Search results for: time-lapse imaging data
24118 Crop Classification using Unmanned Aerial Vehicle Images
Authors: Iqra Yaseen
Abstract:
One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.Keywords: image processing, UAV, YOLO, CNN, deep learning, classification
Procedia PDF Downloads 10424117 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques
Authors: Om Viroje
Abstract:
Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience
Procedia PDF Downloads 924116 Reversible Information Hitting in Encrypted JPEG Bitstream by LSB Based on Inherent Algorithm
Authors: Vaibhav Barve
Abstract:
Reversible information hiding has drawn a lot of interest as of late. Being reversible, we can restore unique computerized data totally. It is a plan where mystery data is put away in digital media like image, video, audio to maintain a strategic distance from unapproved access and security reason. By and large JPEG bit stream is utilized to store this key data, first JPEG bit stream is encrypted into all around sorted out structure and then this secret information or key data is implanted into this encrypted region by marginally changing the JPEG bit stream. Valuable pixels suitable for information implanting are computed and as indicated by this key subtle elements are implanted. In our proposed framework we are utilizing RC4 algorithm for encrypting JPEG bit stream. Encryption key is acknowledged by framework user which, likewise, will be used at the time of decryption. We are executing enhanced least significant bit supplanting steganography by utilizing genetic algorithm. At first, the quantity of bits that must be installed in a guaranteed coefficient is versatile. By utilizing proper parameters, we can get high capacity while ensuring high security. We are utilizing logistic map for shuffling of bits and utilization GA (Genetic Algorithm) to find right parameters for the logistic map. Information embedding key is utilized at the time of information embedding. By utilizing precise picture encryption and information embedding key, the beneficiary can, without much of a stretch, concentrate the incorporated secure data and totally recoup the first picture and also the original secret information. At the point when the embedding key is truant, the first picture can be recouped pretty nearly with sufficient quality without getting the embedding key of interest.Keywords: data embedding, decryption, encryption, reversible data hiding, steganography
Procedia PDF Downloads 28724115 Streamlining .NET Data Access: Leveraging JSON for Data Operations in .NET
Authors: Tyler T. Procko, Steve Collins
Abstract:
New features in .NET (6 and above) permit streamlined access to information residing in JSON-capable relational databases, such as SQL Server (2016 and above). Traditional methods of data access now comparatively involve unnecessary steps which compromise system performance. This work posits that the established ORM (Object Relational Mapping) based methods of data access in applications and APIs result in common issues, e.g., object-relational impedance mismatch. Recent developments in C# and .NET Core combined with a framework of modern SQL Server coding conventions have allowed better technical solutions to the problem. As an amelioration, this work details the language features and coding conventions which enable this streamlined approach, resulting in an open-source .NET library implementation called Codeless Data Access (CODA). Canonical approaches rely on ad-hoc mapping code to perform type conversions between the client and back-end database; with CODA, no mapping code is needed, as JSON is freely mapped to SQL and vice versa. CODA streamlines API data access by improving on three aspects of immediate concern to web developers, database engineers and cybersecurity professionals: Simplicity, Speed and Security. Simplicity is engendered by cutting out the “middleman” steps, effectively making API data access a whitebox, whereas traditional methods are blackbox. Speed is improved because of the fewer translational steps taken, and security is improved as attack surfaces are minimized. An empirical evaluation of the speed of the CODA approach in comparison to ORM approaches ] is provided and demonstrates that the CODA approach is significantly faster. CODA presents substantial benefits for API developer workflows by simplifying data access, resulting in better speed and security and allowing developers to focus on productive development rather than being mired in data access code. Future considerations include a generalization of the CODA method and extension outside of the .NET ecosystem to other programming languages.Keywords: API data access, database, JSON, .NET core, SQL server
