Search results for: the durability of concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2250

Search results for: the durability of concrete

360 Understanding Europe’s Role in the Area of Liberty, Security, and Justice as an International Actor

Authors: Barrere Sarah

Abstract:

The area of liberty, security, and justice within the European Union is still a work in progress. No one can deny that the EU struggles between a monistic and a dualist approach. The aim of our essay is to first review how the European law is perceived by the rest of the international scene. It will then discuss two main mechanisms at play: the interpretation of larger international treaties and the penal mechanisms of European law. Finally, it will help us understand the role of a penal Europe on the international scene with concrete examples. Special attention will be paid to cases that deal with fundamental rights as they represent an interesting case study in Europe and in the rest of the World. It could illustrate the aforementioned duality currently present in the Union’s interpretation of international public law. On the other hand, it will explore some specific European penal mechanism through mutual recognition and the European arrest warrant in the transnational criminality frame. Concerning the interpretation of the treaties, it will first, underline the ambiguity and the general nature of some treaties that leave the EU exposed to tension and misunderstanding then it will review the validity of an EU act (whether or not it is compatible with the rules of International law). Finally, it will focus on the most complete manifestation of liberty, security and justice through the principle of mutual recognition. Used initially in commercial matters, it has become “the cornerstone” of European construction. It will see how it is applied in judicial decisions (its main event and achieving success is via the European arrest warrant) and how European member states have managed to develop this cooperation.

Keywords: European penal law, international scene, liberty security and justice area, mutual recognition

Procedia PDF Downloads 397
359 Integrated Clean Development Mechanism and Risk Management Approach for Infrastructure Transportation Project

Authors: Debasis Sarkar

Abstract:

Clean development mechanism (CDM) can act as an effective instrument for mitigating climate change. This mechanism can effectively reduce the emission of CO2 and other green house gases (GHG). Construction of a mega infrastructure project like underground corridor construction for metro rail operation involves in consumption of substantial quantity of concrete which consumes huge quantity of energy consuming materials like cement and steel. This paper is an attempt to develop an integrated clean development mechanism and risk management approach for sustainable development for an underground corridor metro rail project in India during its construction phase. It was observed that about 35% reduction in CO2 emission can be obtained by adding fly ash as a part replacement of cement. The reduced emission quantity of CO2 which is of the quantum of about 21,646.36 MT would result in cost savings of approximately INR 8.5 million (USD 1,29,878).But construction and operation of such infrastructure projects of the present era are subject to huge risks and uncertainties throughout all the phases of the project, thus reducing the probability of successful completion of the project within stipulated time and cost frame. Thus, an integrated approach of combining CDM with risk management would enable the metro rail authorities to develop a sustainable risk mitigation measure framework to ensure more cost and energy savings and lesser time and cost over-run.

Keywords: clean development mechanism (CDM), infrastructure transportation, project risk management, underground metro rail

Procedia PDF Downloads 465
358 Structure-Constructivism in the Philosophy of Mathematics

Authors: Jeansou Moun

Abstract:

This study argues that constructivism and structuralism, which have been the two important schools of mathematical philosophy since the mid-19th century, can and should be synthesized into structure-constructivism. In fact, the philosophy of mathematics is divided into more than ten schools depending on the point of view. However, the biggest trend is Platonism which claims that mathematical objects are "abstract entities" that exists independently of the human mind and material objects. Its opposite is constructivism. According to the latter, mathematical objects are products of the construction of the human mind. However, whether the basis of the construction is a logical device, a symbolic system, or an empirical perception, it is subdivided into logicism, formalism, and intuitionism. However, these three schools themselves are further subdivided into various variants, and among them, structuralism, which emerged in the mid-20th century, is receiving the most attention. On the other hand, structuralism which emphasizes structure instead of individual objects, is divided into non-eliminative structuralism, which supports the a priori of structure, and non-eliminative structuralism, which rejects any abstract entity. In this context, it is believed that the structure itself is not an a priori entity but a result of the construction of the cognitive subject and that no object has ever been given to us in its full meaning from the outset. In other words, concepts are progressively structured through a dialectical cycle between sensory perception, imagination (abstraction), concepts, judgments, and reasoning. Symbols are needed for formal operation. However, without concrete manipulation, the formal operation cannot have any meaning. However, when formal structurization is achieved, the reality (object) itself is also newly structured. This is the "structure-constructivism".

Keywords: philosophy of mathematics, platonism, logicism, formalism, constructivism, structuralism, structure-constructivism

Procedia PDF Downloads 88
357 Extension Services' Needs of Small Farmers in Biliran Province, Philippines

Authors: Mario C. Nierras

Abstract:

This study aimed to determine the extension services’ needs of small farmers in Biliran province, Philippines. It also sought to find out other issues/concerns of the small farmers. Extension services’ needs of small farmers were gathered through personal interviewing and observational analysis of randomly-selected small farmers in Biliran, Philippines. Biliran small farmers extension services’ needs include: raising fruits, raising legumes, raising vegetables, raising swine, raising cattle, and raising chicken (as priority broad skills). For the specific skills, diagnosing symptoms on fertilizer deficiencies, controlling plant pests and diseases, diagnosing signs on specific pest and disease damage, controlling animal pests and diseases, and doing artificial insemination were the priority skills. They considered an on-farm trial of new technology as most needed to be coupled with industry and quality-orientedness, as positive behaviors needed in farming success. The farmers still adhere to the so-called wait-and-see attitude, thus they are more convinced to follow a particular technology if they see a concrete result of the introduced changes. Technical needs prioritization of Biliran small farmers showed that they have a real need for crop and animal production skills to include the other issues/concerns. Extension service program planning for small farmers should be patterned after their technical needs giving due attention to some issues/concerns so that extension work could deliver the right skills for the right needs of the farmers.

