Search results for: squared Euclidean distance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2255

Search results for: squared Euclidean distance

365 Monte Carlo and Biophysics Analysis in a Criminal Trial

Authors: Luca Indovina, Carmela Coppola, Carlo Altucci, Riccardo Barberi, Rocco Romano

Abstract:

In this paper a real court case, held in Italy at the Court of Nola, in which a correct physical description, conducted with both a Monte Carlo and biophysical analysis, would have been sufficient to arrive at conclusions confirmed by documentary evidence, is considered. This will be an example of how forensic physics can be useful in confirming documentary evidence in order to reach hardly questionable conclusions. This was a libel trial in which the defendant, Mr. DS (Defendant for Slander), had falsely accused one of his neighbors, Mr. OP (Offended Person), of having caused him some damages. The damages would have been caused by an external plaster piece that would have detached from the neighbor’s property and would have hit Mr DS while he was in his garden, much more than a meter far away from the facade of the building from which the plaster piece would have detached. In the trial, Mr. DS claimed to have suffered a scratch on his forehead, but he never showed the plaster that had hit him, nor was able to tell from where the plaster would have arrived. Furthermore, Mr. DS presented a medical certificate with a diagnosis of contusion of the cerebral cortex. On the contrary, the images of Mr. OP’s security cameras do not show any movement in the garden of Mr. DS in a long interval of time (about 2 hours) around the time of the alleged accident, nor do they show any people entering or coming out from the house of Mr. DS in the same interval of time. Biophysical analysis shows that both the diagnosis of the medical certificate and the wound declared by the defendant, already in conflict with each other, are not compatible with the fall of external plaster pieces too small to be found. The wind was at a level 1 of the Beaufort scale, that is, unable to raise even dust (level 4 of the Beaufort scale). Therefore, the motion of the plaster pieces can be described as a projectile motion, whereas collisions with the building cornice can be treated using Newtons law of coefficients of restitution. Numerous numerical Monte Carlo simulations show that the pieces of plaster would not have been able to reach even the garden of Mr. DS, let alone a distance over 1.30 meters. Results agree with the documentary evidence (images of Mr. OP’s security cameras) that Mr. DS could not have been hit by plaster pieces coming from Mr. OP’s property.

Keywords: biophysics analysis, Monte Carlo simulations, Newton’s law of restitution, projectile motion

Procedia PDF Downloads 128
364 Energy Reclamation in Micro Cavitating Flow

Authors: Morteza Ghorbani, Reza Ghorbani

Abstract:

Cavitation phenomenon has attracted much attention in the mechanical and biomedical technologies. Despite the simplicity and mostly low cost of the devices generating cavitation bubbles, the physics behind the generation and collapse of these bubbles particularly in micro/nano scale has still not well understood. In the chemical industry, micro/nano bubble generation is expected to be applicable to the development of porous materials such as microcellular plastic foams. Moreover, it was demonstrated that the presence of micro/nano bubbles on a surface reduced the adsorption of proteins. Thus, the micro/nano bubbles could act as antifouling agents. Micro and nano bubbles were also employed in water purification, froth floatation, even in sonofusion, which was not completely validated. Small bubbles could also be generated using micro scale hydrodynamic cavitation. In this study, compared to the studies available in the literature, we are proposing a novel approach in micro scale utilizing the energy produced during the interaction of the spray affected by the hydrodynamic cavitating flow and a thin aluminum plate. With a decrease in the size, cavitation effects become significant. It is clearly shown that with the aid of hydrodynamic cavitation generated inside the micro/mini-channels in addition to the optimization of the distance between the tip of the microchannel configuration and the solid surface, surface temperatures can be increased up to 50C under the conditions of this study. The temperature rise on the surfaces near the collapsing small bubbles was exploited for energy harvesting in small scale, in such a way that miniature, cost-effective, and environmentally friendly energy-harvesting devices can be developed. Such devices will not require any external power and moving parts in contrast to common energy-harvesting devices, such as those involving piezoelectric materials and micro engine. Energy harvesting from thermal energy has been widely exploited to achieve energy savings and clean technologies. We are proposing a cost effective and environmentally friendly solution for the growing individual energy needs thanks to the energy application of cavitating flows. The necessary power for consumer devices, such as cell phones and laptops, can be provided using this approach. Thus, this approach has the potential for solving personal energy needs in an inexpensive and environmentally friendly manner and can trigger a shift of paradigm in energy harvesting.

