Search results for: controlled lagrangian
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2545

Search results for: controlled lagrangian

625 Emotional Processing Difficulties in Recovered Anorexia Nervosa Patients: State or Trait

Authors: Telma Fontao de Castro, Kylee Miller, Maria Xavier Araújo, Isabel Brandao, Sandra Torres

Abstract:

Objective: There is a dearth of research investigating the long-term emotional functioning of individuals recovered from anorexia nervosa (AN). This 15-year longitudinal study aimed to examine whether difficulties in cognitive processing of emotions persisted after long-term AN recovery and its link to anxiety and depression. Method: Twenty-four females, who were tested longitudinally during their acute and recovered AN phases, and 24 healthy control (HC) women, were screened for anxiety, depression, alexithymia, and emotion regulation difficulties (ER; only assessed in recovery phase). Results: Anxiety, depression, and alexithymia levels decreased significantly with AN recovery. However, scores on anxiety and difficulty in identifying feelings (alexithymia factor) remained high when compared to the HC group. Scores on emotion regulation difficulties were also lower in HC group. The abovementioned differences between AN recovered group and HC group in difficulties in identifying and accepting feelings and lack of emotional clarity were no longer present when the effect of anxiety and depression was controlled. Conclusions: Findings suggest that emotional dysfunction tends to decrease in AN recovered phase. However, using an HC group as a reference, we conclude that several emotional difficulties are still increased after long-term AN recovery, in particular, limited access to emotion regulation strategies, and difficulty controlling impulses and engaging in goal-directed behavior, thus suggesting to be a trait vulnerability. In turn, competencies related to emotional clarity and acceptance of emotional responses seem to be state-dependent phenomena linked to anxiety and depression. In sum, managing emotions remains a challenge for individuals recovered from AN. Under this circumstance, maladaptive eating behavior can serve as an affect regulatory function, increasing the risk of relapse. Emotional education and stabilization of depressive and anxious symptomatology after recovery emerge as an important avenue to protect from long-term AN relapse.

Keywords: alexithymia, anorexia nervosa, emotion recognition, emotion regulation

Procedia PDF Downloads 123
624 Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite

Authors: Jayson Cheyne, David Butler, Iain Bomphray

Abstract:

In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk.

Keywords: battery safety, electric vehicles, phase change materials, thermal management, thermal runaway

Procedia PDF Downloads 145
623 Mineralogy and Fluid Inclusion Study of the Kebbouch South Pb-Zn Deposit, Northwest Tunisia

Authors: Imen Salhi, Salah Bouhlel, Bernrd Lehmann

Abstract:

The Kebbouch South Pb-Zn deposit is located 20 km to the east of El Kef (NW) in the southeastern part of the Triassic diapir belt in the Tunisian Atlas. The deposit is composed of sulfide and non-sulfide zinc-lead ore bodies. The aim of this study is to provide petrographic results, mineralogy, as well as fluid inclusion data of the carbonate-hosted Pb-Zn Kebbouch South deposit. Mineralization forms two major ore types: (1) lenticular dolostones and clay breccias in the contact zone between Triassic and Upper Cretaceous strata;, it consists of small-scale lenticular, strata-or fault-controlled mineralization mainly composed of marcasite, galena, sphalerite, pyrite, and (2) stratiform mineralization in the Bahloul Formation (Upper Cenomanian-Lower Turonian) consisting of framboidal and cubic pyrite, disseminated sphalerite and galena. Non-metalliferous and/or gangue minerals are represented by dolomite, calcite, celestite and quartz. Fluid inclusion petrography study has been carried out on calcite and celestite. Fluid inclusions hosted in celestite are less than 20 µm large and show two types of aqueous inclusions: monophase liquid aqueous inclusions (L), abundant and very small, generally less than 15 µm and liquid-rich two phase inclusions (L+V). The gas phase forms a mobile vapor bubble. Microthermometric analyses of (L+V) fluid inclusions for celestite indicate that the homogenization temperature ranges from 121 to 156°C, and final ice melting temperatures are in the range of – 19 to -9°C corresponding to salinities of 12 to 21 wt% NaCl eq. (L+V) fluid inclusions from calcite are frequently localized along the growth zones; their homogenization temperature ranges from 96 to 164°C with final ice melting temperatures between -16 and -7°C corresponding to salinities of 9 to 19 wt% NaCl eq. According to mineralogical and fluid inclusion studies, mineralization in the Pb – Zn Kebbouch South deposit formed between 96 to 164°C with salinities ranging from 9 to 21 wt% NaCl eq. A contribution of basinal brines in the ore formation of the kebbouch South Pb–Zn deposit is likely. The deposit is part of the family of MVT deposits associated with the salt diapir environment.

Keywords: fluid inclusion, Kebbouch South, mineralogy, MVT deposits, Pb-Zn

Procedia PDF Downloads 252
622 Exploring the Development of Inter-State Relations under the Mechanism of the Hirschman Effect: A Case Study of Malaysia-China Relations in a Political Crisis (2020-2022)

Authors: Zhao Xinlei

Abstract:

In general, interstate relations are diverse and include economic, political, military, and diplomatic. Therefore, by analyzing the development of the relationship between Malaysia and China, we can better verify how the Hirschman effect works between small countries and great powers. This paper mainly adopts qualitative research methods and uses Malaysia's 2020-2022 political crisis as a specific case to verify the practice of the Hirschman effect between small and large countries. In particular, the interest groups in small countries that are closely related to trade with extraordinary abilities, as the primary beneficiaries in the development of trade between the two countries, although they may use their resources to a certain extent to influence the decisions of small countries towards great powers, they do not fundamentally determine the small countries' response to large countries. In this process, the relative power asymmetry between states plays a dominant role, as small states lack trust and suspicion in political diplomacy towards large states based on the perception of threat arising from the relative power asymmetry. When developing bilateral relations with large countries, small states seek practical cooperation to promote economic and trade development but become more cautious in their political ties to avoid being caught in power struggles between large states or being controlled by them. The case of Malaysia-China relations also illustrates that despite the ongoing political crisis in Malaysia, which saw the country go through the transition from (Perikatan Nasional) PN to (Barisan Nasional) BN, different governments have maintained a pragmatic and proactive economic policy towards China to reduce suspicion and mistrust between the two countries in political and diplomatic affairs, thereby enhancing cooperation and interactions between the two countries. At the same time, the Malaysian government is developing multi-dimensional foreign relations and actively participating in multilateral, regional organizations and platforms, such as those organized by the United States, to maintain a relative balance in the influence of the US and China on Malaysia.