Keywords: extension, extension service, extension service needs, extension service program, farmers, small farmers, marginal farmers

Procedia PDF Downloads 426
356 Brain Networks and Mathematical Learning Processes of Children

Authors: Felicitas Pielsticker, Christoph Pielsticker, Ingo Witzke

Abstract:

Neurological findings provide foundational results for many different disciplines. In this article we want to discuss these with a special focus on mathematics education. The intention is to make neuroscience research useful for the description of cognitive mathematical learning processes. A key issue of mathematics education is that students often behave as if their mathematical knowledge is constructed in isolated compartments with respect to the specific context of the original learning situation; supporting students to link these compartments to form a coherent mathematical society of mind is a fundamental task not only for mathematics teachers. This aspect goes hand in hand with the question if there is such a thing as abstract general mathematical knowledge detached from concrete reality. Educational Neuroscience may give answers to the question why students develop their mathematical knowledge in isolated subjective domains of experience and if it is generally possible to think in abstract terms. To address these questions, we will provide examples from different fields of mathematics education e.g. students’ development and understanding of the general concept of variables or the mathematical notion of universal proofs. We want to discuss these aspects in the reflection of functional studies which elucidate the role of specific brain regions in mathematical learning processes. In doing this the paper addresses concept formation processes of students in the mathematics classroom and how to support them adequately considering the results of (educational) neuroscience.

Keywords: brain regions, concept formation processes in mathematics education, proofs, teaching-learning processes

Procedia PDF Downloads 131
355 Experimental and Theoretical Investigation of Slow Reversible Deformation of Concrete in Surface-Active Media

Authors: Nika Botchorishvili, Olgha Giorgishvili

Abstract:

Many-year investigations of the nature of damping creep of rigid bodies and materials led to the discovery of the fundamental character of this phenomenon. It occurs only when a rigid body comes in contact with a surface-active medium (liquid or gaseous), which brings about a decrease of the free surface energy of a rigid body as a result of adsorption, chemo-sorption or wetting. The reversibility of the process consists of a gradual disappearance of creep deformation when the action of a surface-active medium stops. To clarify the essence of processes, a physical model is constructed by using Griffith’s scheme and the well-known representation formulas of deformation origination and failure processes. The total creep deformation is caused by the formation and opening of microcracks throughout the material volume under the action of load. This supposedly happens in macroscopically homogeneous silicate and organic glasses, while in polycrystals (tuff, gypsum, steel) contacting with a surface-active medium micro crack are formed mainly on the grain boundaries. The creep of rubber is due to its swelling activated by stress. Acknowledgment: All experiments are financially supported by Shota Rustaveli National Science Foundation of Georgia. Study of Properties of Concretes (Both Ordinary and Compacted) Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building. DP2016_26. 22.12.2016.

Keywords: process reversibility, surface-active medium, Rebinder’s effect, micro crack, creep

Procedia PDF Downloads 125
354 Subject, Language, and Representation: Snyder's Poetics of Emptiness

Authors: Son Hyesook

Abstract:

This project explores the possibility of poetics of emptiness in the poetry of Gary Snyder, one of the most experimental American poets, interpreting his works as an expression of his Buddhist concept, emptiness. This philosophical term demonstrates the lack of intrinsic nature in all phenomena and the absence of an independent, perduring self. Snyder’s poetics of emptiness locates the extralinguistic reality, emptiness, within the contingent nexus of language itself instead of transcending or discarding it. Language, therefore, plays an important role in his poetry, a medium intentionally applied to the carrying out of this Buddhist telos. Snyder’s poetry is characterized by strangeness and disruptiveness of language as is often the case with Asian Zen discourses. The elision of a lyric ‘I’ and transitive verbs, for example, is his grammatic attempt to represent the illusory nature of the self. He replaces the solitary speaker with sparely modified, concrete but generic images to prevent any anthropocentric understanding of the world and to demonstrate human enactment into a harmonious interplay with other elements of life as a part of a vast web of interconnections, where everything is interrelated to every other thing. In many of his poems, Snyder employs grammatical and structural ellipses and paratactical construction to avoid a facile discursive relation and to help the reader illogically imagine the inexpressible, the void. Through various uses of typographical and semantical space, his poetry forces the reader to experience the ‘thought-pause’ and intuitively perceive things-as-they-are. Snyder enacts in his Poetics an alternative to postmodern perspectives on the subject, language, and representation, and revitalizes their skeptical look at any account of human agency and the possibility of language.