Procedia PDF Downloads 6524114 Blockchain for IoT Security and Privacy in Healthcare Sector
Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab
Abstract:
The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas, and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It's is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain. Then we try to describe various application areas, challenges, and future directions in the healthcare sector where blockchain platforms merge with IoT networks.Keywords: IoT, blockchain, cryptocurrency, healthcare, consensus, data
Procedia PDF Downloads 17724113 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning
Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan
Abstract:
We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning
Procedia PDF Downloads 13124112 Synthesis and Characterization of Some 1, 2, 3-Triazole Derivatives Containing the Chalcone Moiety and Evaluation for their Antimicrobial and Antioxidant Activity
Authors: Desta Gebretekle Shiferaw, Balakrishna Kalluraya
Abstract:
Triazoles are basic five-membered ring heterocycles with an unsaturated, six-delocalized electron ring system. Since the dawn of click chemistry, triazoles have represented a functional heterocyclic core that has been the foundation of medicinal chemistry. The compounds with 1,2,3-triazole rings can be used in several fields, including medicine, organic synthesis, polymer chemistry, fluorescent imaging, horticulture, and industries, to name a few. Besides that, they found it to have health applications in the prevention and reduction of the risk of diseases, such as anti-cancer, antimicrobial, antiviral, and anti-inflammatory properties. Here, we present the synthesis of twelve 1,2,3-triazolyl chalcone derivatives (4a–l), which were produced in high yields by coupling substituted aldehydes and triazolyl acetophenone (3a–d) in ethanol. The title products were characterized by physicochemical, infrared, nuclear magnetic resonance, and mass spectral methods. The in vitro tests were used to evaluate the antioxidant and antimicrobial activity of each of the prepared molecules. The preliminary assessment and 2,2-diphenyl-1-picrylhydrazyl activity of the title compounds showed significantly higher antibacterial activity and moderate-to-good antifungal and antioxidant activities compared to their standards. This work presents the synthesis of triazolyl chalcone derivatives and their biological activity. Based on the findings, these compounds could be used as lead compounds in antimicrobial and antioxidant research in the future.Keywords: antibacterial activity, antifungal activity, antioxidant activity, chalcone, 1, 2, 3-triazole
Procedia PDF Downloads 12224111 Prediction of Outcome after Endovascular Thrombectomy for Anterior and Posterior Ischemic Stroke: ASPECTS on CT
Authors: Angela T. H. Kwan, Wenjun Liang, Jack Wellington, Mohammad Mofatteh, Thanh N. Nguyen, Pingzhong Fu, Juanmei Chen, Zile Yan, Weijuan Wu, Yongting Zhou, Shuiquan Yang, Sijie Zhou, Yimin Chen
Abstract:
Background: Endovascular Therapy (EVT)—in the form of mechanical thrombectomy—following intravenous thrombolysis is the standard gold treatment for patients with acute ischemic stroke (AIS) due to large vessel occlusion (LVO). It is well established that an ASPECTS ≥ 7 is associated with an increased likelihood of positive post-EVT outcomes, as compared to an ASPECTS < 7. There is also prognostic utility in coupling posterior circulation ASPECTS (pc-ASPECTS) with magnetic resonance imaging for evaluating the post-EVT functional outcome. However, the value of pc-ASPECTS applied to CT must be explored further to determine its usefulness in predicting functional outcomes following EVT. Objective: In this study, we aimed to determine whether pc-ASPECTS on CT can predict post-EVT functional outcomes among patients with AIS due to LVO. Methods: A total of 247 consecutive patients aged 18 and over receiving EVT for LVO-related AIS were recruited into a prospective database. The data were retrospectively analyzed between March 2019 to February 2022 from two comprehensive tertiary care stroke centers: Foshan Sanshui District People’s Hospital and First People's