Keywords: Hirschman effect, interest groups, Malaysia, China, bilateral relations

Procedia PDF Downloads 68
621 Engineering Microstructural Evolution during Arc Wire Directed Energy Deposition of Magnesium Alloy (AZ31)

Authors: Nivatha Elangovan, Lakshman Neelakantan, Murugaiyan Amirthalingam

Abstract:

Magnesium and its alloys are widely used for various lightweight engineering and biomedical applications as they render high strength to low weight ratio and excellent corrosion resistance. These alloys possess good bio-compatibility and similar mechanical properties to natural bone. However, manufacturing magnesium alloy components by conventional formative and subtractive methods is challenging due to their poor castability, oxidation potential, and machinability. Therefore, efforts are made to produce complex-design containing magnesium alloy components by additive manufacturing (AM). Arc-wire directed energy deposition (AW-DED), also known as wire arc additive manufacturing (WAAM), is more attractive to produce large volume components with increased productivity than any other AM technique. In this research work, efforts were made to optimise the deposition parameters to build thick-walled (about 10 mm) AZ31 magnesium alloy components by a gas metal arc (GMA) based AW-DED process. By using controlled dip short-circuiting metal transfer in a GMA process, depositions were carried out without defects and spatter formation. Current and voltage waveforms were suitably modified to achieve stable metal transfer. Moreover, the droplet transfer behaviour was analysed using high-speed image analysis and correlated with arc energy. Optical and scanning electron microscopy analyses were carried out to correlate the influence of deposition parameters with the microstructural evolution during deposition. The investigation reveals that by carefully controlling the current-voltage waveform and droplet transfer behaviour, it is possible to stabilise equiaxed grain microstructures in the deposited AZ31 components. The printed component exhibited an improved mechanical property as equiaxed grains improve the ductility and enhance the toughness. The equiaxed grains in the component improved the corrosion-resistant behaviour of other conventionally manufactured components.

Keywords: arc wire directed energy deposition, AZ31 magnesium alloy, equiaxed grain, corrosion

Procedia PDF Downloads 124
620 Effects of Robot-Assisted Hand Training on Upper Extremity Performance in Patients with Stroke: A Randomized Crossover Controlled, Assessor-Blinded Study

Authors: Hsin-Chieh Lee, Fen-Ling Kuo, Jui-Chi Lin

Abstract:

Background: Upper extremity functional impairment that occurs after stroke includes hemiplegia, synergy movement, muscle hypertonicity, and somatosensory impairment, which result in inefficient and inaccurate movement. Robot-assisted rehabilitation is an intensive training approach that is effective in sensorimotor and hand function recovery. However, these systems mostly focused on the proximal part of the upper limb rather than the distal part. The device used in our study was Gloreha Sinfonia, which focuses on the distal part of the upper limb and uses a dynamic support system to facilitate the whole limb function. The objective of this study was to investigate the effects of robot-assisted therapy (RT) with Gloreha device on sensorimotor, and ADLs in patients with stroke. Method: Patients with stroke (N=25) participated AB or BA (A = 12 RT sessions and B = 12 conventional therapy (CT) sessions) for 6 weeks (60 min at each session, twice a week), with 1-month break for washout period. The performance of the patients was assessed by a blinded assessor at 4 time points (pretest 1, posttest 1, pretest 2, posttest 2) which including the Fugl–Meyer Assessment-upper extremity (FMA-UE), box and block test, electromyography of the extensor digitorum communis (EDC) and brachioradialis, a grip dynamometer for motor evaluation; Semmes–Weinstein hand monofilament and Revision of the Nottingham Sensory Assessment for sensory evaluation; and the Modified Barthel Index (MBI) for assessing the ADL ability. Result: RT group significantly improved FMA-UE proximal scores (p = 0.038), FMA-UE total scores (p = 0.046), and MBI (p = 0.030). The EDC exhibited higher efficiency during the small block grasping task in the RT group than in the CT group (p = 0.050). Conclusions: RT with the Gloreha device might lead to beneficial effects on arm motor function, ADL ability, and EDC muscle recruitment efficacy in patients with subacute to chronic stroke.

Keywords: activities of daily living, hand function, robotic rehabilitation, stroke

Procedia PDF Downloads 118
619 Quantitative and Qualitative Analysis of Randomized Controlled Trials in Physiotherapy from India

Authors: K. Hariohm, V. Prakash, J. Saravana Kumar

Abstract:

Introduction and Rationale: Increased scope of Physiotherapy (PT) practice also has contributed to research in the field of PT. It is essential to determine the production and quality of the clinical trials from India since, it may reflect the scientific growth of the profession. These trends can be taken as a baseline to measure our performance and also can be used as a guideline for the future trials. Objective: To quantify and analyze qualitatively the RCT’s from India from the period 2000-2013’ May, and classify data for the information process. Methods: Studies were searched in the Medline database using the key terms “India”, “Indian”, “Physiotherapy”. Clinical trials only with PT authors were included. Trials out of scope of PT practice and on animals were excluded. Retrieved valid articles were analyzed for published year, type of participants, area of study, PEDro score, outcome measure domains of impairment, activity, participation; ‘a priori’ sample size calculation, region, and explanation of the intervention. Result: 45 valid articles were retrieved from the year 2000-2013’ May. The majority of articles were done on symptomatic participants (81%). The frequencies of conditions repeated more were low back pain (n-7) and diabetes (n-4). PEDro score with mode 5 and upper limit of 8 and lower limit 4 was found. 97.2% of studies measure the outcome at the impairment level, 34% in activity level, and 27.8% in participation level. 29.7% of studies did ‘a priori’ sample size calculation. Correlation of year trend and PEDro score found to be not significant (p>.05). Individual PEDro item analysis showed, randomization (100%), concealment (33%) baseline (76%), blinding-subject, therapist, assessor (9.1%, 0%, 10%), follow-up (89%) ITT (15%), statistics between groups (100%), measures of variance (88 %). Conclusion: The trend shows an upward slope in terms of RCTs published from India which is a good indicator. The qualitative analysis showed some gaps in the clinical trial design, which can be expected to be, fulfilled by the future researchers.

Keywords: RCT, PEDro, physical therapy, rehabilitation

Procedia PDF Downloads 342
618 Magnetophotonics 3D MEMS/NEMS System for Quantitative Mitochondrial DNA Defect Profiling

Authors: Dar-Bin Shieh, Gwo-Bin Lee, Chen-Ming Chang, Chen Sheng Yeh, Chih-Chia Huang, Tsung-Ju Li

Abstract:

Mitochondrial defects have a significant impact in many human diseases and aging associated phenotypes. The pathogenic mitochondrial DNA (mtDNA) mutations are diverse and usually present as heteroplasmic. mtDNA 4977bps deletion is one of the common mtDNA defects, and the ratio of mutated versus normal copy is significantly associated with clinical symptoms thus their quantitative detection has become an important unmet needs for advanced disease diagnosis and therapeutic guidelines. This study revealed a Micro-electro-mechanical-system (MEMS) enabled automatic microfluidic chip that only required minimal sample. The system integrated multiple laboratory operation steps into a Lab-on-a-Chip for high-sensitive and prompt measurement. The entire process including magnetic nanoparticle based mtDNA extraction in chip, mutation selective photonic DNA cleavage, and nanoparticle accelerated photonic quantitative polymerase chain reaction (qPCR). All subsystems were packed inside a miniature three-dimensional micro structured system and operated in an automatic manner. Integration of magnetic beads with microfluidic transportation could promptly extract and enrich the specific mtDNA. The near infrared responsive magnetic nanoparticles enabled micro-PCR to be operated by pulse-width-modulation controlled laser pulsing to amplify the desired mtDNA while quantified by fluorescence intensity captured by a complementary metal oxide system array detector. The proportions of pathogenic mtDNA in total DNA were thus obtained. Micro capillary electrophoresis module was used to analyze the amplicone products. In conclusion, this study demonstrated a new magnetophotonic based qPCR MEMS system that successfully detects and quantify specific disease related DNA mutations thus provides a promising future for rapid diagnosis of mitochondria diseases.