Keywords: cavitation, energy, harvesting, micro scale

Procedia PDF Downloads 190
363 Effect of Forests and Forest Cover Change on Rainfall in the Central Rift Valley of Ethiopia

Authors: Alemayehu Muluneh, Saskia Keesstra, Leo Stroosnijder, Woldeamlak Bewket, Ashenafi Burka

Abstract:

There are some scientific evidences and a belief by many that forests attract rain and deforestation contributes to a decline of rainfall. However, there is still a lack of concrete scientific evidence on the role of forests in rainfall amount. In this paper, we investigate the forest-rainfall relationships in the environmentally hot spot area of the Central Rift Valley (CRV) of Ethiopia. Specifically, we evaluate long term (1970-2009) rainfall variability and its relationship with historical forest cover and the relationship between existing forest cover and topographical variables and rainfall distribution. The study used 16 long term and 15 short term rainfall stations. The Mann-Kendall test, bi variate and multiple regression models were used. The results show forest and wood land cover continuously declined over the 40 years period (1970-2009), but annual rainfall in the rift valley floor increased by 6.42 mm/year. But, on the escarpment and highlands, annual rainfall decreased by 2.48 mm/year. The increase in annual rainfall in the rift valley floor is partly attributable to the increase in evaporation as a result of increasing temperatures from the 4 existing lakes in the rift valley floor. Though, annual rainfall is decreasing on the escarpment and highlands, there was no significant correlation between this rainfall decrease and forest and wood land decline and also rainfall variability in the region was not explained by forest cover. Hence, the decrease in annual rainfall on the escarpment and highlands is likely related to the global warming of the atmosphere and the surface waters of the Indian Ocean. Spatial variability of number of rainy days from systematically observed two-year’s rainfall data (2012-2013) was significantly (R2=-0.63) explained by forest cover (distance from forest). But, forest cover was not a significant variable (R2=-0.40) in explaining annual rainfall amount. Generally, past deforestation and existing forest cover showed very little effect on long term and short term rainfall distribution, but a significant effect on number of rainy days in the CRV of Ethiopia.

Keywords: elevation, forest cover, rainfall, slope

Procedia PDF Downloads 545
362 Flood Hazard Assessment and Land Cover Dynamics of the Orai Khola Watershed, Bardiya, Nepal

Authors: Loonibha Manandhar, Rajendra Bhandari, Kumud Raj Kafle

Abstract:

Nepal’s Terai region is a part of the Ganges river basin which is one of the most disaster-prone areas of the world, with recurrent monsoon flooding causing millions in damage and the death and displacement of hundreds of people and households every year. The vulnerability of human settlements to natural disasters such as floods is increasing, and mapping changes in land use practices and hydro-geological parameters is essential in developing resilient communities and strong disaster management policies. The objective of this study was to develop a flood hazard zonation map of Orai Khola watershed and map the decadal land use/land cover dynamics of the watershed. The watershed area was delineated using SRTM DEM, and LANDSAT images were classified into five land use classes (forest, grassland, sediment and bare land, settlement area and cropland, and water body) using pixel-based semi-automated supervised maximum likelihood classification. Decadal changes in each class were then quantified using spatial modelling. Flood hazard mapping was performed by assigning weights to factors slope, rainfall distribution, distance from the river and land use/land cover on the basis of their estimated influence in causing flood hazard and performing weighed overlay analysis to identify areas that are highly vulnerable. The forest and grassland coverage increased by 11.53 km² (3.8%) and 1.43 km² (0.47%) from 1996 to 2016. The sediment and bare land areas decreased by 12.45 km² (4.12%) from 1996 to 2016 whereas settlement and cropland areas showed a consistent increase to 14.22 km² (4.7%). Waterbody coverage also increased to 0.3 km² (0.09%) from 1996-2016. 1.27% (3.65 km²) of total watershed area was categorized into very low hazard zone, 20.94% (60.31 km²) area into low hazard zone, 37.59% (108.3 km²) area into moderate hazard zone, 29.25% (84.27 km²) area into high hazard zone and 31 villages which comprised 10.95% (31.55 km²) were categorized into high hazard zone area.

