control. In this context, superior human cognitive processes, memory, interpretation, learning, attribution of meanings, etc., help trigger the mechanism of anticipation and, no less important, the identification of error. This ability to locate a short circuit produced in a series of successive events is fundamental in the process of forming an aesthetic perception. Our main purpose in this research is to investigate the possible conditions under which aesthetic perception and its minimum content are generated by all these structures and, in particular, by interactions with forms that are not commonly considered aesthetic forms. In order to demonstrate the quantitative and qualitative importance of the categories of signs used to construct a code for reading a certain message, but also to emphasize the importance of the order of using these indices, we have structured a mathematical analysis that has at its core the analysis of the percentage of signs used in a theater performance.Keywords: semiology, aesthetics, theatre semiotics, theatre performance, structure, aesthetic perception
Procedia PDF Downloads 963327 Valuing Cultural Ecosystem Services of Natural Treatment Systems Using Crowdsourced Data
Authors: Andrea Ghermandi
Abstract:
Natural treatment systems such as constructed wetlands and waste stabilization ponds are increasingly used to treat water and wastewater from a variety of sources, including stormwater and polluted surface water. The provision of ancillary benefits in the form of cultural ecosystem services makes these systems unique among water and wastewater treatment technologies and greatly contributes to determine their potential role in promoting sustainable water management practices. A quantitative analysis of these benefits, however, has been lacking in the literature. Here, a critical assessment of the recreational and educational benefits in natural treatment systems is provided, which combines observed public use from a survey of managers and operators with estimated public use as obtained using geotagged photos from social media as a proxy for visitation rates. Geographic Information Systems (GIS) are used to characterize the spatial boundaries of 273 natural treatment systems worldwide. Such boundaries are used as input for the Application Program Interfaces (APIs) of two popular photo-sharing websites (Flickr and Panoramio) in order to derive the number of photo-user-days, i.e., the number of yearly visits by individual photo users in each site. The adequateness and predictive power of four univariate calibration models using the crowdsourced data as a proxy for visitation are evaluated. A high correlation is found between photo-user-days and observed annual visitors (Pearson's r = 0.811; p-value < 0.001; N = 62). Standardized Major Axis (SMA) regression is found to outperform Ordinary Least Squares regression and count data models in terms of predictive power insofar as standard verification statistics – such as the root mean square error of prediction (RMSEP), the mean absolute error of prediction (MAEP), the reduction of error (RE), and the coefficient of efficiency (CE) – are concerned. The SMA regression model is used to estimate the intensity of public use in all 273 natural treatment systems. System type, influent water quality, and area are found to statistically affect public use, consistently with a priori expectations. Publicly available information regarding the home location of the sampled visitors is derived from their social media profiles and used to infer the distance they are willing to travel to visit the natural treatment systems in the database. Such information is analyzed using the travel cost method to derive monetary estimates of the recreational benefits of the investigated natural treatment systems. Overall, the findings confirm the opportunities arising from an integrated design and management of natural treatment systems, which combines the objectives of water quality enhancement and provision of cultural ecosystem services through public use in a multi-functional approach and compatibly with the need to protect public health.Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, waste stabilization ponds
Procedia PDF Downloads 1863326 Investigation of Delivery of Triple Play Services
Authors: Paramjit Mahey, Monica Sharma, Jasbinder Singh
Abstract:
Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT
Procedia PDF Downloads 5443325 Study of Syntactic Errors for Deep Parsing at Machine Translation
Authors: Yukiko Sasaki Alam, Shahid Alam
Abstract:
Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.Keywords: syntactic parsing, error analysis, machine translation, deep parsing
Procedia PDF Downloads 5623324 Proposal Method of Prediction of the Early Stages of Dementia Using IoT and Magnet Sensors
Authors: João Filipe Papel, Tatsuji Munaka
Abstract:
With society's aging and the number of elderly with dementia rising, researchers have been actively studying how to support the elderly in the early stages of dementia with the objective of allowing them to have a better life quality and as much as possible independence. To make this possible, most researchers in this field are using the Internet Of Things to monitor the elderly activities and assist them in performing them. The most common sensor used to monitor the elderly activities is the Camera sensor due to its easy installation and configuration. The other commonly used sensor is the sound sensor. However, we need to consider privacy when using these sensors. This research aims to develop a system capable of predicting the early stages of dementia based on monitoring and controlling the elderly activities of daily living. To make this system possible, some issues need to be addressed. First, the issue related to elderly privacy when trying to detect their Activities of Daily Living. Privacy when performing detection and monitoring Activities of Daily Living it's a serious concern. One of the purposes of this research is to achieve this detection and monitoring without putting the privacy of the elderly at risk. To make this possible, the study focuses on using an approach based on using Magnet Sensors to collect binary data. The second is to use the data collected by monitoring Activities of Daily Living to predict the early stages of Dementia. To make this possible, the research team suggests developing a proprietary ontology combined with both data-driven and knowledge-driven.Keywords: dementia, activity recognition, magnet sensors, ontology, data driven and knowledge driven, IoT, activities of daily living
Procedia PDF Downloads 1083323 Diagnosis of Induction Machine Faults by DWT
Authors: Hamidreza Akbari
Abstract:
In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.Keywords: induction machine, fault, DWT, electric
Procedia PDF Downloads 3523322 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene
Authors: Jigg Pelayo, Ricardo Villar
Abstract:
Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.Keywords: algorithm, LiDAR, object recognition, OBIA
Procedia PDF Downloads 2493321 Investigating Dynamic Transition Process of Issues Using Unstructured Text Analysis
Authors: Myungsu Lim, William Xiu Shun Wong, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Namgyu Kim
Abstract:
The amount of real-time data generated through various mass media has been increasing rapidly. In this study, we had performed topic analysis by using the unstructured text data that is distributed through news article. As one of the most prevalent applications of topic analysis, the issue tracking technique investigates the changes of the social issues that identified through topic analysis. Currently, traditional issue tracking is conducted by identifying the main topics of documents that cover an entire period at the same time and analyzing the occurrence of each topic by the period of occurrence. However, this traditional issue tracking approach has limitation that it cannot discover dynamic mutation process of complex social issues. The purpose of this study is to overcome the limitations of the existing issue tracking method. We first derived core issues of each period, and then discover the dynamic mutation process of various issues. In this study, we further analyze the mutation process from the perspective of the issues categories, in order to figure out the pattern of issue flow, including the frequency and reliability of the pattern. In other words, this study allows us to understand the components of the complex issues by tracking the dynamic history of issues. This methodology can facilitate a clearer understanding of complex social phenomena by providing mutation history and related category information of the phenomena.Keywords: Data Mining, Issue Tracking, Text Mining, topic Analysis, topic Detection, Trend Detection
Procedia PDF Downloads 4103320 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer
Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari
Abstract:
Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.Keywords: cosmetic products, methylparaben, molecularly imprinted polymer, wastewater
Procedia PDF Downloads 3243319 Two Years Retrospective Study of Body Fluid Cultures Obtained from Patients in the Intensive Care Unit of General Hospital of Ioannina
Authors: N. Varsamis, M. Gerasimou, P. Christodoulou, S. Mantzoukis, G. Kolliopoulou, N. Zotos
Abstract:
Purpose: Body fluids (pleural, peritoneal, synovial, pericardial, cerebrospinal) are an important element in the detection of microorganisms. For this reason, it is important to examine them in the Intensive Care Unit (ICU) patients. Material and Method: Body fluids are transported through sterile containers and enriched as soon as possible with Tryptic Soy Broth (TSB). After one day of incubation, the broth is poured into selective media: Blood, Mac Conkey No. 2, Chocolate, Mueller Hinton, Chapman and Saboureaud agar. The above selective media are incubated directly for 2 days. After this period, if any number of microbial colonies are detected, gram staining is performed. After that, the isolated organisms are identified by biochemical techniques in the automated Microscan system (Siemens) and followed by a sensitivity test on the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by Kirby Bauer-based plate test. Results: In 2017 the Laboratory of Microbiology received 60 samples of body fluids from the ICU. More specifically the Microbiology Department received 6 peritoneal fluid specimens, 18 pleural fluid specimens and 36 cerebrospinal fluid specimens. 36 positive cultures were tested. S. epidermidis was identified in 18 specimens, S. haemolyticus in 6, and E. faecium in 12. Conclusions: The results show low detection of microorganisms in body fluid cultures.Keywords: body fluids, culture, intensive care unit, microorganisms
Procedia PDF Downloads 2053318 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index
Authors: Todd Zhou, Mikhail Yurochkin
Abstract:
Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index
Procedia PDF Downloads 1263317 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks
Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas
Abstract:
This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems
Procedia PDF Downloads 1373316 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field
Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot
Abstract:
The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management
Procedia PDF Downloads 1363315 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection
Authors: S. Shankar Bharathi
Abstract:
Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision
Procedia PDF Downloads 4333314 Vehicle Gearbox Fault Diagnosis Based on Cepstrum Analysis
Authors: Mohamed El Morsy, Gabriela Achtenová
Abstract:
Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs. This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of cepstrum analysis in detection and diagnosis of the gear condition.Keywords: cepstrum analysis, fault diagnosis, gearbox, vibration signals
Procedia PDF Downloads 3873313 Fabrication and Analysis of Simplified Dragonfly Wing Structures Created Using Balsa Wood and Red Prepreg Fibre Glass for Use in Biomimetic Micro Air Vehicles
Authors: Praveena Nair Sivasankaran, Thomas Arthur Ward, Rubentheren Viyapuri
Abstract:
Paper describes a methodology to fabricate a simplified dragonfly wing structure using balsa wood and red prepreg fibre glass. These simplified wing structures were created for use in Biomimetic Micro Air Vehicles (BMAV). Dragonfly wings are highly corrugated and possess complex vein structures. In order to mimic the wings function and retain its properties, a simplified version of the wing was designed. The simplified dragonfly wing structure was created using a method called spatial network analysis which utilizes Canny edge detection method. The vein structure of the wings were carved out in balsa wood and red prepreg fibre glass. Balsa wood and red prepreg fibre glass was chosen due to its ultra- lightweight property and hence, highly suitable to be used in our application. The fabricated structure was then immersed in a nanocomposite solution containing chitosan as a film matrix, reinforced with chitin nanowhiskers and tannic acid as a crosslinking agent. These materials closely mimic the membrane of a dragonfly wing. Finally, the wings were subjected to a bending test and comparisons were made with previous research for verification. The results had a margin of difference of about 3% and thus the structure was validated.Keywords: dragonfly wings, simplified, Canny edge detection, balsa wood, red prepreg, chitin, chitosan, tannic acid
Procedia PDF Downloads 3343312 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram
Authors: Mehwish Asghar
Abstract:
Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence
Procedia PDF Downloads 2303311 GA3C for Anomalous Radiation Source Detection
Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang
Abstract:
In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.Keywords: deep reinforcement learning, GA3C, source searching, source detection
Procedia PDF Downloads 1193310 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer
Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved
Abstract:
Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.Keywords: computer-aided system, detection, image segmentation, morphology
Procedia PDF Downloads 1553309 Model-Based Diagnostics of Multiple Tooth Cracks in Spur Gears
Authors: Ahmed Saeed Mohamed, Sadok Sassi, Mohammad Roshun Paurobally
Abstract:
Gears are important machine components that are widely used to transmit power and change speed in many rotating machines. Any breakdown of these vital components may cause severe disturbance to production and incur heavy financial losses. One of the most common causes of gear failure is the tooth fatigue crack. Early detection of teeth cracks is still a challenging task for engineers and maintenance personnel. So far, to analyze the vibration behavior of gears, different approaches have been tried based on theoretical developments, numerical simulations, or experimental investigations. The objective of this study was to develop a numerical model that could be used to simulate the effect of teeth cracks on the resulting vibrations and hence to permit early fault detection for gear transmission systems. Unlike the majority of published papers, where only one single crack has been considered, this work is more realistic, since it incorporates the possibility of multiple simultaneous cracks with different lengths. As cracks significantly alter the gear mesh stiffness, we performed a finite element analysis using SolidWorks software to determine the stiffness variation with respect to the angular position for different combinations of crack lengths. A simplified six degrees of freedom non-linear lumped parameter model of a one-stage gear system is proposed to study the vibration of a pair of spur gears, with and without tooth cracks. The model takes several physical properties into account, including variable gear mesh stiffness and the effect of friction, but ignores the lubrication effect. The vibration simulation results of the gearbox were obtained via Matlab and Simulink. The results were found to be consistent with the results from previously published works. The effect of one crack with different levels was studied and very similar changes in the total mesh stiffness and the vibration response, both were observed and compared to what has been found in previous studies. The effect of the crack length on various statistical time domain parameters was considered and the results show that these parameters were not equally sensitive to the crack percentage. Multiple cracks are introduced at different locations and the vibration response and the statistical parameters were obtained.Keywords: dynamic simulation, gear mesh stiffness, simultaneous tooth cracks, spur gear, vibration-based fault detection
Procedia PDF Downloads 215