Hospital of Foshan in China. Patient parameters included EVT within 24hrs of symptom onset, premorbid modified Rankin Scale (mRS) ≤ 2, presence of distal and terminal cerebral blood vessel occlusion, and subsequent 24–72-hour post-stroke onset CT scan. Univariate comparisons were performed using the Fisher exact test or χ2 test for categorical variables and the Mann–Whitney U test for continuous variables. A p-value of ≤ 0.05 was statistically significant. Results: A total of 247 patients met the inclusion criteria; however, 3 were excluded due to the absence of post-CTs and 8 for pre-EVT ASPECTS < 7. Overall, 236 individuals were examined: 196 anterior circulation ischemic strokes and 40 posterior strokes of basilar artery occlusion. We found that both baseline post- and pc-ASPECTS ≥ 7 serve as strong positive markers of favorable outcomes at 90 days post-EVT. Moreover, lower rates of inpatient mortality/hospice discharge, 90-day mortality, and 90-day poor outcome were observed. Moreover, patients in the post-ASPECTS ≥ 7 anterior circulation group had shorter door-to-recanalization time (DRT), puncture-to-recanalization time (PRT), and last known normal-to-puncture-time (LKNPT). Conclusion: Patients of anterior and posterior circulation ischemic strokes with baseline post- and pc-ASPECTS ≥ 7 may benefit from EVT.Keywords: endovascular therapy, thrombectomy, large vessel occlusion, cerebral ischemic stroke, ASPECTS
Procedia PDF Downloads 11024110 Design and Implementation of Security Middleware for Data Warehouse Signature, Framework
Authors: Mayada Al Meghari
Abstract:
Recently, grid middlewares have provided large integrated use of network resources as the shared data and the CPU to become a virtual supercomputer. In this work, we present the design and implementation of the middleware for Data Warehouse Signature, DWS Framework. The aim of using the middleware in our DWS framework is to achieve the high performance by the parallel computing. This middleware is developed on Alchemi.Net framework to increase the security among the network nodes through the authentication and group-key distribution model. This model achieves the key security and prevents any intermediate attacks in the middleware. This paper presents the flow process structures of the middleware design. In addition, the paper ensures the implementation of security for DWS middleware enhancement with the authentication and group-key distribution model. Finally, from the analysis of other middleware approaches, the developed middleware of DWS framework is the optimal solution of a complete covering of security issues.Keywords: middleware, parallel computing, data warehouse, security, group-key, high performance
Procedia PDF Downloads 11824109 Effect of Coronary Insulators in Increasing the Lifespan of Electrolytic Cells: Short-circuit and Heat Resistance
Authors: Robert P. Dufresne, Hamid Arabzadeh
Abstract:
The current study investigates the effectiveness of a new form of permanent baseboard insulators with an umbrella action, hereinafter referred to as Coronary Insulator, in supporting and protecting the assembly of electrodes immersed in an electrolytic cell and in increasing the lifespan of the lateral sides of the electrolytic cell, in both electro-winning and electro-refinery method. The advantages of using a coronary insulator in addition to the top capping board (equipotential insulator) were studied compared to the conventional assembly of an electrolytic cell. Then, a thermal imaging technique was utilized during high-temperature thermal (heat transfer) tests for sample cell walls with and without coronary insulators in their assembly to show the effectiveness of coronary insulators in protecting the cell wall under extreme conditions. It was shown that, unlike the conventional assembly, which is highly prone to damages to the cell wall under thermal shocks, the presence of coronary insulator can significantly increase the level of protection of the cell due to their ultra-high thermal and chemical resistance, as well as decreasing the replacement frequency of insulators to almost zero. Besides, the results of the study showed that the test assembly with the coronary insulator provides better consistency in positioning and, subsequently, better contact, compared to the conventional method, which reduces the chance of electric short-circuit in the system.Keywords: capping board, coronary insulator, electrolytic cell, thermal shock.