Keywords: flood hazard, land use/land cover, Orai river, supervised maximum likelihood classification, weighed overlay analysis

Procedia PDF Downloads 351
361 Discussing Classicalness: Online Reviews of Plato’s Allegory of the Cave and the Discourses around the “Classic”

Authors: Damianos Tzoupis

Abstract:

In the context of the canon debate, assumptions regarding the place, value, and impact of classical texts have come under increased scrutiny. Factors like the distance of time, the depreciation of tradition, or the increased cultural omnivorousness and eclecticism have allegedly played a part in destabilizing classics’ authority. However, despite all these developments, classics’ position and influence is strong both in contemporary institutions and among readers’ preferences. Within this background of conflicted narratives, the study maps the varied discourses, value grammars, and justifications that lay cultural consumers employ to discuss those texts which have come to be the most consecrated and valuable cultural objects. The study centers on reviews posted on Goodreads. These online reviews offer unique access to unsolicited reception data produced by lay readers themselves, thus providing a clearer picture of lay cultural consumption and lay theories about classics. Moreover, the approach taken relies on the micro-practices of evaluation: the study investigates the evaluation of a specific cultural object, namely Plato’s allegory of the Cave, and treats it as an exemplary case to identify interpretive repertoires and valuation grammars about classical texts in general. The analysis uncovers a wide range of discourses used to construct the concept of the “classical text”. At first sight, lay reviewers seem to adopt interpretive repertoires that highlight qualities such as universality, timelessness, canonicity, cultural impact, and difficulty. These repertoires seem in principle to follow generalized and institutionalized discourses about classical texts, as these are established and circulated by institutions and cultural brokers like schools, academics, critics, etc. However, the study also uncovers important variations of these discourses. Lay readers tend to (re)negotiate the meanings/connotations of the above qualities and also structure their discourses by “modalities” such as necessity or surprise. These variations in interpretive repertoires are important in cultural sociology’s attempt to better grasp the principles informing the grammars of valuation that lay cultural consumers employ and to understand the kinds of impact that consecrated cultural objects have on people’s lives.

Keywords: classics, interpretive repertoires around classicalness, institutionalized discourses, lay readers, online reviews/criticism

Procedia PDF Downloads 212
360 Using the Synchronous Online Flipped Learning Approach to Facilitate Student Podcasting

Authors: Yasmeen Coaxum

Abstract:

The year 2020 became synonymous with the words “Emergency Remote Teaching,” which was imposed upon educators during the COVID-19 pandemic. Consequently, teachers were compelled to find new and engaging ways to educate their students outside of the face-to-face classroom setting. Now online instruction has become more of the norm rather than a way to manage educational expectations during a crisis. Therefore, implementing a strategic way to create online environments for students to thrive, create, and fully engage in their learning process is essential. The Synchronous Online Flipped Learning Approach or SOFLA® is a distance learning model that most closely replicates actual classroom teaching. SOFLA® includes structured, interactive, multimodal activities in an eight-step learning cycle with both asynchronous and synchronous components that foster autonomous and interactive learning among today’s online learners. The results of a pilot study in an Intensive English Program at a university, using SOFLA® methodology to facilitate podcasting in an online learning environment will be shared. Previous findings on student-produced podcasting projects have shown that students felt they improved their pronunciation, vocabulary, and speaking skills. However, few if any studies have been conducted on using a structured online flipped learning approach to facilitate such projects. Therefore, the purpose of this study is to assess the effect of using the SOFLA® framework to enhance optimum engagement in the online environment while using podcasts as the primary tool of instruction. Through data from interviews, questionnaires, and the results of formative and summative assessments, this study also investigates the affective and academic impact this flipped learning method combined with podcasting has on the students in terms of speaking confidence and vocabulary retention, and production. The steps of SOFLA will be illustrated, a video demonstration of the Anchor podcasting app will be shown, and final student projects and questionnaire responses will be shared. The specific context is a 14-week advanced level conversation and listening class. Participants vary in age but are all adult language learners representing a diverse array of countries.

Keywords: mall online flipped learning, podcasting, productive vocabulary

Procedia PDF Downloads 173
359 Concepts of Instrumentation Scheme for Thought Transfer

Authors: Rai Sachindra Prasad

Abstract:

Thought is physical force. This has been well recognized but hardly translated visually or otherwise in the sense of its transfer from one individual to another. In the present world of chaos and disorder with yawning gaps between right and wrong thinking individuals, if it is possible to transfer the right thoughts to replace the wrong ones it would indeed be a great achievement in the present situation of the world which is torn with violence with dangerous thoughts of individuals. Moreover, such a possibility would completely remove the barrier of language between two persons, which at times proves to be a great obstacle in realizing a desired purpose. If a proper instrumentation scheme containing appropriate transducers and electronics is designed and implemented to realize this thought ransfer phenomenon, this would prove to be extremely useful when properly used. Considering the advancements already made in recording the nerve impulses in the brain, which are electrical events of very short durations that move along the axon, it is conceivable that this may be used to good effect in implementing the scheme. In such a proposition one shoud consider the roles played by pineal body, pituitary gland and ‘association’ areas. Pioneer students of brain have thought that associations or connections between sensory input and motor output were made in these areas. It is currently believed that rather than being regions of simple sensory-motor connections, the association areas process and integrate sensory information relayed to them from the primary sensory areas of the cortex and from the thalamus, after the information has been processed, it may be sent to motor areas to be acted upon. Again, even though the role played by pineal body is not known fully to neurologists its interconnection with pituitary gland is a matter of great significance to the ‘Rishis’ and; Seers’ s described in Vedas and Puranas- the ancient Holy books of Hindus. If the pineal body is activated through meditation it would control the pituitary gland thereby the individual’s thoughts and acts. Thus, if thoughts can be picked up by special transducers, these can be connected to suitable electronics circuitry to amplify the signals. These signals in the form of electromagnetic waves can then be transmitted using modems for long distance transmission and eventually received by or passed on to a subject of interest through another set of electronics circuit and devices.

Keywords: modems, pituitary gland, pineal body, thought transfer

Procedia PDF Downloads 369
358 Energy Content and Spectral Energy Representation of Wave Propagation in a Granular Chain

Authors: Rohit Shrivastava, Stefan Luding

Abstract:

A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder. For obtaining macroscopic/continuum properties, ensemble averaging has been used. Interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder leads to faster attenuation of the signal and decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies also increases. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits diffusive like propagation, which eventually becomes localized at long periods of time.

