Search results for: drug release model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19264

Search results for: drug release model

17344 Three-Dimensional Numerical Model of an Earth Air Heat Exchanger under a Constrained Urban Environment in India: Modeling and Validation

Authors: V. Rangarajan, Priyanka Kaushal

Abstract:

This study investigates the effectiveness of a typical Earth Air Heat Exchanger (EATHE) for energy efficient space cooling in an urban environment typified by space and soil-related constraints that preclude an optimal design. It involves the development of a three-dimensional numerical transient model that is validated by measurements at a live site in India. It is found that the model accurately predicts the soil temperatures at various depths as well as the EATHE outlet air temperature. The study shows that such an EATHE, even when designed under constraints, does provide effective space cooling especially during the hot months of the year.

Keywords: earth air heat exchanger (EATHE), India, MATLAB, model, simulation

Procedia PDF Downloads 322
17343 Study of Fast Etching of Silicon for the Fabrication of Bulk Micromachined MEMS Structures

Authors: V. Swarnalatha, A. V. Narasimha Rao, P. Pal

Abstract:

The present research reports the investigation of fast etching of silicon for the fabrication of microelectromechanical systems (MEMS) structures using silicon wet bulk micromachining. Low concentration tetramethyl-ammonium hydroxide (TMAH) and hydroxylamine (NH2OH) are used as main etchant and additive, respectively. The concentration of NH2OH is varied to optimize the composition to achieve best etching characteristics such as high etch rate, significantly high undercutting at convex corner for the fast release of the microstructures from the substrate, and improved etched surface morphology. These etching characteristics are studied on Si{100} and Si{110} wafers as they are most widely used in the fabrication of MEMS structures as wells diode, transistors and integrated circuits.

Keywords: KOH, MEMS, micromachining, silicon, TMAH, wet anisotropic etching

Procedia PDF Downloads 202
17342 Phytochemical Screening and Antimicrobial Activity of Limeum indicum and Euphorbia granulata

Authors: Noshaba Dilbar, Hina Ashraf

Abstract:

Medicinal plants are considered as rich source of ingredients which can be used in drug development and synthesis. Moreover, these plants play a vital role in the development of human culture of using ayurvedic medicines around the whole world. Among all plants, dessert plants are being proved as effective source of ayurvedic medicines and remedy against many diseases. Considering the fact, two plant species Limium indicum and Euphorbia granulata were taken from Cholistan dessert of Bahawalpur, Pakistan. Firstly, phytochemical screening was done by making dry and fresh plant extracts in five different solvents i.e Petroleum ether, benzene, chloroform, ethanol and methanol. Standard confirmation tests for all compounds were applied for analysis. Results revealed the presence of high range of bioactive compounds such as alakaloids, terpenoids, glycosides, steroids, flavonoids, saponins, phytosterols, oxalic acid, anthocyanin and quinone in both plants. Best results were obtained by methanolic, chloroform and petroleum ether extracts and methanolic, ethanolic and benzene extracts of Limium indicum and Euphorbia granulate respectively. Considering the results, methanolic extracts of both plants were further analysed for antibacterial activity. Plants were analysed against four pathogens including Escherchia coli, Proteus vulgaris, Klebsiella pneumonia and Pseudomonas aruginosa using disc diffusion method. Limium indicum showed highly significant activity against all pathogens while Euphorbia granulata showed significant activity against Klebsiella pneumonia and Proteus vulgaris but lesser against Escherchia coli and Pseudomonas aruginosa. MIC of extracts against each positive bacterium was calculated and recorded. Present plants can be considered for making useful drugs but further studies are needed to isolate active agents from plant extracts for drug development.

Keywords: antibacterial activity, Euphorbia granulata, Limium indicum, medicinal plants, phytochemical screening

Procedia PDF Downloads 117
17341 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence

Authors: Seyed Sobhan Alvani, Mohammad Gohari

Abstract:

By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.