Keywords: mitochondrial DNA, micro-electro-mechanical-system, magnetophotonics, PCR

Procedia PDF Downloads 218
617 Heteroatom Doped Binary Metal Oxide Modified Carbon as a Bifunctional Electrocatalysts for all Vanadium Redox Flow Battery

Authors: Anteneh Wodaje Bayeh, Daniel Manaye Kabtamu, Chen-Hao Wang

Abstract:

As one of the most promising electrochemical energy storage systems, vanadium redox flow batteries (VRFBs) have received increasing attention owing to their attractive features for largescale storage applications. However, their high production cost and relatively low energy efficiency still limit their feasibility. For practical implementation, it is of great interest to improve their efficiency and reduce their cost. One of the key components of VRFBs that can greatly influence the efficiency and final cost is the electrode, which provide the reactions sites for redox couples (VO²⁺/VO₂ + and V²⁺/V³⁺). Carbon-based materials are considered to be the most feasible electrode materials in the VRFB because of their excellent potential in terms of operation range, good permeability, large surface area, and reasonable cost. However, owing to limited electrochemical activity and reversibility and poor wettability due to its hydrophobic properties, the performance of the cell employing carbon-based electrodes remained limited. To address the challenges, we synthesized heteroatom-doped bimetallic oxide grown on the surface of carbon through the one-step approach. When applied to VRFBs, the prepared electrode exhibits significant electrocatalytic effect toward the VO²⁺/VO₂ + and V³⁺/V²⁺ redox reaction compared with that of pristine carbon. It is found that the presence of heteroatom on metal oxide promotes the absorption of vanadium ions. The controlled morphology of bimetallic metal oxide also exposes more active sites for the redox reaction of vanadium ions. Hence, the prepared electrode displays the best electrochemical performance with energy and voltage efficiencies of 74.8% and 78.9%, respectively, which is much higher than those of 59.8% and 63.2% obtained from the pristine carbon at high current density. Moreover, the electrode exhibit durability and stability in an acidic electrolyte during long-term operation for 1000 cycles at the higher current density.

Keywords: VRFB, VO²⁺/VO₂ + and V³⁺/V²⁺ redox couples, graphite felt, heteroatom-doping

Procedia PDF Downloads 98
616 Transitional Separation Bubble over a Rounded Backward Facing Step Due to a Temporally Applied Very High Adverse Pressure Gradient Followed by a Slow Adverse Pressure Gradient Applied at Inlet of the Profile

Authors: Saikat Datta

Abstract:

Incompressible laminar time-varying flow is investigated over a rounded backward-facing step for a triangular piston motion at the inlet of a straight channel with very high acceleration, followed by a slow deceleration experimentally and through numerical simulation. The backward-facing step is an important test-case as it embodies important flow characteristics such as separation point, reattachment length, and recirculation of flow. A sliding piston imparts two successive triangular velocities at the inlet, constant acceleration from rest, 0≤t≤t0, and constant deceleration to rest, t0≤tKeywords: laminar boundary layer separation, rounded backward facing step, separation bubble, unsteady separation, unsteady vortex flows

Procedia PDF Downloads 66
615 The Efficacy of Class IV Diode Laser in the Treatment of Patients with Chronic Neck Pain: A Randomized Controlled Trial

Authors: Mohamed Salaheldien Mohamed Alayat, Ahmed Mohamed Elsoudany, Roaa Abdulghani Sroge, Bayan Muteb Aldhahwani

Abstract:

Background: Neck pain is a common illness that could affect individual’s daily activities. Class IV laser with longer wavelength can stimulate tissues and penetrate more than the classic low-level laser therapy. Objectives: The aim of the study was to investigate the efficacy of class IV diode laser in the treatment of patients with chronic neck pain (CNP). Methods: Fifty-two patients participated and completed the study. Their mean age (SD) was 50.7 (6.2). Patients were randomized into two groups and treated with laser plus exercise (laser + EX) group and placebo laser plus exercise (PL+EX) group. Treatment was performed by Class IV laser in two phases; scanning and trigger point phases. Scanning to the posterior neck and shoulder girdle region with 4 J/cm2 with a total energy of 300 J applied to 75 cm2 in 4 minutes and 16 seconds. Eight trigger points on the posterior neck area were treated by 4 J/cm2 and the time of application was in 30 seconds. Both groups received exercise two times per week for 4 weeks. Exercises included range of motion, isometric, stretching, isotonic resisted exercises to the cervical extensors, lateral bending and rotators muscles with postural correction exercises. The measured variables were pain level using visual analogue scale (VAS), and neck functional activity using neck disability index (NDI) score. Measurements were taken at baseline and after 4 weeks of treatment. The level of statistical significance was set as p < 0.05. Results: There were significant decreases in post-treatment VAS and NDI in both groups as compared to baseline values. Laser + EX effectively decreased VAS (mean difference -6.5, p = 0.01) and NDI scores after (mean difference -41.3, p = 0.01) 4 weeks of treatment compared to PL + EX. Conclusion: Class IV laser combined with exercise is effective treatment for patients with CNP as compared to PL + EX therapy. The combination of laser + EX effectively increased functional activity and reduced pain after 4 weeks of treatment.

Keywords: chronic neck pain, class IV laser, exercises, neck disability index, visual analogue scale

Procedia PDF Downloads 314
614 The Revival of Cultural Heritage through Social Space Upliftment: Case Study of the Walled City of Ajmer, India

Authors: Vaishali Sharma

Abstract:

The research is an attempt to hunt a scientific and objective method to transform Ajmer's traditional walled city into a living cultural heritage space, exploring urban management methods to elevate local economy and social space in relation to specific cultural-based initiatives. Ajmer is among the oldest and religiously diverse settlements in Rajasthan, that has seen superimposed developments through the eras. With numerous agencies operating towards the development of the town core of Ajmer, it becomes essential to structure development changes in tune with the transformations and the existing heritage. The study was radio-controlled by the subsequent analysis question: What is the way to overcome the genetic social and economic stress inside the communities and revive public life? In order to create necessary interventions at the neighbourhood level, fifteen neighbourhoods were identified. Each of those was analyzed relatively on three major dimensions: Heritage, Social and Local Economy. Each dimension was further broken down into multiple sub-aspects for an overall and exhaustive understanding. The average median values of the responses were used to develop a color-coded matrix to represent the scores in an exceedingly structured quantified manner, moreover, linking it to the spatial structure. Respondent perceptions on numerous dimensions were additionally recorded, so that the proposals are inclusive in nature. The goals are targeted at Ajmer's traditional walled towns, which will make it easier for the community to regulate the rapid transformations and commercialization occurring within the space. The study recommends the necessity for accrued support in methods and policies from the non-public sector, businesses as well as local stakeholders. An expansion, revitalization and maintenance of the major business and heritage corridors, for an increased local and visitor experience, can produce an impetus for promotion of the intangible heritage, to spur the local economic processes, conservation of heritage precincts and upward development.