Keywords: subject, language, representation, poetics of emptiness

Procedia PDF Downloads 188
353 Understanding Resilience in Vulnerable Business Settings: Systematic Literature Review in Small and Medium Enterprises

Authors: Muhammedamin Hussen Saad, Geoffrey Haagler, Onno Omta, Gerben Van Der Velde

Abstract:

Unfolding chaos and persistent disruptions pose threats to companies’ performance especially in vulnerable settings of SME’s particularly in developing countries. Attention for resilience research in the academic world has increased considerably during the last decade looking at the number of papers published. As we are interested in adding to the understanding of the foundation and development of the concept of resilience, we focus especially on structuring the literature of business resilience in those vulnerable settings. A well-structured systematic search & review procedure was deployed. First, we defined key search terms and applied these to multiple databases (Scopus, Web of Science, Google Scholar, Emerald, and Science Direct). To make our literature search more encompassing, we augmented with co-citation, reference checking including hand searching techniques. The paper offers (1) an overview of SMEs resilience literature from 2000 up to March 2017 comprising 88 articles, and (2) special attention, within that overview, to developing countries. This review concludes that resilience literature is very much diverse in definitions and its measurements, and is inconclusive about its influencing factors. Furthermore, resilience literature is based predominantly on research in the developed world. On the bases of how the concept resilience emerges from the literature we describe distinct features of resilience, give options to extend the theoretical bases of research into resilience and describe concrete ideas for further research.

Keywords: business resilience, systematic review, SMEs, developing countries

Procedia PDF Downloads 155
352 Comparative Study on Performance of Air-Cooled Condenser (ACC) Steel Platform Structures using SCBF Frames, Spatial Structures and CFST Frames

Authors: Hassan Gomar, Shahin Bagheri, Nader Keyvan, Mozhdeh Shirinzadeh

Abstract:

Air-Cooled Condenser (ACC) platform structures are the most complicated and principal structures in power plants and other industrial parts which need to condense the low-pressure steam in the cycle. Providing large spans for this structure has great merit as there would be more space for other subordinate buildings and pertinent equipment. Moreover, applying methods to reduce the overall cost of construction while maintaining its strength against severe seismic loading is of high significance. Tabular spatial structures and composite frames have been widely used in recent years to satisfy the need for higher strength at a reasonable price. In this research program, three different structural systems have been regarded for ACC steel platform using Special Concentrate Braced Frames (SCBF), which is the most common system (first scheme), modular spatial frames (second scheme) and finally, a modified method applying Concrete Filled Steel Tabular (CFST) columns (third scheme). The finite element method using Sap2000 and Etabs software was conducted to investigate the behavior of the structures and make a precise comparison between the models. According to the results, the total weight of the steel structure in the second scheme decreases by 13% compared to the first scheme and applying CFST columns in the third scheme causes a 3% reduction in the total weight of the structure in comparison with the second scheme while all the lateral displacements and P-M interaction ratios are in the admissible limit.

Keywords: ACC, SCBF frames, spatial structures, CFST frames

Procedia PDF Downloads 187
351 Children Beliefs about Illness, Treatments and Vaccines after the Experience of Covid 19 Pandemic

Authors: Margarida Maria Cabugueira Csutódio dos Santos, Joana Filipa Pintéus Pereira

Abstract:

The way children understand the concept of health and illness influences their reaction in contexts where these concepts are present (e.g.,illness; vaccination). The recognition of the importance of children's beliefs/representations about health and disease has led to the development of models that seek to explain the development process of these concepts. In the construction of their representations, children are influenced not only by their cognitive competence but also by their life experiences. In the last 3 years, children have experienced a pandemic health crisis that has exposed them to anomalous and stressful situations. Objective: the aim of this study was (1) to identify children’s representations about disease (including symptoms, causes, control/treatment) and prevention (including health procedures and vaccines) and (2) whether COVID19 is mentioned and influences their representations. Methodology: a qualitative study in which 67 children with 7 to 10 years old (mean 8,8) participated. A semi-structured interview was used following the Bibace and Walsh model, focusing on the representation of the disease and its prevention. Results show a marked influence of the lived experience with regard to causes of the disease, disease control and treatment, and adherence to vaccination. Age-dependent differences were found with older children being able to talk about illness and contamination process and younger displaying more basic, concrete and rigid representations. Conclusions: The results of this study bring clues to the adequacy of communication with the child in the context of health and illness and discriminately in a future health pandemic crisis.

Keywords: childen, health beliefs, pediatrics, covid19, vaccines

Procedia PDF Downloads 74
350 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM

Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei

Abstract:

In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.

Keywords: dynamic behavior, flexible wall, fluid-structure interaction, water storage tank

Procedia PDF Downloads 170
349 The Church of San Paolo in Ferrara, Restoration and Accessibility

Authors: Benedetta Caglioti

Abstract:

The ecclesiastical complex of San Paolo in Ferrara represents a monument of great historical, religious and architectural importance. Its long and articulated story, over time, is already manifested by the mere reading of its planimetric and altimetric configuration, apparently unitary but, in reality, marked by modifications and repeated additions, even of high quality. It follows, in terms of protection, restoration and enhancement, a commitment of due respect for how the ancient building was built and enriched over its centuries of life. Hence a rigorous methodological approach, while being aware of the fact that every monument, in order to live and make use of the indispensable maintenance, must always be enjoyed and visited, therefore it must enjoy, in the right measure and compatibly with its nature, the possibility of improvements and functional, distributive, technological adjustments and related to the safety of people and things. The methodological approach substantiates the different elements of the project (such as distribution functionality, safety, structural solidity, environmental comfort, the character of the site, building and urban planning regulations, financial resources and materials, the same organization methods of the construction site) through the guiding principles of restoration, defined for a long time: the 'minimum intervention,' the 'recognisability' or 'distinguishability' of old and new, the Physico-chemical and figurative 'compatibility,' the 'durability' and the, at least potential, 'reversibility' of what is done, leading to the definition of appropriate "critical choices." The project tackles, together with the strictly functional ones, also the directly conservative and restoration issues, of a static, structural and material technology nature, with special attention to precious architectural surfaces, In order to ensure the best architectural quality through conscious enhancement, the project involves a redistribution of the interior and service spaces, an accurate lighting system inside and outside the church and a reorganization of the adjacent urban space. The reorganization of the interior is designed with particular attention to the issue of accessibility for people with disabilities. To accompany the community to regain possession of the use of the church's own space, already in its construction phase, the project proposal has hypothesized a permeability and flexibility in the management of the works such as to allow the perception of the found Monument to gradually become more and more familiar at the citizenship. Once the interventions have been completed, it is expected that the Church of San Paolo, second in importance only to the Cathedral, from which it is a few steps away, will be inserted in an already existing circuit of use of the city which over the years has systematized the different aspects of culture, the environment and tourism for the creation of greater awareness in the perception of what Ferrara can offer in cultural terms.