Keywords: traffic index, population growth rate, cities wideness, artificial neural network

Procedia PDF Downloads 40
17340 Frailty Models for Modeling Heterogeneity: Simulation Study and Application to Quebec Pension Plan

Authors: Souad Romdhane, Lotfi Belkacem

Abstract:

When referring to actuarial analysis of lifetime, only models accounting for observable risk factors have been developed. Within this context, Cox proportional hazards model (CPH model) is commonly used to assess the effects of observable covariates as gender, age, smoking habits, on the hazard rates. These covariates may fail to fully account for the true lifetime interval. This may be due to the existence of another random variable (frailty) that is still being ignored. The aim of this paper is to examine the shared frailty issue in the Cox proportional hazard model by including two different parametric forms of frailty into the hazard function. Four estimated methods are used to fit them. The performance of the parameter estimates is assessed and compared between the classical Cox model and these frailty models through a real-life data set from the Quebec Pension Plan and then using a more general simulation study. This performance is investigated in terms of the bias of point estimates and their empirical standard errors in both fixed and random effect parts. Both the simulation and the real dataset studies showed differences between classical Cox model and shared frailty model.

Keywords: life insurance-pension plan, survival analysis, risk factors, cox proportional hazards model, multivariate failure-time data, shared frailty, simulations study

Procedia PDF Downloads 359
17339 Pregnant Individuals in Rural Areas Benefit from Cognitive Behavioral Therapy: A Literature Review

Authors: Kushal Patel, Manasa Dittakavi, Cyrus Falsafi, Gretchen Lovett

Abstract:

Rural America has seen a surge in opioid addiction rates and overdose deaths in recent years, becoming a significant public health crisis. This may be due to a variety of factors, such as lack of access to healthcare or other economic and social factors that can contribute to addiction such as poverty, unemployment, and social isolation. As the opioid epidemic has disproportionately affected rural communities, pregnant women in these areas may be highly susceptible and face additional difficulties in facing the appropriate care they need. Opioid use disorder has many negative effects on prenatal infants. These include changes in their microbiome, mental health, neurodevelopment and cognition. These can affect how the child performs in various activities in life and how they interact with others. It has been demonstrated that using cognitive behavioral therapy improves not just pain-related results but also mobility, quality of life, disability, and mood outcomes. This indicates that cognitive behavioral therapy (CBT) may be a useful therapeutic strategy for enhancing general health and wellbeing in people with opioid use problems. In terms of treating psychiatric diseases, CBT carries fewer dangers than opioids. One study that illustrates the potential for CBT to promote a reduction in opioid use disorder used self-reported drug use patterns 6 months prior to and during their pregnancy. At the beginning of the study, participants reported an average of 3.78 drug or alcohol use days in the previous 28 days, which decreased to 1.63 days after treatment. The study also found a decrease in depression scores, as measured by IDS scores, from 23.9 to 17.1 at the end of treatment. These and other results show that CBT can have meaningful impacts on pregnant women in Rural America who struggle with an opioid use disorder. This project has been approved by the West Virginia School of Osteopathic Medicine- Office of Research and Sponsored Programs and deemed non-research scholarly work.

Keywords: appalachia, CBT, opiods, pregnancy

Procedia PDF Downloads 91
17338 Effect of Wheat Germ Agglutinin- and Lactoferrin-Grafted Catanionic Solid Lipid Nanoparticles on Targeting Delivery of Etoposide to Glioblastoma Multiforme

Authors: Yung-Chih Kuo, I-Hsin Wang

Abstract:

Catanionic solid lipid nanoparticles (CASLNs) with surface wheat germ agglutinin (WGA) and lactoferrin (Lf) were formulated for entrapping and releasing etoposide (ETP), crossing the blood–brain barrier (BBB), and inhibiting the growth of glioblastoma multiforme (GBM). Microemulsified ETP-CASLNs were modified with WGA and Lf for permeating a cultured monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and for treating malignant U87MG cells. Experimental evidence revealed that an increase in the concentration of catanionic surfactant from 5 μM to 7.5 μM reduced the particle size. When the concentration of catanionic surfactant increased from 7.5 μM to 12.5 μM, the particle size increased, yielding a minimal diameter of WGA-Lf-ETP-CASLNs at 7.5 μM of catanionic surfactant. An increase in the weight percentage of BW from 25% to 75% enlarged WGA-Lf-ETP-CASLNs. In addition, an increase in the concentration of catanionic surfactant from 5 to 15 μM increased the absolute value of zeta potential of WGA-Lf-ETP-CASLNs. It was intriguing that the increment of the charge as a function of the concentration of catanionic surfactant was approximately linear. WGA-Lf-ETP-CASLNs revealed an integral structure with smooth particle contour, displayed a lighter exterior layer of catanionic surfactant, WGA, and Lf and showed a rigid interior region of solid lipids. A variation in the concentration of catanionic surfactant between 5 μM and 15 μM yielded a maximal encapsulation efficiency of ETP ata 7.5 μM of catanionic surfactant. An increase in the concentration of Lf/WGA decreased the grafting efficiency of Lf/WGA. Also, an increase in the weight percentage of ETP decreased its encapsulation efficiency. Moreover, the release rate of ETP from WGA-Lf-ETP-CASLNs reduced with increasing concentration of catanionic surfactant, and WGA-Lf-ETP-CASLNs at 12.5 μM of catanionic surfactant exhibited a feature of sustained release. The order in the viability of HBMECs was ETP-CASLNs ≅ Lf-ETP-CASLNs ≅ WGA-Lf-ETP-CASLNs > ETP. The variation in the transendothelial electrical resistance (TEER) and permeability of propidium iodide (PI) was negligible when the concentration of Lf increased. Furthermore, an increase in the concentration of WGA from 0.2 to 0.6 mg/mL insignificantly altered the TEER and permeability of PI. When the concentration of Lf increased from 2.5 to 7.5 μg/mL and the concentration of WGA increased from 2.5 to 5 μg/mL, the enhancement in the permeability of ETP was minor. However, 10 μg/mL of Lf promoted the permeability of ETP using Lf-ETP-CASLNs, and 5 and 10 μg/mL of WGA could considerably improve the permeability of ETP using WGA-Lf-ETP-CASLNs. The order in the efficacy of inhibiting U87MG cells was WGA-Lf-ETP-CASLNs > Lf-ETP-CASLNs > ETP-CASLNs > ETP. As a result, WGA-Lf-ETP-CASLNs reduced the TEER, enhanced the permeability of PI, induced a minor cytotoxicity to HBMECs, increased the permeability of ETP across the BBB, and improved the antiproliferative efficacy of U87MG cells. The grafting of WGA and Lf is crucial to control the medicinal property of ETP-CASLNs and WGA-Lf-ETP-CASLNs can be promising colloidal carriers in GBM management.

Keywords: catanionic solid lipid nanoparticle, etoposide, glioblastoma multiforme, lactoferrin, wheat germ agglutinin

Procedia PDF Downloads 237
17337 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data

Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer

Abstract:

This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.

Keywords: non-stationary, BINARMA(1, 1) model, Poisson innovations, conditional maximum likelihood, CML

Procedia PDF Downloads 129
17336 The Discriminate Analysis and Relevant Model for Mapping Export Potential

Authors: Jana Gutierez Chvalkovska, Michal Mejstrik, Matej Urban

Abstract:

There are pending discussions over the mapping of country export potential in order to refocus export strategy of firms and its evidence-based promotion by the Export Credit Agencies (ECAs) and other permitted vehicles of governments. In this paper we develop our version of an applied model that offers “stepwise” elimination of unattractive markets. We modify and calibrate the model for the particular features of the Czech Republic and specific pilot cases where we apply an individual approach to each sector.