Keywords: cultural heritage, economic revitalization, neighbourhoods in walled cities, social space, tangible and intangible heritage

Procedia PDF Downloads 160
613 Construction of Ovarian Cancer-on-Chip Model by 3D Bioprinting and Microfluidic Techniques

Authors: Zakaria Baka, Halima Alem

Abstract:

Cancer is a major worldwide health problem that has caused around ten million deaths in 2020. In addition, efforts to develop new anti-cancer drugs still face a high failure rate. This is partly due to the lack of preclinical models that recapitulate in-vivo drug responses. Indeed conventional cell culture approach (known as 2D cell culture) is far from reproducing the complex, dynamic and three-dimensional environment of tumors. To set up more in-vivo-like cancer models, 3D bioprinting seems to be a promising technology due to its ability to achieve 3D scaffolds containing different cell types with controlled distribution and precise architecture. Moreover, the introduction of microfluidic technology makes it possible to simulate in-vivo dynamic conditions through the so-called “cancer-on-chip” platforms. Whereas several cancer types have been modeled through the cancer-on-chip approach, such as lung cancer and breast cancer, only a few works describing ovarian cancer models have been described. The aim of this work is to combine 3D bioprinting and microfluidic technics with setting up a 3D dynamic model of ovarian cancer. In the first phase, alginate-gelatin hydrogel containing SKOV3 cells was used to achieve tumor-like structures through an extrusion-based bioprinter. The desired form of the tumor-like mass was first designed on 3D CAD software. The hydrogel composition was then optimized for ensuring good and reproducible printability. Cell viability in the bioprinted structures was assessed using Live/Dead assay and WST1 assay. In the second phase, these bioprinted structures will be included in a microfluidic device that allows simultaneous testing of different drug concentrations. This microfluidic dispositive was first designed through computational fluid dynamics (CFD) simulations for fixing its precise dimensions. It was then be manufactured through a molding method based on a 3D printed template. To confirm the results of CFD simulations, doxorubicin (DOX) solutions were perfused through the dispositive and DOX concentration in each culture chamber was determined. Once completely characterized, this model will be used to assess the efficacy of anti-cancer nanoparticles developed in the Jean Lamour institute.

Keywords: 3D bioprinting, ovarian cancer, cancer-on-chip models, microfluidic techniques

Procedia PDF Downloads 196
612 Responsive Integrative Therapeutic Method: Paradigm for Addressing Core Deficits in Autism by Balkibekova

Authors: Balkibekova Venera Serikpaevna

Abstract:

Background: Autism Spectrum Disorder (ASD) poses significant challenges in both diagnosis and treatment. Existing therapeutic interventions often target specific symptoms, necessitating the exploration of alternative approaches. This study investigates the RITM (Rhythm Integration Tapping Music) developed by Balkibekova, aiming to create imitation, social engagement and a wide range of emotions through brain development. Methods: A randomized controlled trial was conducted with 100 participants diagnosed with ASD, aged 1 to 4 years. Participants were randomly assigned to either the RITM therapy group or a control group receiving standard care. The RITM therapy, rooted in tapping rhythm to music such as: marche on the drums, waltz on bells, lullaby on musical triangle, dancing on tambourine, polka on wooden spoons. Therapy sessions were conducted over a 3 year period, with assessments at baseline, midpoint, and post-intervention. Results: Preliminary analyses reveal promising outcomes in the RITM therapy group. Participants demonstrated significant improvements in social interactions, speech understanding, birth of speech, and adaptive behaviors compared to the control group. Careful examination of subgroup analyses provides insights into the differential effectiveness of the RITM approach across various ASD profiles. Conclusions: The findings suggest that RITM therapy, as developed by Balkibekova, holds promise as intervention for ASD. The integrative nature of the approach, addressing multiple domains simultaneously, may contribute to its efficacy. Further research is warranted to validate these preliminary results and explore the long-term impact of RITM therapy on individuals with ASD. This abstract presents a snapshot of the research, emphasizing the significance, methodology, key findings, and implications of the RITM therapy method for consideration in an autism conference.

Keywords: RITM therapy, tapping rhythm, autism, mirror neurons, bright emotions, social interactions, communications

Procedia PDF Downloads 64
611 Design and Development of an Autonomous Underwater Vehicle for Irrigation Canal Monitoring

Authors: Mamoon Masud, Suleman Mazhar

Abstract:

Indus river basin’s irrigation system in Pakistan is extremely complex, spanning over 50,000 km. Maintenance and monitoring of this demands enormous resources. This paper describes the development of a streamlined and low-cost autonomous underwater vehicle (AUV) for the monitoring of irrigation canals including water quality monitoring and water theft detection. The vehicle is a hovering-type AUV, designed mainly for monitoring irrigation canals, with fully documented design and open source code. It has a length of 17 inches, and a radius of 3.5 inches with a depth rating of 5m. Multiple sensors are present onboard the AUV for monitoring water quality parameters including pH, turbidity, total dissolved solids (TDS) and dissolved oxygen. A 9-DOF Inertial Measurement Unit (IMU), GY-85, is used, which incorporates an Accelerometer (ADXL345), a Gyroscope (ITG-3200) and a Magnetometer (HMC5883L). The readings from these sensors are fused together using directional cosine matrix (DCM) algorithm, providing the AUV with the heading angle, while a pressure sensor gives the depth of the AUV. 2 sonar-based range sensors are used for obstacle detection, enabling the vehicle to align itself with the irrigation canals edges. 4 thrusters control the vehicle’s surge, heading and heave, providing 3 DOF. The thrusters are controlled using a proportional-integral-derivative (PID) feedback control system, with heading angle and depth being the controller’s input and the thruster motor speed as the output. A flow sensor has been incorporated to monitor canal water level to detect water-theft event in the irrigation system. In addition to water theft detection, the vehicle also provides information on water quality, providing us with the ability to identify the source(s) of water contamination. Detection of such events can provide useful policy inputs for improving irrigation efficiency and reducing water contamination. The AUV being low cost, small sized and suitable for autonomous maneuvering, water level and quality monitoring in the irrigation canals, can be used for irrigation network monitoring at a large scale.