Keywords: conservation, accessibility, regeneration, urban space

Procedia PDF Downloads 98
348 Biogeography Based CO2 and Cost Optimization of RC Cantilever Retaining Walls

Authors: Ibrahim Aydogdu, Alper Akin

Abstract:

In this study, the development of minimizing the cost and the CO2 emission of the RC retaining wall design has been performed by Biogeography Based Optimization (BBO) algorithm. This has been achieved by developing computer programs utilizing BBO algorithm which minimize the cost and the CO2 emission of the RC retaining walls. Objective functions of the optimization problem are defined as the minimized cost, the CO2 emission and weighted aggregate of the cost and the CO2 functions of the RC retaining walls. In the formulation of the optimum design problem, the height and thickness of the stem, the length of the toe projection, the thickness of the stem at base level, the length and thickness of the base, the depth and thickness of the key, the distance from the toe to the key, the number and diameter of the reinforcement bars are treated as design variables. In the formulation of the optimization problem, flexural and shear strength constraints and minimum/maximum limitations for the reinforcement bar areas are derived from American Concrete Institute (ACI 318-14) design code. Moreover, the development length conditions for suitable detailing of reinforcement are treated as a constraint. The obtained optimum designs must satisfy the factor of safety for failure modes (overturning, sliding and bearing), strength, serviceability and other required limitations to attain practically acceptable shapes. To demonstrate the efficiency and robustness of the presented BBO algorithm, the optimum design example for retaining walls is presented and the results are compared to the previously obtained results available in the literature.

Keywords: bio geography, meta-heuristic search, optimization, retaining wall

Procedia PDF Downloads 388
347 Genetic Algorithm Methods for Determination Over Flow Coefficient of Medium Throat Length Morning Glory Spillway Equipped Crest Vortex Breakers

Authors: Roozbeh Aghamajidi

Abstract:

Shaft spillways are circling spillways used generally for emptying unexpected floods on earth and concrete dams. There are different types of shaft spillways: Stepped and Smooth spillways. Stepped spillways pass more flow discharges through themselves in comparison to smooth spillways. Therefore, awareness of flow behavior of these spillways helps using them better and more efficiently. Moreover, using vortex breaker has great effect on passing flow through shaft spillway. In order to use more efficiently, the risk of flow pressure decreases to less than fluid vapor pressure, called cavitations, should be prevented as far as possible. At this research, it has been tried to study different behavior of spillway with different vortex shapes on spillway crest on flow. From the viewpoint of the effects of flow regime changes on spillway, changes of step dimensions, and the change of type of discharge will be studied effectively. Therefore, two spillway models with three different vortex breakers and three arrangements have been used to assess the hydraulic characteristics of flow. With regard to the inlet discharge to spillway, the parameters of pressure and flow velocity on spillway surface have been measured at several points and after each run. Using these kinds of information leads us to create better design criteria of spillway profile. To achieve these purposes, optimization has important role and genetic algorithm are utilized to study the emptying discharge. As a result, it turned out that the best type of spillway with maximum discharge coefficient is smooth spillway with ogee shapes as vortex breaker and 3 number as arrangement. Besides it has been concluded that the genetic algorithm can be used to optimize the results.

Keywords: shaft spillway, vortex breaker, flow, genetic algorithm

Procedia PDF Downloads 363
346 Seismic Reinforcement of Existing Japanese Wooden Houses Using Folded Exterior Thin Steel Plates

Authors: Jiro Takagi

Abstract:

Approximately 90 percent of the casualties in the near-fault-type Kobe earthquake in 1995 resulted from the collapse of wooden houses, although a limited number of collapses of this type of building were reported in the more recent off-shore-type Tohoku Earthquake in 2011 (excluding direct damage by the Tsunami). Kumamoto earthquake in 2016 also revealed the vulnerability of old wooden houses in Japan. There are approximately 24.5 million wooden houses in Japan and roughly 40 percent of them are considered to have the inadequate seismic-resisting capacity. Therefore, seismic strengthening of these wooden houses is an urgent task. However, it has not been quickly done for various reasons, including cost and inconvenience during the reinforcing work. Residents typically spend their money on improvements that more directly affect their daily housing environment (such as interior renovation, equipment renewal, and placement of thermal insulation) rather than on strengthening against extremely rare events such as large earthquakes. Considering this tendency of residents, a new approach to developing a seismic strengthening method for wooden houses is needed. The seismic reinforcement method developed in this research uses folded galvanized thin steel plates as both shear walls and the new exterior architectural finish. The existing finish is not removed. Because galvanized steel plates are aesthetic and durable, they are commonly used in modern Japanese buildings on roofs and walls. Residents could feel a physical change through the reinforcement, covering existing exterior walls with steel plates. Also, this exterior reinforcement can be installed with only outdoor work, thereby reducing inconvenience for residents since they would not be required to move out temporarily during construction. The Durability of the exterior is enhanced, and the reinforcing work can be done efficiently since perfect water protection is not required for the new finish. In this method, the entire exterior surface would function as shear walls and thus the pull-out force induced by seismic lateral load would be significantly reduced as compared with a typical reinforcement scheme of adding braces in selected frames. Consequently, reinforcing details of anchors to the foundations would be less difficult. In order to attach the exterior galvanized thin steel plates to the houses, new wooden beams are placed next to the existing beams. In this research, steel connections between the existing and new beams are developed, which contain a gap for the existing finish between the two beams. The thin steel plates are screwed to the new beams and the connecting vertical members. The seismic-resisting performance of the shear walls with thin steel plates is experimentally verified both for the frames and connections. It is confirmed that the performance is high enough for bracing general wooden houses.