Keywords: export strategy, modeling export, calibration, export promotion

Procedia PDF Downloads 498
17335 Control of an SIR Model for Basic Reproduction Number Regulation

Authors: Enrique Barbieri

Abstract:

The basic disease-spread model described by three states denoting the susceptible (S), infectious (I), and removed (recovered and deceased) (R) sub-groups of the total population N, or SIR model, has been considered. Heuristic mitigating action profiles of the pharmaceutical and non-pharmaceutical types may be developed in a control design setting for the purpose of reducing the transmission rate or improving the recovery rate parameters in the model. Even though the transmission and recovery rates are not control inputs in the traditional sense, a linear observer and feedback controller can be tuned to generate an asymptotic estimate of the transmission rate for a linearized, discrete-time version of the SIR model. Then, a set of mitigating actions is suggested to steer the basic reproduction number toward unity, in which case the disease does not spread, and the infected population state does not suffer from multiple waves. The special case of piecewise constant transmission rate is described and applied to a seventh-order SEIQRDP model, which segments the population into four additional states. The offline simulations in discrete time may be used to produce heuristic policies implemented by public health and government organizations.

Keywords: control of SIR, observer, SEIQRDP, disease spread

Procedia PDF Downloads 111
17334 Open Innovation Strategy (OIS) Paradigm and an OIS Capabilities Model

Authors: Anastasis D. Petrou

Abstract:

Innovation and strategy discussions do highlight open innovation as a new paradigm in business. Yet, a number of stumbling blocks in the form of closed innovation principles weaved into the fabric of a traditional business model stand in the way of the new paradigm’s momentum to increase value in various business contexts. The paper argues that businesses considering an engagement with the open innovation paradigm would need to take steps to improve their multiplicative, absorptive and relational capabilities, respectively. The needed improvements would amount to a business model evolutionary transformation and eventually bring about a paradigm overhaul in business. The transformation is worth staging over time to ensure that open innovation is developed across interconnected and partnered areas of strategic importance. This article develops an open innovation strategy (OIS) capabilities model, and employs examples from different industries to briefly discuss OIS’s potential to augment business value in a number of suggested areas for future research.

Keywords: close innovation, open innovation paradigm, open innovation strategy (OIS) paradigm, OIS capabilities model, multiplicative capability, absorptive capability, relational capability

Procedia PDF Downloads 520
17333 Electricity Demand Modeling and Forecasting in Singapore

Authors: Xian Li, Qing-Guo Wang, Jiangshuai Huang, Jidong Liu, Ming Yu, Tan Kok Poh

Abstract:

In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly.

Keywords: power industry, electricity demand, modeling, forecasting

Procedia PDF Downloads 640
17332 Saltwater Intrusion Studies in the Cai River in the Khanh Hoa Province, Vietnam

Authors: B. Van Kessel, P. T. Kockelkorn, T. R. Speelman, T. C. Wierikx, C. Mai Van, T. A. Bogaard

Abstract:

Saltwater intrusion is a common problem in estuaries around the world, as it could hinder the freshwater supply of coastal zones. This problem is likely to grow due to climate change and sea-level rise. The influence of these factors on the saltwater intrusion was investigated for the Cai River in the Khanh Hoa province in Vietnam. In addition, the Cai River has high seasonal fluctuations in discharge, leading to increased saltwater intrusion during the dry season. Sea level rise, river discharge changes, river mouth widening and a proposed saltwater intrusion prevention dam can have influences on the saltwater intrusion but have not been quantified for the Cai River estuary. This research used both an analytical and numerical model to investigate the effect of the aforementioned factors. The analytical model was based on a model proposed by Savenije and was calibrated using limited in situ data. The numerical model was a 3D hydrodynamic model made using the Delft3D4 software. The analytical model and numerical model agreed with in situ data, mostly for tidally average data. Both models indicated a roughly similar dependence on discharge, also agreeing that this parameter had the most severe influence on the modeled saltwater intrusion. Especially for discharges below 10 m/s3, the saltwater was predicted to reach further than 10 km. In the models, both sea-level rise and river widening mainly resulted in salinity increments up to 3 kg/m3 in the middle part of the river. The predicted sea-level rise in 2070 was simulated to lead to an increase of 0.5 km in saltwater intrusion length. Furthermore, the effect of the saltwater intrusion dam seemed significant in the model used, but only for the highest position of the gate.