Keywords: the autonomous underwater vehicle, irrigation canal monitoring, water quality monitoring, underwater line tracking

Procedia PDF Downloads 147
610 Robotic Exoskeleton Response During Infant Physiological Knee Kinematics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 118
609 The Effect of Bilingualism on Prospective Memory

Authors: Aslı Yörük, Mevla Yahya, Banu Tavat

Abstract:

It is well established that bilinguals outperform monolinguals on executive function tasks. However, the effects of bilingualism on prospective memory (PM), which also requires executive functions, have not been investigated vastly. This study aimed to compare bi and monolingual participants' PM performance in focal and non-focal PM tasks. Considering that bilinguals have greater executive function abilities than monolinguals, we predict that bilinguals’ PM performance would be higher than monolinguals on the non-focal PM task, which requires controlled monitoring processes. To investigate these predictions, we administered the focal and non-focal PM task and measured the PM and ongoing task performance. Forty-eight Turkish-English bilinguals residing in North Macedonia and forty-eight Turkish monolinguals living in Turkey between the ages of 18-30 participated in the study. They were instructed to remember responding to rarely appearing PM cues while engaged in an ongoing task, i.e., spatial working memory task. The focality of the task was manipulated by giving different instructions for PM cues. In the focal PM task, participants were asked to remember to press an enter key whenever a particular target stimulus appeared in the working memory task; in the non-focal PM task, instead of responding to a specific target shape, participants were asked to remember to press the enter key whenever the background color of the working memory trials changes to a specific color (yellow). To analyze data, we performed a 2 × 2 mixed factorial ANOVA with the task (focal versus non-focal) as a within-subject variable and language group (bilinguals versus monolinguals) as a between-subject variable. The results showed no direct evidence for a bilingual advantage in PM. That is, the group’s performance did not differ in PM accuracy and ongoing task accuracy. However, bilinguals were overall faster in the ongoing task, yet this was not specific to PM cue’s focality. Moreover, the results showed a reversed effect of PM cue's focality on the ongoing task performance. That is, both bi and monolinguals showed enhanced performance in the non-focal PM cue task. These findings raise skepticism about the literature's prevalent findings and theoretical explanations. Future studies should investigate possible alternative explanations.

Keywords: bilingualism, executive functions, focality, prospective memory

Procedia PDF Downloads 115
608 Study on Effectiveness of Strategies to Re-Establish Landscape Connectivity of Expressways with Reference to Southern Expressway Sri Lanka

Authors: N. G. I. Aroshana, S. Edirisooriya

Abstract:

Construction of highway is the most emerging development tendency in Sri Lanka. With these development activities, there are a lot of environmental and social issues started. Landscape fragmentation is one of the main issues that highly effect to the environment by the construction of expressways. Sri Lankan expressway system getting effort to treat fragmented landscape by using highway crossing structures. This paper designates, a highway post construction landscape study on the effectiveness of the landscape connectivity structures to restore connectivity. Geographic Information Systems (GIS), least cost path tool has been used in the selected two plots; 25km alone the expressway to identify animal crossing paths. Animal accident data use as measure for determining the most contributed plot for landscape connectivity. Number of patches, Mean patch size, Class area use as a parameter to determine the most effective land use class to reestablish the landscape connectivity. The findings of the research express scrub, grass and marsh were the most positively affected land use typologies for increase the landscape connectivity. It represents the growth increased by 8% within the 12 years of time. From the least cost analysis within the plot one, 28.5% of total animal crossing structures are within the high resistance land use classes. Southern expressway used reinforced compressed earth technologies for construction. It has been controlled the growth of the climax community. According to all findings, it could assume that involvement of the landscape crossing structures contributes to re-establish connectivity, but it is not enough to restore the majority of disturbance performed by the expressway. Connectivity measures used within the study can use as a tool for re-evaluate future involvement of highway crossing structures. Proper placement of the highway crossing structures leads to increase the rate of connectivity. The study recommends that monitoring the all stages (preconstruction, construction and post construction) of the project and preliminary design, and the involvement of the research applied connectivity assessment strategies helps to overcome the complication regarding the re-establishment of landscape connectivity using the highway crossing structures that facilitate the growth of flora and fauna.

Keywords: landscape fragmentation, least cost path, land use analysis, landscape connectivity structures

Procedia PDF Downloads 149
607 Exoskeleton Response During Infant Physiological Knee Kinematics And Dynamics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 83
606 Compliance Of Dialysis patients With Nutrition Guidelines: Insights From A Questionnaire

Authors: Zeiler M., Stadler D., Schmaderer C.

Abstract:

Over the years of dialysis treatment, most patients experience significant weight loss. The primary emphasis in earlier research was the underlying mechanism of protein energy wasting and the subsequent malnutrition inflammation syndrome. In the interest to provide an effective and rapid solution for the patients, the aim of this study is identifying individual influences of their assumed reduced dietary intake, such as nausea, appetite loss and taste changes, and to determine whether the patients adhere to their nutrition guidelines. A prospective, controlled study with 38 end-stage renal disease patients was performed using a questionnaire to reflect their diet within the last 12 months. Thereby, the daily intake for the most important macro-and micronutrients was calculated to be compared with the individual KDQOI-guideline value, as well as controls matched in age and gender. The majority of the study population did not report symptoms commonly associated with dialysis, such as nausea or inappetence, and denied any change in dietary behavior since receiving renal replacement therapy. The patients’ daily intake of energy (3080kcal ± 1266) and protein (89,9g [53,4-142,0]) did not differ significantly from the controls (energy intake: 3233kcal ± 1046, p=0,597; protein intake: 103,7g [90,1-125,5], p=0,120). The average difference to the individual calculated KDQOI-guideline was +176,0kcal ± 1156 (p=0,357) for energy intake and -1,75g ± 45,9 (p=0,491) for protein intake. However, there was an observed imbalance in the distribution of macronutrients, with a preference for fats over proteins. The patients’ daily intake of sodium (5,4g [ 2,95-10,1]) was higher than in the controls (4,1g [2,04-5,99], p= 0,058) whereas both values for potassium (3,7g ± 1,84) and phosphorous (1,79g ± 0,91) went significantly below the controls’ values (potassium intake: 4,89g ± 1,74, p=0,014; phosphorous intake: 2,04g ± 0,64, p=0,038). Thus, the values exceeded the calculated KDQOI-recommendation by + 3,3g [0,63-7,90] (p<0,001) for sodium, +1,49g ± 1,84 (p<0,001) for potassium and +0,89g ± 0,91 (p<0,001) for phosphorous. Contrary to the assumption, the patients did not under-eat. Nevertheless, their diets did not align with the recommended values. These findings highlight the need for intervention and education among patients and that regular dietary monitoring could prevent unhealthy nutrition habits. The elaboration of individual references instead of standardized guidelines could increase the compliance to the advised diet so that interdisciplinary comorbidities do not develop or worsen.