Procedia PDF Downloads 18724108 Sentiment Classification of Documents
Authors: Swarnadip Ghosh
Abstract:
Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation
Procedia PDF Downloads 40024107 Corporate Governance and Bank Performance: A Study of Selected Deposit Money Banks in Nigeria
Authors: Ayodele Ajayi, John Ajayi
Abstract:
This paper investigates the effect of corporate governance with a view to determining the relationship between board size and bank performance. Data for the study were obtained from the audited financial statements of five sampled banks listed on the Nigerian Stock Exchange. Panel data technique was adopted and analysis was carried out with the use of multiple regression and pooled ordinary least square. Results from the study show that the larger the board size, the greater the profit implying that corporate governance is positively correlated with bank performance.Keywords: corporate governance, banks performance, board size, pooled data
Procedia PDF Downloads 35824106 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning
Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz
Abstract:
Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.Keywords: quantum machine learning, SVM, QSVM, matrix product state
Procedia PDF Downloads 9224105 Blockchain’s Feasibility in Military Data Networks
Authors: Brenden M. Shutt, Lubjana Beshaj, Paul L. Goethals, Ambrose Kam
Abstract:
Communication security is of particular interest to military data networks. A relatively novel approach to network security is blockchain, a cryptographically secured distribution ledger with a decentralized consensus mechanism for data transaction processing. Recent advances in blockchain technology have proposed new techniques for both data validation and trust management, as well as different frameworks for managing dataflow. The purpose of this work is to test the feasibility of different blockchain architectures as applied to military command and control networks. Various architectures are tested through discrete-event simulation and the feasibility is determined based upon a blockchain design’s ability to maintain long-term stable performance at industry standards of throughput, network latency, and security. This work proposes a consortium blockchain architecture with a computationally inexpensive consensus mechanism, one that leverages a Proof-of-Identity (PoI) concept and a reputation management mechanism.Keywords: blockchain, consensus mechanism, discrete-event simulation, fog computing
Procedia PDF Downloads 13724104 Verification & Validation of Map Reduce Program Model for Parallel K-Mediod Algorithm on Hadoop Cluster
Authors: Trapti Sharma, Devesh Kumar Srivastava
Abstract:
This paper is basically a analysis study of above MapReduce implementation and also to verify and validate the MapReduce solution model for Parallel K-Mediod algorithm on Hadoop Cluster. MapReduce is a programming model which authorize the managing of huge amounts of data in parallel, on a large number of devices. It is specially well suited to constant or moderate changing set of data since the implementation point of a position is usually high. MapReduce has slowly become the framework of choice for “big data”. The MapReduce model authorizes for systematic and instant organizing of large scale data with a cluster of evaluate nodes. One of the primary affect in Hadoop is how to minimize the completion length (i.e. makespan) of a set of MapReduce duty. In this paper, we have verified and validated various MapReduce applications like wordcount, grep, terasort and parallel K-Mediod clustering algorithm. We have found that as the amount of nodes increases the completion time decreases.Keywords: hadoop, mapreduce, k-mediod, validation, verification
Procedia PDF Downloads 36524103 Resilience Assessment for Power Distribution Systems
Authors: Berna Eren Tokgoz, Mahdi Safa, Seokyon Hwang
Abstract:
Power distribution systems are essential and crucial infrastructures for the development and maintenance of a sustainable society. These systems are extremely vulnerable to various types of natural and man-made disasters. The assessment of resilience focuses on preparedness and mitigation actions under pre-disaster conditions. It also concentrates on response and recovery actions under post-disaster situations. The aim of this study is to present a methodology to assess the resilience of electric power distribution poles against wind-related events. The proposed methodology can improve the accuracy and rapidity of the evaluation of the conditions and the assessment of the resilience of poles. The methodology provides a metric for the evaluation of the resilience of poles under pre-disaster and post-disaster conditions. The metric was developed using mathematical expressions for physical forces that involve various variables, such as physical dimensions of the pole, the inclination of the pole, and wind speed. A three-dimensional imaging technology (photogrammetry) was used to determine the inclination of poles. Based on expert opinion, the proposed metric was used to define zones to visualize resilience. Visual representation of resilience is helpful for decision makers to prioritize their resources before and after experiencing a wind-related disaster. Multiple electric poles in the City of Beaumont, TX were used in a case study to evaluate the proposed methodology.Keywords: photogrammetry, power distribution systems, resilience metric, system resilience, wind-related disasters