Keywords: Cai River, hydraulic models, river discharge, saltwater intrusion, tidal barriers

Procedia PDF Downloads 112
17331 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 469
17330 Methodology for Obtaining Static Alignment Model

Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez

Abstract:

In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.

Keywords: information theory, prediction model, prosthetic alignment, transtibial prosthesis

Procedia PDF Downloads 257
17329 Design and Implementation of Low-code Model-building Methods

Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu

Abstract:

This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.

Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment

Procedia PDF Downloads 29
17328 Mixed Monolayer and PEG Linker Approaches to Creating Multifunctional Gold Nanoparticles

Authors: D. Dixon, J. Nicol, J. A. Coulter, E. Harrison

Abstract:

The ease with which they can be functionalized, combined with their excellent biocompatibility, make gold nanoparticles (AuNPs) ideal candidates for various applications in nanomedicine. Indeed several promising treatments are currently undergoing human clinical trials (CYT-6091 and Auroshell). A successful nanoparticle treatment must first evade the immune system, then accumulate within the target tissue, before enter the diseased cells and delivering the payload. In order to create a clinically relevant drug delivery system, contrast agent or radiosensitizer, it is generally necessary to functionalize the AuNP surface with multiple groups; e.g. Polyethylene Glycol (PEG) for enhanced stability, targeting groups such as antibodies, peptides for enhanced internalization, and therapeutic agents. Creating and characterizing the biological response of such complex systems remains a challenge. The two commonly used methods to attach multiple groups to the surface of AuNPs are the creation of a mixed monolayer, or by binding groups to the AuNP surface using a bi-functional PEG linker. While some excellent in-vitro and animal results have been reported for both approaches further work is necessary to directly compare the two methods. In this study AuNPs capped with both PEG and a Receptor Mediated Endocytosis (RME) peptide were prepared using both mixed monolayer and PEG linker approaches. The PEG linker used was SH-PEG-SGA which has a thiol at one end for AuNP attachment, and an NHS ester at the other to bind to the peptide. The work builds upon previous studies carried out at the University of Ulster which have investigated AuNP synthesis, the influence of PEG on stability in a range of media and investigated intracellular payload release. 18-19nm citrate capped AuNPs were prepared using the Turkevich method via the sodium citrate reduction of boiling 0.01wt% Chloroauric acid. To produce PEG capped AuNPs, the required amount of PEG-SH (5000Mw) or SH-PEG-SGA (3000Mw Jenkem Technologies) was added, and the solution stirred overnight at room temperature. The RME (sequence: CKKKKKKSEDEYPYVPN, Biomatik) co-functionalised samples were prepared by adding the required amount of peptide to the PEG capped samples and stirring overnight. The appropriate amounts of PEG-SH and RME peptide were added to the AuNP to produce a mixed monolayer consisting of approximately 50% PEG and 50% RME. The PEG linker samples were first fully capped with bi-functional PEG before being capped with RME peptide. An increase in diameter from 18-19mm for the ‘as synthesized’ AuNPs to 40-42nm after PEG capping was observed via DLS. The presence of PEG and RME peptide on both the mixed monolayer and PEG linker co-functionalized samples was confirmed by both FTIR and TGA. Bi-functional PEG linkers allow the entire AuNP surface to be capped with PEG, enabling in-vitro stability to be achieved using a lower molecular weight PEG. The approach also allows the entire outer surface to be coated with peptide or other biologically active groups, whilst also offering the promise of enhanced biological availability. The effect of mixed monolayer versus PEG linker attachment on both stability and non-specific protein corona interactions was also studied.