Keywords: compliance, dialysis, end-stage renal disease, KDQOI, malnutrition, nutrition guidelines, questionnaire, salt intake

Procedia PDF Downloads 68
605 Informal Carers in Telemonitoring of Users with Pacemakers: Characteristics, Time of Services Provided and Costs

Authors: Antonio Lopez-Villegas, Rafael Bautista-Mesa, Emilio Robles-Musso, Daniel Catalan-Matamoros, Cesar Leal-Costa

Abstract:

Objectives: The purpose of this trial was to evaluate the burden borne by and the costs to informal caregivers of users with telemonitoring of pacemakers. Methods: This is a controlled, non-randomised clinical trial, with data collected from informal caregivers, five years after implantation of pacemakers. The Spanish version of the Survey on Disabilities, Personal Autonomy, and Dependency Situations was used to get information on clinical and social characteristics, levels of professionalism, duration and types of care, difficulties in providing care, health status, economic and job aspects, impact on the family or leisure due to informal caregiving for patients with pacemakers. Results: After five years of follow-up, 55 users with pacemakers finished the study. Of which, 50 were helped by a caregiver, 18 were included in the telemonitoring group (TM) and 32 in the conventional follow-up group (HM). Overall, females represented 96.0% of the informal caregivers (88.89% in TM and 100.0% in HM group). The mean ages were 63.17 ± 15.92 and 63.13 ± 14.56 years, respectively (p = 0.83) in the groups. The majority (88.0%) of the caregivers declared that they had to provide their services between 6 and 7 days per week (83.33% in TM group versus 90.63% in HM group), without significant differences between both groups. The costs related to care provided by the informal caregivers were 47.04% higher in the conventional follow-up group than in the TM group. Conclusions: The results of this trial confirm that there were no significant differences between the informal caregivers regarding to baseline characteristics, workload and time worked in both groups of follow-up. The costs incurred by the informal caregivers providing care for users with pacemakers included in telemonitoring group are significantly lower than those in the conventional follow-up group. Trial registration: ClinicalTrials.gov NCT02234245. Funding: The PONIENTE study, has been funded by the General Secretariat for Research, Development and Innovation, Regional Government of Andalusia (Spain), project reference number PI/0256/2017, under the research call 'Development and Innovation Projects in the Field of Biomedicine and Health Sciences', 2017.

Keywords: costs, disease burden, informal caregiving, pacemaker follow-up, remote monitoring, telemedicine

Procedia PDF Downloads 142
604 Cyclic Stress and Masing Behaviour of Modified 9Cr-1Mo at RT and 300 °C

Authors: Preeti Verma, P. Chellapandi, N.C. Santhi Srinivas, Vakil Singh

Abstract:

Modified 9Cr-1Mo steel is widely used for structural components like heat exchangers, pressure vessels and steam generator in the nuclear reactors. It is also found to be a candidate material for future metallic fuel sodium cooled fast breeder reactor because of its high thermal conductivity, lower thermal expansion coefficient, micro structural stability, high irradiation void swelling resistance and higher resistance to stress corrosion cracking in water-steam systems compared to austenitic stainless steels. The components of steam generators that operate at elevated temperatures are often subjected to repeated thermal stresses as a result of temperature gradients which occur on heating and cooling during start-ups and shutdowns or during variations in operating conditions of a reactor. These transient thermal stresses give rise to LCF damage. In the present investigation strain controlled low cycle fatigue tests were conducted at room temperature and 300 °C in normalized and tempered condition using total strain amplitudes in the range from ±0.25% to ±0.5% at strain rate of 10-2 s-1. Cyclic Stress response at high strain amplitudes (±0.31% to ±0.5%) showed initial softening followed by hardening upto a few cycles and subsequent softening till failure. The extent of softening increased with increase in strain amplitude and temperature. Depends on the strain amplitude of the test the stress strain hysteresis loops displayed Masing behaviour at higher strain amplitudes and non-Masing at lower strain amplitudes at both the temperatures. It is quite opposite to the usual Masing and Non-Masing behaviour reported earlier for different materials. Low cycle fatigue damage was evaluated in terms of plastic strain and plastic strain energy approach at room temperature and 300 °C. It was observed that the plastic strain energy approach was found to be more closely matches with the experimental fatigue lives particularly, at 300 °C where dynamic strain aging was observed.

Keywords: Modified 9Cr-mo steel, low cycle fatigue, Masing behavior, cyclic softening

Procedia PDF Downloads 443
603 Noninvasive Neurally Adjusted Ventilation versus Nasal Continuous or Intermittent Positive Airway Pressure for Preterm Infants: A Systematic Review and Meta-Analysis

Authors: Mohammed S. Bhader, Abdullah A. Ghaddaf, Anas Alamoudi, Amal Abualola, Renad Kalantan, Noura Alkhulaifi, Ibrahim Halawani, Mohammed Alhindi

Abstract:

Background: Noninvasive neurally adjusted ventilatory assist (NAVA) is a relatively new mode of noninvasive ventilation with promising clinical and patient-ventilator outcomes for preterm infants. The aim of this systematic review was to compare NAVA to nasal continuous or positive airway pressure (NCPAP) or intermittent positive airway pressure (NIPP) for preterm infants. Methods: We searched the online databases Medline, Embase, and CENTRAL. We included randomized controlled trials (RCTs) that compared NAVA to NCPAP or NIPP for preterm infants < 37 weeks gestational age. We sought to evaluate the following outcomes: noninvasive intubation failure rate, desaturation rate, the fraction of inspired oxygen (FiO2), and length of stay in the neonatal intensive care unit (NICU). We used the mean difference (MD) to represent continuous outcomes, while the odds ratio (OR) was used to represent dichotomous outcomes. Results: A total of 11 RCTs that enrolled 429 preterm infants were deemed eligible. NAVA showed similar clinical outcomes to NCPAP or NIPP with respect to noninvasive intubation failure (RR for NAVA versus NCPAP: 0.82, 95% confidence interval (CI): 0.49 to 1.37), desaturation rate (RR for NAVA versus NCPAP: 0.69, 95%CI: 0.36 to 1.29; RR for NAVA versus NIPP: 0.58, 95%CI: 0.08 to 4.25), FiO2 (MD for NAVA versus NCPAP: –0.01, 95%CI: –0.04 to 0.02; MD for NAVA versus NIPP: –7.16, 95%CI: –22.63 to 8.31), and length of stay in the NICU (MD for NAVA versus NCPAP: 1.34, 95%CI: –4.17 to 6.85). Conclusion: NAVA showed similar clinical and ventilator-related outcomes compared to the usual care noninvasive respiratory support measures NCPAP or NIPP for preterm infants.