Procedia PDF Downloads 22024102 An Improved K-Means Algorithm for Gene Expression Data Clustering
Authors: Billel Kenidra, Mohamed Benmohammed
Abstract:
Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization
Procedia PDF Downloads 18924101 "Revolutionizing Geographic Data: CADmapper's Automated Precision in CAD Drawing Transformation"
Authors: Toleen Alaqqad, Kadi Alshabramiy, Suad Zaafarany, Basma Musallam
Abstract:
CADmapper is a significant tool of software for transforming geographic data into realistic CAD drawings. It speeds up and simplifies the conversion process by automating it. This allows architects, urban planners, engineers, and geographic information system (GIS) experts to solely concentrate on the imaginative and scientific parts of their projects. While the future incorporation of AI has the potential for further improvements, CADmapper's current capabilities make it an indispensable asset in the business. It covers a combination of 2D and 3D city and urban area models. The user can select a specific square section of the map to view, and the fee is based on the dimensions of the area being viewed. The procedure is straightforward: you choose the area you want, then pick whether or not to include topography. 3D architectural data (if available), followed by selecting whatever design program or CAD style you want to publish the document which contains more than 200 free broad town plans in DXF format. If you desire to specify a bespoke area, it's free up to 1 km2.Keywords: cadmaper, gdata, 2d and 3d data conversion, automated cad drawing, urban planning software
Procedia PDF Downloads 6724100 Algorithm for Quantification of Pulmonary Fibrosis in Chest X-Ray Exams
Authors: Marcela de Oliveira, Guilherme Giacomini, Allan Felipe Fattori Alves, Ana Luiza Menegatti Pavan, Maria Eugenia Dela Rosa, Fernando Antonio Bacchim Neto, Diana Rodrigues de Pina
Abstract:
It is estimated that each year one death every 10 seconds (about 2 million deaths) in the world is attributed to tuberculosis (TB). Even after effective treatment, TB leaves sequelae such as, for example, pulmonary fibrosis, compromising the quality of life of patients. Evaluations of the aforementioned sequel are usually performed subjectively by radiology specialists. Subjective evaluation may indicate variations inter and intra observers. The examination of x-rays is the diagnostic imaging method most accomplished in the monitoring of patients diagnosed with TB and of least cost to the institution. The application of computational algorithms is of utmost importance to make a more objective quantification of pulmonary impairment in individuals with tuberculosis. The purpose of this research is the use of computer algorithms to quantify the pulmonary impairment pre and post-treatment of patients with pulmonary TB. The x-ray images of 10 patients with TB diagnosis confirmed by examination of sputum smears were studied. Initially the segmentation of the total lung area was performed (posteroanterior and lateral views) then targeted to the compromised region by pulmonary sequel. Through morphological operators and the application of signal noise tool, it was possible to determine the compromised lung volume. The largest difference found pre- and post-treatment was 85.85% and the smallest was 54.08%.Keywords: algorithm, radiology, tuberculosis, x-rays exam
Procedia PDF Downloads 41724099 An IoT-Enabled Crop Recommendation System Utilizing Message Queuing Telemetry Transport (MQTT) for Efficient Data Transmission to AI/ML Models
Authors: Prashansa Singh, Rohit Bajaj, Manjot Kaur
Abstract:
In the modern agricultural landscape, precision farming has emerged as a pivotal strategy for enhancing crop yield and optimizing resource utilization. This paper introduces an innovative Crop Recommendation System (CRS) that leverages the Internet of Things (IoT) technology and the Message Queuing Telemetry Transport (MQTT) protocol to collect critical environmental and soil data via sensors deployed across agricultural fields. The system is designed to address the challenges of real-time data acquisition, efficient data transmission, and dynamic crop recommendation through the application of advanced Artificial Intelligence (AI) and Machine Learning (ML) models. The CRS architecture encompasses a network of sensors that continuously monitor environmental parameters such as temperature, humidity, soil moisture, and nutrient levels. This sensor data is then transmitted to a central MQTT server, ensuring reliable and low-latency communication even in bandwidth-constrained scenarios typical of rural agricultural settings. Upon reaching the server, the data is processed and analyzed by AI/ML models trained to correlate specific environmental conditions with optimal crop choices and cultivation practices. These models consider historical crop performance data, current agricultural research, and real-time field conditions to generate tailored crop recommendations. This implementation gets 99% accuracy.Keywords: Iot, MQTT protocol, machine learning, sensor, publish, subscriber, agriculture, humidity