Keywords: experiment, seismic reinforcement, thin steel plates, wooden houses

Procedia PDF Downloads 218
345 Ultrasonic Irradiation Synthesis of High-Performance Pd@Copper Nanowires/MultiWalled Carbon Nanotubes-Chitosan Electrocatalyst by Galvanic Replacement toward Ethanol Oxidation in Alkaline Media

Authors: Majid Farsadrouh Rashti, Amir Shafiee Kisomi, Parisa Jahani

Abstract:

The direct ethanol fuel cells (DEFCs) are contemplated as a promising energy source because, In addition to being used in portable electronic devices, it is also used for electric vehicles. The synthesis of bimetallic nanostructures due to their novel optical, catalytic and electronic characteristic which is precisely in contrast to their monometallic counterparts is attracting extensive attention. Galvanic replacement (sometimes is named to as cementation or immersion plating) is an uncomplicated and effective technique for making nanostructures (such as core-shell) of different metals, semiconductors, and their application in DEFCs. The replacement of galvanic does not need any external power supply compared to electrodeposition. In addition, it is different from electroless deposition because there is no need for a reducing agent to replace galvanizing. In this paper, a fast method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. To evaluate the morphology and composition of Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan, emission scanning electron microscopy, energy dispersive X-ray spectroscopy were applied. In order to measure the phase structure of the electrocatalysts were performed via room temperature X-ray powder diffraction (XRD) applying an X-ray diffractometer. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were utilized for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to commercial Pd/C that demonstrated the potential in utilizing Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan as efficient catalysts towards ethanol oxidation. Noticeably, the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan presented excellent catalytic activities with a peak current density of 320.73 mAcm² which was 9.5 times more than in comparison to Pd/C (34.2133 mAcm²). Additionally, activation energy thermodynamic and kinetic evaluations revealed that the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst has lower compared to Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation.

Keywords: core-shell structure, electrocatalyst, ethanol oxidation, galvanic replacement reaction

Procedia PDF Downloads 135
344 Recycled Use of Solid Wastes in Building Material: A Review

Authors: Oriyomi M. Okeyinka, David A. Oloke, Jamal M. Khatib

Abstract:

Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. Therefore a research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps.

Keywords: recycling, solid wastes, construction, building materials

Procedia PDF Downloads 375
343 Comparative Mesh Sensitivity Study of Different Reynolds Averaged Navier Stokes Turbulence Models in OpenFOAM

Authors: Zhuoneng Li, Zeeshan A. Rana, Karl W. Jenkins

Abstract:

In industry, to validate a case, often a multitude of simulation are required and in order to demonstrate confidence in the process where users tend to use a coarser mesh. Therefore, it is imperative to establish the coarsest mesh that could be used while keeping reasonable simulation accuracy. To date, the two most reliable, affordable and broadly used advanced simulations are the hybrid RANS (Reynolds Averaged Navier Stokes)/LES (Large Eddy Simulation) and wall modelled LES. The potentials in these two simulations will still be developed in the next decades mainly because the unaffordable computational cost of a DNS (Direct Numerical Simulation). In the wall modelled LES, the turbulence model is applied as a sub-grid scale model in the most inner layer near the wall. The RANS turbulence models cover the entire boundary layer region in a hybrid RANS/LES (Detached Eddy Simulation) and its variants, therefore, the RANS still has a very important role in the state of art simulations. This research focuses on the turbulence model mesh sensitivity analysis where various turbulence models such as the S-A (Spalart-Allmaras), SSG (Speziale-Sarkar-Gatski), K-Omega transitional SST (Shear Stress Transport), K-kl-Omega, γ-Reθ transitional model, v2f are evaluated within the OpenFOAM. The simulations are conducted on a fully developed turbulent flow over a flat plate where the skin friction coefficient as well as velocity profiles are obtained to compare against experimental values and DNS results. A concrete conclusion is made to clarify the mesh sensitivity for different turbulence models.