Keywords: preterm infants, noninvasive neurally adjusted ventilatory assist, NIV-NAVA, non-invasive ventilation, nasal continuous or positive airway pressure, NCPAP, intermittent positive airway pressure ventilation, NIPP, respiratory distress syndrome, RDS

Procedia PDF Downloads 109
602 A Measurement and Motor Control System for Free Throw Shots in Basketball Using Gyroscope Sensor

Authors: Niloofar Zebarjad

Abstract:

This research aims at finding a tool to provide basketball players with real-time audio feedback on their shooting form in free throw shots. Free throws played a pivotal role in taking the lead in fierce competitions. The major problem in performing an accurate free throw seems to be improper training. Since the arm movement during the free throw shot is complex, the coach or the athlete might miss the movement details during practice. Hence, there is a necessity to create a system that measures arm movements' critical characteristics and control for improper kinematics. The proposed setup in this study quantifies arm kinematics and provides real-time feedback as an audio signal consisting of a gyroscope sensor. Spatial shoulder angle data are transmitted in a mobile application in real-time and can be saved and processed for statistical and analysis purposes. The proposed system is easy to use, inexpensive, portable, and real-time applicable. Objectives: This research aims to modify and control the free throw using audio feedback and determine if and to what extent the new setup reduces errors in arm formations during throws and finally assesses the successful throw rate. Methods: One group of elite basketball athletes and two novice athletes (control and study group) participated in this study. Each group contains 5 participants being studied in three separate sessions over a week. Results: Empirical results showed enhancements in the free throw shooting style, shot pocket (SP), and locked position (LP). The mean values of shoulder angle were controlled on 25° and 45° for SP and LP, respectively, recommended by valid FIBA references. Conclusion: Throughout the experiments, the system helped correct and control the shoulder angles toward the targeted pattern of shot pocket (SP) and locked position (LP). According to the desired results for arm motion, adding another sensor to measure and control the elbow angle is recommended.

Keywords: audio-feedback, basketball, free-throw, locked-position, motor-control, shot-pocket

Procedia PDF Downloads 295
601 Method for Improving Antidepressants Adherence in Patients with Depressive Disorder: Systemic Review and Meta-Analysis

Authors: Juntip Kanjanasilp, Ratree Sawangjit, Kanokporn Meelap, Kwanchanok Kruthakool

Abstract:

Depression is a common mental health disorder. Antidepressants are effective pharmacological treatments, but most patients have low medication adherence. This study aims to systematic review and meta-analysis what method increase the antidepressants adherence efficiently and improve clinical outcome. Systematic review of articles of randomized controlled trials obtained by a computerized literature search of The Cochrane, Library, Pubmed, Embase, PsycINFO, CINAHL, Education search, Web of Science and ThaiLIS (28 December 2017). Twenty-three studies were included and assessed the quality of research by ROB 2.0. The results reported that printing media improved in number of people who had medication adherence statistical significantly (p= 0.018), but education, phone call, and program utilization were no different (p=0.172, p=0.127, p=0.659). There was no significant difference in pharmacist’s group, health care team’s group and physician’s group (p=0.329, p=0.070, p=0.040). Times of intervention at 1 month and 6 months improved medication adherence significantly (p= 0.0001, p=0.013). There was significantly improved adherence in single intervention (p=0.027) but no different in multiple interventions (p=0.154). When we analyzed medication adherence with the mean score, no improved adherence was found, not relevant with who gives the intervention and times to intervention. However, the multiple interventions group was statistically significant improved medication adherence (p=0.040). Phone call and the physician’s group were statistically significant improved clinical outcomes in number of improved patients (0.025 and 0.020, respectively). But in the pharmacist’s group and physician’s group were not found difference in the mean score of clinical outcomes (p=0.993, p=0.120, respectively). Times to intervention and number of intervention were not significant difference than usual care. The overall intervention can increase antidepressant adherence, especially the printing media, and the appropriate timing of the intervention is at least 6 months. For effective treatment, the provider should have experience and expert in caring for patients with depressive disorders, such as a psychiatrist. Medical personnel should have knowledge in caring for these patients also.

Keywords: depression, medication adherence, clinical outcomes, systematic review, meta-analysis

Procedia PDF Downloads 134
600 Current Drainage Attack Correction via Adjusting the Attacking Saw-Function Asymmetry

Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap

Abstract:

Current drainage attack suggested previously is further studied in regular settings of closed-loop controlled Brushless DC (BLDC) motor with Kalman filter in the feedback loop. Modeling and simulation experiments are conducted in a Matlab environment, implementing the closed-loop control model of BLDC motor operation in position sensorless mode under Kalman filter drive. The current increase in the motor windings is caused by the controller (p-controller in our case) affected by false data injection of substitution of the angular velocity estimates with distorted values. Operation of multiplication to distortion coefficient, values of which are taken from the distortion function synchronized in its periodicity with the rotor’s position change. A saw function with a triangular tooth shape is studied herewith for the purpose of carrying out the bias injection with current drainage consequences. The specific focus here is on how the asymmetry of the tooth in the saw function affects the flow of current drainage. The purpose is two-fold: (i) to produce and collect the signature of an asymmetric saw in the attack for further pattern recognition process, and (ii) to determine conditions of improving stealthiness of such attack via regulating asymmetry in saw function used. It is found that modification of the symmetry in the saw tooth affects the periodicity of current drainage modulation. Specifically, the modulation frequency of the drained current for a fully asymmetric tooth shape coincides with the saw function modulation frequency itself. Increasing the symmetry parameter for the triangle tooth shape leads to an increase in the modulation frequency for the drained current. Moreover, such frequency reaches the switching frequency of the motor windings for fully symmetric triangular shapes, thus becoming undetectable and improving the stealthiness of the attack. Therefore, the collected signatures of the attack can serve for attack parameter identification via the pattern recognition route.

Keywords: bias injection attack, Kalman filter, BLDC motor, control system, closed loop, P-controller, PID-controller, current drainage, saw-function, asymmetry

Procedia PDF Downloads 80
599 The Effect of Durability and Pathogen Strains on the Wheat Induced Resistance against Zymoseptoria tritici as a Response to Paenibacillus sp. Strain B2

Authors: E. Samain, T. Aussenac, D. van Tuinen, S. Selim

Abstract:

Plant growth promoting rhizobacteria are known as potential biofertilizers and plant resistance inducers. The present work aims to study the durability of the resistance induced as a response to wheat seeds inoculation with PB2 and its influence by Z. tritici strains. The internal and external roots colonization have been determined in vitro, seven days post inoculation, by measuring the colony forming unit (CFU). In planta experimentations were done under controlled conditions included four wheat cultivars with different levels of resistance against Septoria Leaf Blotch (SLB) and four Z. tritici strains with high aggressiveness and resistance levels to fungicides. Plantlets were inoculated with PB2 at sowing and infected with Z. tritici at 3 leaves or tillering growth stages. The infection level with SLB was evaluated at 17 days post inoculation using real-time quantitative polymerase chain reaction (PCR). Results showed that PB2 has a high potential of wheat root external colonization (> 10⁶ CFU/g of root). However, the internal colonization seems to be cultivar dependent. Indeed, PB2 has not been observed as endophytic for one cultivar but has a high level of internal colonization with more than 104 CFU/g of root concerning the three others. Two wheat cultivars (susceptible and moderated resistant) were used to investigate PB2-induced resistance (PB2-IR). After the first infection with Z. tritici, results showed that PB2-IR has conferred a high protection efficiency (40-90%) against SLB in the two tested cultivars. Whereas the PB2-IR was effective against all tested strains with the moderate resistant cultivar, it was higher with the susceptible cultivar (> 64%) but against three of the four tested strains. Concerning the durability of the PB2-IR, after the second infection timing, it has been observed a significant decrease (10-59%) depending strains in the moderate resistant cultivar. Contrarily, the susceptible cultivar showed a stable and high protection level (76-84%) but against three of the four tested strains and interestingly, the strain that overcame PB2-IR was not the same as that of the first infection timing. To conclude, PB2 induces a high and durable resistance against Z. tritici. The PB2-IR is pathogen strain, plant growth stage and genotype dependent. These results may explain the loss of the induced resistance effectiveness under field conditions.