Procedia PDF Downloads 6524098 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout
Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati
Abstract:
Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration
Procedia PDF Downloads 57724097 Extracting Opinions from Big Data of Indonesian Customer Reviews Using Hadoop MapReduce
Authors: Veronica S. Moertini, Vinsensius Kevin, Gede Karya
Abstract:
Customer reviews have been collected by many kinds of e-commerce websites selling products, services, hotel rooms, tickets and so on. Each website collects its own customer reviews. The reviews can be crawled, collected from those websites and stored as big data. Text analysis techniques can be used to analyze that data to produce summarized information, such as customer opinions. Then, these opinions can be published by independent service provider websites and used to help customers in choosing the most suitable products or services. As the opinions are analyzed from big data of reviews originated from many websites, it is expected that the results are more trusted and accurate. Indonesian customers write reviews in Indonesian language, which comes with its own structures and uniqueness. We found that most of the reviews are expressed with “daily language”, which is informal, do not follow the correct grammar, have many abbreviations and slangs or non-formal words. Hadoop is an emerging platform aimed for storing and analyzing big data in distributed systems. A Hadoop cluster consists of master and slave nodes/computers operated in a network. Hadoop comes with distributed file system (HDFS) and MapReduce framework for supporting parallel computation. However, MapReduce has weakness (i.e. inefficient) for iterative computations, specifically, the cost of reading/writing data (I/O cost) is high. Given this fact, we conclude that MapReduce function is best adapted for “one-pass” computation. In this research, we develop an efficient technique for extracting or mining opinions from big data of Indonesian reviews, which is based on MapReduce with one-pass computation. In designing the algorithm, we avoid iterative computation and instead adopt a “look up table” technique. The stages of the proposed technique are: (1) Crawling the data reviews from websites; (2) cleaning and finding root words from the raw reviews; (3) computing the frequency of the meaningful opinion words; (4) analyzing customers sentiments towards defined objects. The experiments for evaluating the performance of the technique were conducted on a Hadoop cluster with 14 slave nodes. The results show that the proposed technique (stage 2 to 4) discovers useful opinions, is capable of processing big data efficiently and scalable.Keywords: big data analysis, Hadoop MapReduce, analyzing text data, mining Indonesian reviews
Procedia PDF Downloads 20024096 Global City Typologies: 300 Cities and Over 100 Datasets
Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans
Abstract:
Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling
Procedia PDF Downloads 17924095 Stimulation of NCAM1-14.3.3.ζδ-derived Peptide Interaction Fuels Angiogenesis and Osteogenesis in Ageing
Authors: Taha Kadir Yesin, Hanyu Liu, Zhangfan Ding, Amit Singh, Qi Tian, Yuheng Zhang, Biswajyoti Borah, Junyu Chen, Anjali P. Kusumbe
Abstract:
The skeletal structure and bone marrow endothelium collectively form a critical functional unit essential for bone development, health, and aging. At the core of osteogenesis and bone formation lies the dynamic process of angiogenesis. In this study, we reveal a potent endogenous anabolic NCAM1-14.3.3. ζδ-derived- Peptide interaction, which stimulates bone angiogenesis and osteogenesis during homeostasis, aging, and age-related bone diseases. Employing high-resolution imaging and inducible cell-specific mouse genetics, our results elucidate the pivotal role of the NCAM1-14.3.3.ζδ-derived-Peptide interaction in driving the expansion of Clec14a+ angiogenic endothelial cells. Notably, Clec14a+ endothelial cells express key osteogenic factors. The NCAM1-14.3.3.ζδ-derived-Peptide interaction in osteoblasts drives osteoblast differentiation, ultimately contributing to the genesis of bone. Moreover, the NCAM1-14.3.3.ζδ-derived-Peptide interaction leads to a reduction in bone resorption. In age-associated vascular and bone loss diseases, stimulating the NCAM1-14.3.3.ζδ-derived-Peptide interaction not only promotes angiogenesis but also reverses bone loss. Consequently, harnessing the endogenous anabolic potential of the NCAM1-14.3.3.ζδ-derived-Peptide interaction emerges as a promising therapeutic modality for managing age-related bone diseases.Keywords: endothelial cell, NCAM1, Clec14a, 14.3.3.ζδ