Keywords: mesh sensitivity, turbulence models, OpenFOAM, RANS

Procedia PDF Downloads 246
342 Hydraulic Conductivity Prediction of Cement Stabilized Pavement Base Incorporating Recycled Plastics and Recycled Aggregates

Authors: Md. Shams Razi Shopnil, Tanvir Imtiaz, Sabrina Mahjabin, Md. Sahadat Hossain

Abstract:

Saturated hydraulic conductivity is one of the most significant attributes of pavement base course. Determination of hydraulic conductivity is a routine procedure for regular aggregate base courses. However, in many cases, a cement-stabilized base course is used with compromised drainage ability. Traditional hydraulic conductivity testing procedure is a readily available option which leads to two consequential drawbacks, i.e., the time required for the specimen to be saturated and extruding the sample after completion of the laboratory test. To overcome these complications, this study aims at formulating an empirical approach to predicting hydraulic conductivity based on Unconfined Compressive Strength test results. To do so, this study comprises two separate experiments (Constant Head Permeability test and Unconfined Compressive Strength test) conducted concurrently on a specimen having the same physical credentials. Data obtained from the two experiments were then used to devise a correlation between hydraulic conductivity and unconfined compressive strength. This correlation in the form of a polynomial equation helps to predict the hydraulic conductivity of cement-treated pavement base course, bypassing the cumbrous process of traditional permeability and less commonly used horizontal permeability tests. The correlation was further corroborated by a different set of data, and it has been found that the derived polynomial equation is deemed to be a viable tool to predict hydraulic conductivity.

Keywords: hydraulic conductivity, unconfined compressive strength, recycled plastics, recycled concrete aggregates

Procedia PDF Downloads 80
341 Developing Proof Demonstration Skills in Teaching Mathematics in the Secondary School

Authors: M. Rodionov, Z. Dedovets

Abstract:

The article describes the theoretical concept of teaching secondary school students proof demonstration skills in mathematics. It describes in detail different levels of mastery of the concept of proof-which correspond to Piaget’s idea of there being three distinct and progressively more complex stages in the development of human reflection. Lessons for each level contain a specific combination of the visual-figurative components and deductive reasoning. It is vital at the transition point between levels to carefully and rigorously recalibrate teaching to reflect the development of more complex reflective understanding. This can apply even within the same age range, since students will develop at different speeds and to different potential. The authors argue that this requires an aware and adaptive approach to lessons to reflect this complexity and variation. The authors also contend that effective teaching which enables students to properly understand the implementation of proof arguments must develop specific competences. These are: understanding of the importance of completeness and generality in making a valid argument; being task focused; having an internalised locus of control and being flexible in approach and evaluation. These criteria must be correlated with the systematic application of corresponding methodologies which are best likely to achieve success. The particular pedagogical decisions which are made to deliver this objective are illustrated by concrete examples from the existing secondary school mathematics courses. The proposed theoretical concept formed the basis of the development of methodological materials which have been tested in 47 secondary schools.

Keywords: education, teaching of mathematics, proof, deductive reasoning, secondary school

Procedia PDF Downloads 233
340 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning

Authors: Hossein Havaeji, Tony Wong, Thien-My Dao

Abstract:

1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.

Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning

Procedia PDF Downloads 111
339 Estimation of Asphalt Pavement Surfaces Using Image Analysis Technique

Authors: Mohammad A. Khasawneh

Abstract:

Asphalt concrete pavements gradually lose their skid resistance causing safety problems especially under wet conditions and high driving speeds. In order to enact the actual field polishing and wearing process of asphalt pavement surfaces in a laboratory setting, several laboratory-scale accelerated polishing devices were developed by different agencies. To mimic the actual process, friction and texture measuring devices are needed to quantify surface deterioration at different polishing intervals that reflect different stages of the pavement life. The test could still be considered lengthy and to some extent labor-intensive. Therefore, there is a need to come up with another method that can assist in investigating the bituminous pavement surface characteristics in a practical and time-efficient test procedure. The purpose of this paper is to utilize a well-developed image analysis technique to characterize asphalt pavement surfaces without the need to use conventional friction and texture measuring devices in an attempt to shorten and simplify the polishing procedure in the lab. Promising findings showed the possibility of using image analysis in lieu of the labor-sensitive-variable-in-nature friction and texture measurements. It was found that the exposed aggregate surface area of asphalt specimens made from limestone and gravel aggregates produced solid evidence of the validity of this method in describing asphalt pavement surfaces. Image analysis results correlated well with the British Pendulum Numbers (BPN), Polish Values (PV) and Mean Texture Depth (MTD) values.

Keywords: friction, image analysis, polishing, statistical analysis, texture

Procedia PDF Downloads 295
338 A Follow up Study on Indoor 222Rn, 220Rn and Their Decay Product Concentrations in a Mineralized Zone of Himachal Pradesh, India

Authors: B. S. Bajwa, Parminder Singh, Prabhjot Singh, Surinder Singh, B. K. Sahoo, B. K. Sapra

Abstract:

A follow up study was taken up in a mineralized zone situated in Hamirpur district, Himachal Pradesh, India to investigate high values of radon concentration reported in past studies as well to update the old radon data based on bare SSNTD technique. In the present investigation, indoor radon, thoron and their decay products concentrations have been measured using the newly developed Radon-Thoron discriminating diffusion chamber with single entry face, direct radon and thoron progeny sensors (DRPS/DTPS) respectively. The measurements have been carried out in seventy five dwellings of fourteen different villages. Houses were selected taking into consideration of the past data as well as the type of houses such as mud, concrete, brick etc. It was observed that high values of earlier reported radon concentrations were mainly because of thoron interference in the Solid State Nuclear Track Detector (LR-115 type II) exposed in bare mode. Now, the average concentration values and the estimated annual inhalation dose in these villages have been found to be within the reference level as recommended by the ICRP. The annual average indoor radon and thoron concentrations observed in these dwellings have been found to vary from 44±12-157±73 Bq m-3 and 44±11-240±125 Bq m-3 respectively. The equilibrium equivalent concentrations of radon and thoron decay products have been observed to be in the range of 10-63 Bq m-3 and 1-5 Bq m-3 respectively.