Keywords: nanomedicine, gold nanoparticles, PEG, biocompatibility

Procedia PDF Downloads 339
17327 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion

Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao

Abstract:

Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.

Keywords: erosion, prediction, elbow, computational fluid dynamics

Procedia PDF Downloads 157
17326 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: 6D posture estimation, image recognition, deep learning, AlexNet

Procedia PDF Downloads 155
17325 Cannabis Sativa L as Natural Source of Promising Anti-Alzheimer Drug Candidates: A Comprehensive Computational Approach Including Molecular Docking, Molecular Dynamics, ADMET and MM-PBSA Studies

Authors: Hassan Nour, Nouh Mounadi, Oussama Abchir, Belaidi Salah, Samir Chtita

Abstract:

Cholinesterase enzymes are biological catalysts essential for the transformation of acetylcholine, which is a neurotransmitter implicated in memory and learning, into acetic acid and choline, altering the neurotransmission process in Alzheimer’s disease patients. Therefore, inhibition of cholinesterase enzymes is a relevant strategy for the symptomatic treatment of Alzheimer’s disease. The current investigation aims to explore potential cholinesterase (ChE) inhibitors through a comprehensive computational approach. Forty-nine phytoconstituents extracted from Cannabis sativa L. were in-silico screened using molecular docking and pharmacokinetic and toxicological analysis to evaluate their possible inhibitory effect on the cholinesterase enzymes. Two phytoconstituents belonging to cannabinoid derivatives were revealed to be promising candidates for Alzheimer's therapy by acting as cholinesterase inhibitors. They have exhibited high binding affinities towards the cholinesterase enzymes and showed their ability to interact with key residues involved in cholinesterase enzymatic activity. In addition, they presented good ADMET profiles allowing them to be promising oral drug candidates. Furthermore, molecular dynamics (MD) simulations were executed to explore their interaction stability under mimetic biological conditions and thus support our findings. To corroborate the docking results, the binding free energy corresponding to the more stable ligand-ChE complexes was re-estimated by applying the MM-PBSA method. MD and MM-PBSA studies affirmed that the ligand-ChE recognition is a spontaneous reaction leading to stable complexes. The conducted investigations have led to great findings that would strongly guide the pharmaceutical industries toward the rational development of potent anti-Alzheimer agents.

Keywords: Alzheimer’s disease, molecular docking, Cannabis sativa L., cholinesterase inhibitors, molecular dynamics, ADMET, MM-PBSA

Procedia PDF Downloads 83
17324 Carbamazepine Co-crystal Screening with Dicarboxylic Acids Co-Crystal Formers

Authors: S. Abd Rahim, F. A. Rahman, E. M. Nasir, N. A. Ramle

Abstract:

Co-crystal is believed to improve the solubility and dissolution rates and thus, enhanced the bioavailability of poor water soluble drugs particularly during the oral route of administration. With the existing of poorly soluble drugs in pharmaceutical industry, the screening of co-crystal formation using carbamazepine (CBZ) as a model drug compound with dicarboxylic acids co-crystal formers (CCF) namely fumaric (FA) and succinic (SA) acids in ethanol has been studied. The co-crystal formations were studied by varying the mol ratio values of CCF to CBZ to access the effect of CCF concentration on the formation of the co-crystal. Solvent evaporation, slurry, and cooling crystallisations which representing the solution based method co-crystal screening were used. The product crystal from the screening was characterized using X-ray powder diffraction (XRPD). The XRPD pattern profile analysis has shown that the CBZ co-crystals with FA and SA were successfully formed for all ratios studied. The findings revealed that CBZ-FA co-crystal were formed in two different polymorphs. It was found that CBZ-FA form A and form B were formed from evaporation and slurry crystallisation methods respectively. On the other hand, in cooling crystallisation method, CBZ-FA form A was formed at lower mol ratio of CCF to CBZ and vice versa. This study disclosed that different methods and mol ratios during the co-crystal screening can affect the outcome of co-crystal produced such as polymorphic forms of co-crystal and thereof. Thus, it was suggested that careful attentions is needed during the screening since the co-crystal formation is currently one of the promising approach to be considered in research and development for pharmaceutical industry to improve the poorly soluble drugs.