Procedia PDF Downloads 5924094 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.Keywords: clustering, unsupervised learning, pattern recognition, categorical datasets, knowledge discovery, k-means
Procedia PDF Downloads 25824093 Structural Equation Modeling Semiparametric Truncated Spline Using Simulation Data
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
SEM analysis is a complex multivariate analysis because it involves a number of exogenous and endogenous variables that are interconnected to form a model. The measurement model is divided into two, namely, the reflective model (reflecting) and the formative model (forming). Before carrying out further tests on SEM, there are assumptions that must be met, namely the linearity assumption, to determine the form of the relationship. There are three modeling approaches to path analysis, including parametric, nonparametric and semiparametric approaches. The aim of this research is to develop semiparametric SEM and obtain the best model. The data used in the research is secondary data as the basis for the process of obtaining simulation data. Simulation data was generated with various sample sizes of 100, 300, and 500. In the semiparametric SEM analysis, the form of the relationship studied was determined, namely linear and quadratic and determined one and two knot points with various levels of error variance (EV=0.5; 1; 5). There are three levels of closeness of relationship for the analysis process in the measurement model consisting of low (0.1-0.3), medium (0.4-0.6) and high (0.7-0.9) levels of closeness. The best model lies in the form of the relationship X1Y1 linear, and. In the measurement model, a characteristic of the reflective model is obtained, namely that the higher the closeness of the relationship, the better the model obtained. The originality of this research is the development of semiparametric SEM, which has not been widely studied by researchers.Keywords: semiparametric SEM, measurement model, structural model, reflective model, formative model
Procedia PDF Downloads 3824092 Assessment of Transverse Abdominis Activation during Three Different Exercises in Low Back Pain Patients: Measurement with Real-Time Ultrasonography
Authors: Venus Pagare, Amit Kharat, Dhaval K. Thakkar, Tushar J. Palekar
Abstract:
Introduction: Chronic low back pain (CLBP) is a major public health problem and is the leading musculoskeletal cause of disability. Altered neuromuscular control of core muscles, particulary transverses abdominis (TrA) is thought to be a contributing factor for the development of CLBP. Therefore, various exercises targeting the TrA are commonly incorporated into the rehabilitation. Objectives: To investigate the effects of 3 different core exercises on activation capacity of TrA muscle in individuals with CLBP as compared with healthy controls. Methodology: Thickness of TrA muscle was measured by ultrasound imaging in 30 patients with CLBP and 30 healthy controls. Measurements were taken during 3 different TrA activation exercises i.e Abdominal drawing in maneuver (ADIM), Abdominal drawing in with straight leg raise (ADSLR) and breathe hold at maximum expiration (ME). Thickness of the muscle at rest (at the end of normal tidal expiration) was taken as a baseline measure. Results: There was a significant difference between the healthy subjects and patients with low back pain with regard to the thickness of TrA at rest and thickness during contraction. ADIM produced a significant increase in the thickness of TrA compared to ADSLR and ME (p<0.001). Also, increase in thickness of TrA was more in the control group than patients with low back pain. Conclusion: CLBP patients exhibited atrophy of TrA muscle with delayed activation. Also, of the various core exercises, ADIM can be an effective method for activation of TrA.Keywords: LBP, CLBP, ADSLR, ADIM
Procedia PDF Downloads 31024091 Quality Assurance for the Climate Data Store
Authors: Judith Klostermann, Miguel Segura, Wilma Jans, Dragana Bojovic, Isadora Christel Jimenez, Francisco Doblas-Reyees, Judit Snethlage
Abstract:
The Climate Data Store (CDS), developed by the Copernicus Climate Change Service (C3S) implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European Union, is intended to become a key instrument for exploring climate data. The CDS contains both raw and processed data to provide information to the users about the past, present and future climate of the earth. It allows for easy and free access to climate data and indicators, presenting an important asset for scientists and stakeholders on the path for achieving a more sustainable future. The C3S Evaluation and Quality Control (EQC) is assessing the quality of the CDS by undertaking a comprehensive user requirement assessment to measure the users’ satisfaction. Recommendations will be developed for the improvement and expansion of the CDS datasets and products. User requirements will be identified on the fitness of the datasets, the toolbox, and the overall CDS service. The EQC function of the CDS will help C3S to make the service more robust: integrated by validated data that follows high-quality standards