Keywords: induced resistance, Paenibacillus sp. strain B2, wheat genotypes, Zymoseptoria tritici

Procedia PDF Downloads 149
598 Development of a Mechanical Ventilator Using A Manual Artificial Respiration Unit

Authors: Isomar Lima da Silva, Alcilene Batalha Pontes, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Context: Mechanical ventilators are medical devices that help provide oxygen and ventilation to patients with respiratory difficulties. This equipment consists of a manual breathing unit that can be operated by a doctor or nurse and a mechanical ventilator that controls the airflow and pressure in the patient's respiratory system. This type of ventilator is commonly used in emergencies and intensive care units where it is necessary to provide breathing support to critically ill or injured patients. Objective: In this context, this work aims to develop a reliable and low-cost mechanical ventilator to meet the demand of hospitals in treating people affected by Covid-19 and other severe respiratory diseases, offering a chance of treatment as an alternative to mechanical ventilators currently available in the market. Method: The project presents the development of a low-cost auxiliary ventilator with a controlled ventilatory system assisted by integrated hardware and firmware for respiratory cycle control in non-invasive mechanical ventilation treatments using a manual artificial respiration unit. The hardware includes pressure sensors capable of identifying positive expiratory pressure, peak inspiratory flow, and injected air volume. The embedded system controls the data sent by the sensors. It ensures efficient patient breathing through the operation of the sensors, microcontroller, and actuator, providing patient data information to the healthcare professional (system operator) through the graphical interface and enabling clinical parameter adjustments as needed. Results: The test data of the developed mechanical ventilator presented satisfactory results in terms of performance and reliability, showing that the equipment developed can be a viable alternative to commercial mechanical ventilators currently available, offering a low-cost solution to meet the increasing demand for respiratory support equipment.

Keywords: mechanical fans, breathing, medical equipment, COVID-19, intensive care units

Procedia PDF Downloads 70
597 Biodegradable Polymeric Vesicles Containing Magnetic Nanoparticles, Quantum Dots and Anticancer Drugs for Drug Delivery and Imaging

Authors: Fei Ye, Åsa Barrefelt, Manuchehr Abedi-Valugerdi, Khalid M. Abu-Salah, Salman A. Alrokayan, Mamoun Muhammed, Moustapha Hassan

Abstract:

With appropriate encapsulation in functional nanoparticles drugs are more stable in physiological environment and the kinetics of the drug can be more carefully controlled and monitored. Furthermore, targeted drug delivery can be developed to improve chemotherapy in cancer treatment, not only by enhancing intracellular uptake by target cells but also by reducing the adverse effects in non-target organs. Inorganic imaging agents, delivered together with anti-cancer drugs, enhance the local imaging contrast and provide precise diagnosis as well as evaluation of therapy efficacy. We have developed biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery. The poly (lactic-co-glycolic acid) PLGA) vesicles were fabricated by encapsulating inorganic imaging agents of superparamagnetic iron oxide nanoparticles (SPION), manganese-doped zinc sulfide (MN:ZnS) quantum dots (QDs) and the anticancer drug busulfan into PLGA nanoparticles via an emulsion-evaporation method. T2-weighted magnetic resonance imaging (MRI) of PLGA-SPION-Mn:ZnS phantoms exhibited enhanced negative contrast with r2 relaxivity of approximately 523 s-1 mM-1 Fe. Murine macrophage (J774A) cellular uptake of PLGA vesicles started fluorescence imaging at 2 h and reached maximum intensity at 24 h incubation. The drug delivery ability PLGA vesicles was demonstrated in vitro by release of busulfan. PLGA vesicles degradation was studied in vitro, showing that approximately 32% was degraded into lactic and glycolic acid over a period of 5 weeks. The biodistribution of PLGA vesicles was investigated in vivo by MRI in a rat model. Change of contrast in the liver could be visualized by MRI after 7 min and maximal signal loss detected after 4 h post-injection of PLGA vesicles. Histological studies showed that the presence of PLGA vesicles in organs was shifted from the lungs to the liver and spleen over time.

Keywords: biodegradable polymers, multifunctional nanoparticles, quantum dots, anticancer drugs

Procedia PDF Downloads 472
596 Humans’ Physical Strength Capacities on Different Handwheel Diameters and Angles

Authors: Saif K. Al-Qaisi, Jad R. Mansour, Aseel W. Sakka, Yousef Al-Abdallat

Abstract:

Handwheels are common to numerous industries, such as power generation plants, oil refineries, and chemical processing plants. The forces required to manually turn handwheels have been shown to exceed operators’ physical strengths, posing risks for injuries. Therefore, the objectives of this research were twofold: (1) to determine humans’ physical strengths on handwheels of different sizes and angles and (2) to subsequently propose recommended torque limits (RTLs) that accommodate the strengths of even the weaker segment of the population. Thirty male and thirty female participants were recruited from a university student population. Participants were asked to exert their maximum possible forces in a counter-clockwise direction on handwheels of different sizes (35 cm, 45 cm, 60 cm, and 70 cm) and angles (0°-horizontal, 45°-slanted, and 90°-vertical). The participant’s posture was controlled by adjusting the handwheel to be at the elbow level of each participant, requiring the participant to stand erect, and restricting the hand placements to be in the 10-11 o’clock position for the left hand and the 4-5 o’clock position for the right hand. A torque transducer (Futek TDF600) was used to measure the maximum torques generated by the human. Three repetitions were performed for each handwheel condition, and the average was computed. Results showed that, at all handwheel angles, as the handwheel diameter increased, the maximum torques generated also increased, while the underlying forces decreased. In controlling the handwheel diameter, the 0° handwheel was associated with the largest torques and forces, and the 45° handwheel was associated with the lowest torques and forces. Hence, a larger handwheel diameter –as large as 70 cm– in a 0° angle is favored for increasing the torque production capacities of users. Also, it was recognized that, regardless of the handwheel diameter size and angle, the torque demands in the field are much greater than humans’ torque production capabilities. As such, this research proposed RTLs for the different handwheel conditions by using the 25th percentile values of the females’ torque strengths. The proposed recommendations may serve future standard developers in defining torque limits that accommodate humans’ strengths.

Keywords: handwheel angle, handwheel diameter, humans’ torque production strengths, recommended torque limits

Procedia PDF Downloads 112