Keywords: co-crystal, dicarboxylic acid, carbamazepine, industry

Procedia PDF Downloads 357
17323 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain

Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee

Abstract:

In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.

Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization

Procedia PDF Downloads 416
17322 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context

Authors: Selin Guney, Andres Riquelme

Abstract:

The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.

Keywords: bio-economic, fisheries, GAM, production

Procedia PDF Downloads 252
17321 Evaluation of the Incidence of Mycobacterium Tuberculosis Complex Associated with Soil, Hayfeed and Water in Three Agricultural Facilities in Amathole District Municipality in the Eastern Cape Province

Authors: Athini Ntloko

Abstract:

Mycobacterium bovis and other species of Mycobacterium tuberculosis complex (MTBC) can result to a zoonotic infection known as Bovine tuberculosis (bTB). MTBC has members that may contaminate an extensive range of hosts, including wildlife. Diverse wild species are known to cause disease in domestic livestock and are acknowledged as TB reservoirs. It has been a main study worldwide to deliberate on bTB risk factors as a result and some studies focused on particular parts of risk factors such as wildlife and herd management. The significance of the study was to determine the incidence of Mycobacterium tuberculosis complex that is associated with soil, hayfeed and water. Questionnaires were administered to thirty (30) smallholding farm owners in the two villages (kwaMasele and Qungqwala) and three (3) three commercial farms (Fort Hare dairy farm, Middledrift dairy farm and Seven star dairy farm). Detection of M. tuberculosis complex was achieved by Polymerase Chain Reaction using primers for IS6110; whereas a genotypic drug resistance mutation was detected using Genotype MTBDRplus assays. Nine percent (9%) of respondents had more than 40 cows in their herd, while 60% reported between 10 and 20 cows in their herd. Relationship between farm size and vaccination for TB differed from forty one percent (41%) being the highest to the least five percent (5%). The highest number of respondents who knew about relationship between TB cases and cattle location was ninety one percent (91%). Approximately fifty one percent (51%) of respondents had knowledge about wild life access to the farms. Relationship between import of cattle and farm size ranged from nine percent (9%) to thirty five percent (35%). Cattle sickness in relation to farm size differed from forty three (43%) being the highest to the least three percent (3%); while thirty three percent (33%) of respondents had knowledge about health management. Respondents with knowledge about the occurrence of TB infections in farms were forty-eight percent (48%). The frequency of DNA isolation from samples ranged from the highest forty-five percent (45%) from water to the least twenty two percent (22%) from soil. Fort Hare dairy farm had the highest number of positive samples, forty four percent (44%) from water samples; whereas Middledrift dairy farm had the lowest positive from water, seventeen percent (17%). Twelve (22%) out of 55 isolates showed resistance to INH and RIF that is, multi-drug resistance (MDR) and nine percent (9%) were sensitive to either INH or RIF. The mutations at rpoB gene differed from 58% being the highest to the least (23%). Fifty seven percent (57%) of samples showed a S315T1 mutation while only 14% possessed a S531L in the katG gene. The highest inhA mutations were detected in T8A (80 %) and the least was observed in A16G (17%). The results of this study reveal that risk factors for bTB in cattle and dairy farm workers are a serious issue abound in the Eastern Cape of South Africa; with the possibility of widespread dissemination of multidrug resistant determinants in MTBC from the environment.

Keywords: hayfeed, isoniazid, multi-drug resistance, mycobacterium tuberculosis complex, polymerase chain reaction, rifampicin, soil, water

Procedia PDF Downloads 337
17320 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD

Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai

Abstract:

This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).