while being user-friendly. This function will be closely developed with the users of the service. Through their feedback, suggestions, and contributions, the CDS can become more accessible and meet the requirements for a diverse range of users. Stakeholders and their active engagement are thus an important aspect of CDS development. This will be achieved with direct interactions with users such as meetings, interviews or workshops as well as different feedback mechanisms like surveys or helpdesk services at the CDS. The results provided by the users will be categorized as a function of CDS products so that their specific interests will be monitored and linked to the right product. Through this procedure, we will identify the requirements and criteria for data and products in order to build the correspondent recommendations for the improvement and expansion of the CDS datasets and products.Keywords: climate data store, Copernicus, quality, user engagement
Procedia PDF Downloads 14524090 Quantifying the Methods of Monitoring Timers in Electric Water Heater for Grid Balancing on Demand-Side Management: A Systematic Mapping Review
Authors: Yamamah Abdulrazaq, Lahieb A. Abrahim, Samuel E. Davies, Iain Shewring
Abstract:
An electric water heater (EWH) is a powerful appliance that uses electricity in residential, commercial, and industrial settings, and the ability to control them properly will result in cost savings and the prevention of blackouts on the national grid. This article discusses the usage of timers in EWH control strategies for demand-side management (DSM). Up to the authors' knowledge, there is no systematic mapping review focusing on the utilisation of EWH control strategies in DSM has yet been conducted. Consequently, the purpose of this research is to identify and examine main papers exploring EWH procedures in DSM by quantifying and categorising information with regard to publication year and source, kind of methods, and source of data for monitoring control techniques. In order to answer the research questions, a total of 31 publications published between 1999 and 2023 were selected depending on specific inclusion and exclusion criteria. The data indicate that direct load control (DLC) has been somewhat more prevalent than indirect load control (ILC). Additionally, the mixing method is much lower than the other techniques, and the proportion of Real-time data (RTD) to non-real-time data (NRTD) is about equal.Keywords: demand side management, direct load control, electric water heater, indirect load control, non real-time data, real-time data
Procedia PDF Downloads 8024089 Implications of Circular Economy on Users Data Privacy: A Case Study on Android Smartphones Second-Hand Market
Authors: Mariia Khramova, Sergio Martinez, Duc Nguyen
Abstract:
Modern electronic devices, particularly smartphones, are characterised by extremely high environmental footprint and short product lifecycle. Every year manufacturers release new models with even more superior performance, which pushes the customers towards new purchases. As a result, millions of devices are being accumulated in the urban mine. To tackle these challenges the concept of circular economy has been introduced to promote repair, reuse and recycle of electronics. In this case, electronic devices, that previously ended up in landfills or households, are getting the second life, therefore, reducing the demand for new raw materials. Smartphone reuse is gradually gaining wider adoption partly due to the price increase of flagship models, consequently, boosting circular economy implementation. However, along with reuse of communication device, circular economy approach needs to ensure the data of the previous user have not been 'reused' together with a device. This is especially important since modern smartphones are comparable with computers in terms of performance and amount of data stored. These data vary from pictures, videos, call logs to social security numbers, passport and credit card details, from personal information to corporate confidential data. To assess how well the data privacy requirements are followed on smartphones second-hand market, a sample of 100 Android smartphones has been purchased from IT Asset Disposition (ITAD) facilities responsible for data erasure and resell. Although devices should not have stored any user data by the time they leave ITAD, it has been possible to retrieve the data from 19% of the sample. Applied techniques varied from manual device inspection to sophisticated equipment and tools. These findings indicate significant barrier in implementation of circular economy and a limitation of smartphone reuse. Therefore, in order to motivate the users to donate or sell their old devices and make electronic use more sustainable, data privacy on second-hand smartphone market should be significantly improved. Presented research has been carried out in the framework of sustainablySMART project, which is part of Horizon 2020 EU Framework Programme for Research and Innovation.Keywords: android, circular economy, data privacy, second-hand phones
Procedia PDF Downloads 128