Keywords: radon, thoron, progeny concentration, dosimeter

Procedia PDF Downloads 448
337 Deep Well Grounded Magnetite Anode Chains Retrieval and Installation for Raslanuf Complex Impressed Current Cathodic Protection System Rectification

Authors: Mohamed Ahmed Khali

Abstract:

Numbers of deep well anode ground beds (GBs) have been retrieved due to un operated anode chains. New identical magnetite anode chains(MAC) have been installed at Raslanuf complex impressed current Cathodic protection(ICCP) system, distributed at different plants(Utility, ethylene and polyethylene). All problems associated with retrieving and installation of MACs have been discussed, rectified and presented. All GB associated severely corroded wellhead casings were well maintained and/ or replaced by new fabricated and modified ones. The main cause of wellhead casings internal corrosion was discussed, and the conducted remedy action to overcome future corrosion problem is presented. All GB connected anode junction boxes (AJBs) and shunts were closely inspected, maintained, and necessary replacement/and or modification were carried out on shunts. All damaged GB concrete foundations (CF) have been inspected and completely replaced. All GB associated Transformer-Rectifiers units (TRUs) were subjected to through inspection, and necessary maintenance has been performed on each individual TRU. After completion of all MACs and TRU maintenance activities, each cathodic protection station (CPS) has been re-operated. An alternative current (AC), direct current (DC), voltage and structure to soil potential (S/P) measurements have been conducted, recorded, and all obtained test results are presented. DC current outputs has been adjusted, and DC current outputs of each MAC has been recorded for each GB AJB.

Keywords: magnatite anode, deep well, ground bed, cathodic protection, transformer rectifies, impreced current, junction box

Procedia PDF Downloads 89
336 The Confiscation of Ill-Gotten Gains in Pollution: The Taiwan Experience and the Interaction between Economic Analysis of Law and Environmental Economics Perspectives

Authors: Chiang-Lead Woo

Abstract:

In reply to serious environmental problems, the Taiwan government quickly adjusted some articles to suit the needs of environmental protection recently, such as the amendment to article 190-1 of the Taiwan Criminal Code. The transfer of legislation comes as an improvement which canceled the limitation of ‘endangering public safety’. At the same time, the article 190-1 goes from accumulative concrete offense to abstract crime of danger. Thus, the public looks forward to whether environmental crime following the imposition of fines or penalties works efficiently in anti-pollution by the deterrent effects. However, according to the addition to article 38-2 of the Taiwan Criminal Code, the confiscation system seems controversial legislation to restrain ill-gotten gains. Most prior studies focused on comparisons with the Administrative Penalty Law and the Criminal Code in environmental issue in Taiwan; recently, more and more studies emphasize calculations on ill-gotten gains. Hence, this paper try to examine the deterrent effect in environmental crime by economic analysis of law and environmental economics perspective. This analysis shows that only if there is an extremely high probability (equal to 100 percent) of an environmental crime case being prosecuted criminally by Taiwan Environmental Protection Agency, the deterrent effects will work. Therefore, this paper suggests deliberating the confiscation system from supplementing the System of Environmental and Economic Accounting, reasonable deterrent fines, input management, real-time system for detection of pollution, and whistleblower system, environmental education, and modernization of law.

Keywords: confiscation, ecosystem services, environmental crime, ill-gotten gains, the deterrent effect, the system of environmental and economic accounting

Procedia PDF Downloads 156
335 Vulnerability Assessment of Reinforced Concrete Frames Based on Inelastic Spectral Displacement

Authors: Chao Xu

Abstract:

Selecting ground motion intensity measures reasonably is one of the very important issues to affect the input ground motions selecting and the reliability of vulnerability analysis results. In this paper, inelastic spectral displacement is used as an alternative intensity measure to characterize the ground motion damage potential. The inelastic spectral displacement is calculated based modal pushover analysis and inelastic spectral displacement based incremental dynamic analysis is developed. Probability seismic demand analysis of a six story and an eleven story RC frame are carried out through cloud analysis and advanced incremental dynamic analysis. The sufficiency and efficiency of inelastic spectral displacement are investigated by means of regression and residual analysis, and compared with elastic spectral displacement. Vulnerability curves are developed based on inelastic spectral displacement. The study shows that inelastic spectral displacement reflects the impact of different frequency components with periods larger than fundamental period on inelastic structural response. The damage potential of ground motion on structures with fundamental period prolonging caused by structural soften can be caught by inelastic spectral displacement. To be compared with elastic spectral displacement, inelastic spectral displacement is a more sufficient and efficient intensity measure, which reduces the uncertainty of vulnerability analysis and the impact of input ground motion selection on vulnerability analysis result.

Keywords: vulnerability, probability seismic demand analysis, ground motion intensity measure, sufficiency, efficiency, inelastic time history analysis

Procedia PDF Downloads 341
334 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates

Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes

Abstract:

The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.