Keywords: hard disk drive, dual-stage actuator, track following, hdd servo control, sliding mode control, model-reference, tracking control

Procedia PDF Downloads 365
17319 The Ethical Healthcare Paradigm with in Corporate Framework: CSR for Equitable Access to Drugs

Authors: Abhay Vir Singh Kanwar

Abstract:

The pharmaceutical industry today is a multi-billion dollar business and yet disadvantages people in many corners of the globe who are still dying in large numbers from curable illnesses for lack of access to drugs. The astronomical prices of essential and life-saving drugs is not just an economic problem that can be settled through clever market strategies but is an ethical issue, given the accumulated wealth of today’s humanity and the sense of global justice that it increasingly comes to share. In this paper, I make a very practical argument for what I shall call ‘the ethical healthcare paradigm’, which, I propose, can replace the economistic paradigm that can still drive the healthcare sector without creating spillover effects on the market. Taking off from the ethical-philosophical argument for recognizing every individual’s right to capability to be healthy, I shall come to the focused practical proposal of the cost-rationalization and universal availability of essential, life-saving drugs through the undertaking of research and development funding for drug innovation by the business establishment as such in terms of the concept of CSR. The paper will first expose the concepts of basic and fundamental capabilities in relation to education and health, after which it will focus on the right to capability to be healthy of every person. In the third section, it will discuss the ‘ethical healthcare paradigm’ as opposed to the economistic health paradigm and will argue that the patient will have to be considered the primary stakeholder of this paradigm or the very ‘subject’ of healthcare. The next section will be on an ethical-historical critique of the pharmaceutical industry’s profit driven economism. The section after that will look at the business operation and the stages in the life cycle of a drug that comes to the market in order to understand the risks, strengths and problems of the pharmaceutical industry. Finally, the paper will discuss the concept of CSR in relation to the ethical healthcare paradigm in order to propose CSR funding in research and development for innovation on drugs so that life-saving drugs can be made available to every sick person cost-effectively.

Keywords: capability approach, healthcare, CSR, patient

Procedia PDF Downloads 313
17318 Stabilization Control of the Nonlinear AIDS Model Based on the Theory of Polynomial Fuzzy Control Systems

Authors: Shahrokh Barati

Abstract:

In this paper, we introduced AIDS disease at first, then proposed dynamic model illustrate its progress, after expression of a short history of nonlinear modeling by polynomial phasing systems, we considered the stability conditions of the systems, which contained a huge amount of researches in order to modeling and control of AIDS in dynamic nonlinear form, in this approach using a frame work of control any polynomial phasing modeling system which have been generalized by part of phasing model of T-S, in order to control the system in better way, the stability conditions were achieved based on polynomial functions, then we focused to design the appropriate controller, firstly we considered the equilibrium points of system and their conditions and in order to examine changes in the parameters, we presented polynomial phase model that was the generalized approach rather than previous Takagi Sugeno models, then with using case we evaluated the equations in both open loop and close loop and with helping the controlling feedback, the close loop equations of system were calculated, to simulate nonlinear model of AIDS disease, we used polynomial phasing controller output that was capable to make the parameters of a nonlinear system to follow a sustainable reference model properly.

Keywords: polynomial fuzzy, AIDS, nonlinear AIDS model, fuzzy control systems

Procedia PDF Downloads 468
17317 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 86
17316 An Integreated Intuitionistic Fuzzy ELECTRE Model for Multi-Criteria Decision-Making

Authors: Babek Erdebilli

Abstract:

The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using IFE (Elimination Et Choix Traduisant La Realite (ELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy Numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.

Keywords: multi-criteria decision-making, IFE, DM’s, fuzzy electre model

Procedia PDF Downloads 651
17315 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System

Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu

Abstract:

Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.

Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model

Procedia PDF Downloads 111