Keywords: composites materials, laminated composite plate, finite-element analysis, free vibration

Procedia PDF Downloads 282
333 A Comparative Study on Behavior Among Different Types of Shear Connectors using Finite Element Analysis

Authors: Mohd Tahseen Islam Talukder, Sheikh Adnan Enam, Latifa Akter Lithi, Soebur Rahman

Abstract:

Composite structures have made significant advances in construction applications during the last few decades. Composite structures are composed of structural steel shapes and reinforced concrete combined with shear connectors, which benefit each material's unique properties. Significant research has been conducted on different types of connectors’ behavior and shear capacity. Moreover, the AISC 360-16 “Specification for Steel Structural Buildings” consists of a formula for channel shear connectors' shear capacity. This research compares the behavior of C type and L type shear connectors using Finite Element Analysis. Experimental results from published literature are used to validate the finite element models. The 3-D Finite Element Model (FEM) was built using ABAQUS 2017 to investigate non-linear capabilities and the ultimate load-carrying potential of the connectors using push-out tests. The changes in connector dimensions were analyzed using this non-linear model in parametric investigations. The parametric study shows that by increasing the length of the shear connector by 10 mm, its shear strength increases by 21%. Shear capacity increased by 13% as the height was increased by 10 mm. The thickness of the specimen was raised by 1 mm, resulting in a 2% increase in shear capacity. However, the shear capacity of channel connectors was reduced by 21% due to an increase of thickness by 2 mm.

Keywords: finite element method, channel shear connector, angle shear connector, ABAQUS, composite structure, shear connector, parametric study, ultimate shear capacity, push-out test

Procedia PDF Downloads 107
332 Structural Behaviour of Small-Scale Fibre-Filled Steel Tubular Planar Frames

Authors: Sadaf Karkoodi, Hassan Karampour

Abstract:

There is a growing interest in the construction industry towards hybrid systems. The hybrid systems use construction materials such as timber, steel, and concrete smartly, can be prefabricated, and are cost-effective and sustainable solutions to an industry targeting reduced carbon footprint. Moreover, in case of periodical shortage in timber resources, reusable and waste wood such as fibres can be used in the hybrid modules, which facilitates the circular economy. In this research, a hybrid frame is proposed and experimentally validated by introducing dried wood fibre products inside cold-formed steel square hollow sections without using any adhesives. As such, fibre-filled steel tubular (FFST) columns, beams, and 2D frames are manufactured and tested. The results show that the FFST columns have stiffness and strength 44% and 55% higher than cold-formed steel columns, respectively. The bearing strength of the FFST beams shows an increase of 39.5% compared to steel only. The flexural stiffness and strength of the FFST beams are 8.5% and 28% higher than the bare steel beams, respectively. The FFST frame depicted an 18.4% higher ultimate load capacity than the steel-only frame under a mid-point concentrated load. Moreover, the FFST beam-to-column bolted connection showed high ductile performance. The initial results and the proposed simple manufacturing process suggest that the proposed FFST concept can be upscaled and used in real structures.

Keywords: wood fibre, reusing wood, fibre-filled steel, hybrid construction

Procedia PDF Downloads 66
331 Features of Fossil Fuels Generation from Bazhenov Formation Source Rocks by Hydropyrolysis

Authors: Anton G. Kalmykov, Andrew Yu. Bychkov, Georgy A. Kalmykov

Abstract:

Nowadays, most oil reserves in Russia and all over the world are hard to recover. That is the reason oil companies are searching for new sources for hydrocarbon production. One of the sources might be high-carbon formations with unconventional reservoirs. Bazhenov formation is a huge source rock formation located in West Siberia, which contains unconventional reservoirs on some of the areas. These reservoirs are formed by secondary processes with low predicting ratio. Only one of five wells is drilled through unconventional reservoirs, in others kerogen has low thermal maturity, and they are of low petroliferous. Therefore, there was a request for tertiary methods for in-situ cracking of kerogen and production of oil. Laboratory experiments of Bazhenov formation rock hydrous pyrolysis were used to investigate features of the oil generation process. Experiments on Bazhenov rocks with a different mineral composition (silica concentration from 15 to 90 wt.%, clays – 5-50 wt.%, carbonates – 0-30 wt.%, kerogen – 1-25 wt.%) and thermal maturity (from immature to late oil window kerogen) were performed in a retort under reservoir conditions. Rock samples of 50 g weight were placed in retort, covered with water and heated to the different temperature varied from 250 to 400°C with the durability of the experiments from several hours to one week. After the experiments, the retort was cooled to room temperature; generated hydrocarbons were extracted with hexane, then separated from the solvent and weighted. The molecular composition of this synthesized oil was then investigated via GC-MS chromatography Characteristics of rock samples after the heating was measured via the Rock-Eval method. It was found, that the amount of synthesized oil and its composition depending on the experimental conditions and composition of rocks. The highest amount of oil was produced at a temperature of 350°C after 12 hours of heating and was up to 12 wt.% of initial organic matter content in the rocks. At the higher temperatures and within longer heating time secondary cracking of generated hydrocarbons occurs, the mass of produced oil is lowering, and the composition contains more hydrocarbons that need to be recovered by catalytical processes. If the temperature is lower than 300°C, the amount of produced oil is too low for the process to be economically effective. It was also found that silica and clay minerals work as catalysts. Selection of heating conditions allows producing synthesized oil with specified composition. Kerogen investigations after heating have shown that thermal maturity increases, but the yield is only up to 35% of the maximum amount of synthetic oil. This yield is the result of gaseous hydrocarbons formation due to secondary cracking and aromatization and coaling of kerogen. Future investigations will allow the increase in the yield of synthetic oil. The results are in a good agreement with theoretical data on kerogen maturation during oil production. Evaluated trends could be tooled up for in-situ oil generation by shale rocks thermal action.

Keywords: Bazhenov formation, fossil fuels, hydropyrolysis, synthetic oil

Procedia PDF Downloads 109