Keywords: discrete elements, energy attenuation, mass disorder, granular chain, spectral energy, wave propagation

Procedia PDF Downloads 287
357 Optimization of Water Pipeline Routes Using a GIS-Based Multi-Criteria Decision Analysis and a Geometric Search Algorithm

Authors: Leon Mortari

Abstract:

The Metropolitan East region of Rio de Janeiro state, Brazil, faces a historic water scarcity. Among the alternatives studied to solve this situation, the possibility of adduction of the available water in the reservoir Lagoa de Juturnaíba to supply the region's municipalities stands out. The allocation of a linear engineering project must occur through an evaluation of different aspects, such as altitude, slope, proximity to roads, distance from watercourses, land use and occupation, and physical and chemical features of the soil. This work aims to apply a multi-criteria model that combines geoprocessing techniques, decision-making, and geometric search algorithm to optimize a hypothetical adductor system in the scenario of expanding the water supply system that serves this region, known as Imunana-Laranjal, using the Lagoa de Juturnaíba as the source. It is proposed in this study, the construction of a spatial database related to the presented evaluation criteria, treatment and rasterization of these data, and standardization and reclassification of this information in a Geographic Information System (GIS) platform. The methodology involves the integrated analysis of these criteria, using their relative importance defined by weighting them based on expert consultations and the Analytic Hierarchy Process (AHP) method. Three approaches are defined for weighting the criteria by AHP: the first treats all criteria as equally important, the second considers weighting based on a pairwise comparison matrix, and the third establishes a hierarchy based on the priority of the criteria. For each approach, a distinct group of weightings is defined. In the next step, map algebra tools are used to overlay the layers and generate cost surfaces, that indicates the resistance to the passage of the adductor route, using the three groups of weightings. The Dijkstra algorithm, a geometric search algorithm, is then applied to these cost surfaces to find an optimized path within the geographical space, aiming to minimize resources, time, investment, maintenance, and environmental and social impacts.

Keywords: geometric search algorithm, GIS, pipeline, route optimization, spatial multi-criteria analysis model

Procedia PDF Downloads 30
356 Cross-Sectional Study Investigating the Prevalence of Uncorrected Refractive Error and Visual Acuity through Mobile Vision Screening in the Homeless in Wales

Authors: Pakinee Pooprasert, Wanxin Wang, Tina Parmar, Dana Ahnood, Tafadzwa Young-Zvandasara, James Morgan

Abstract:

Homelessness has been shown to be correlated to poor health outcomes, including increased visual health morbidity. Despite this, there are relatively few studies regarding visual health in the homeless population, especially in the UK. This research aims to investigate visual disability and access barriers prevalent in the homeless population in Cardiff, South Wales. Data was collected from 100 homeless participants in three different shelters. Visual outcomes included near and distance visual acuity as well as non-cycloplegic refraction. Qualitative data was collected via a questionnaire and included socio-demographic profile, ocular history, subjective visual acuity and level of access to healthcare facilities. Based on the participants’ presenting visual acuity, the total prevalence of myopia and hyperopia was 17.0% and 19.0% respectively based on spherical equivalent from the eye with the greatest absolute value. The prevalence of astigmatism was 8.0%. The mean absolute spherical equivalent was 0.841D and 0.853D for right and left eye respectively. The number of participants with sight loss (as defined by VA= 6/12-6/60 in the better-seeing eye) was 27.0% in comparison to 0.89% and 1.1% in the general Cardiff and Wales population respectively (p-value is < 0.05). Additionally, 1.0% of the homeless subjects were registered blind (VA less than 3/60), in comparison to 0.17% for the national consensus after age standardization. Most participants had good knowledge regarding access to prescription glasses and eye examination services. Despite this, 85.0% never had their eyes examined by a doctor and 73.0% had their last optometrist appointment in more than 5 years. These findings suggested that there was a significant disparity in ocular health, including visual acuity and refractive error amongst the homeless in comparison to the general population. Further, the homeless were less likely to receive the same level of support and continued care in the community due to access barriers. These included a number of socio-economic factors such as travel expenses and regional availability of services, as well as administrative shortcomings. In conclusion, this research demonstrated unmet visual health needs within the homeless, and that inclusive policy changes may need to be implemented for better healthcare outcomes within this marginalized community.

Keywords: homelessness, refractive error, visual disability, Wales

Procedia PDF Downloads 170
355 Determinants of Diarrhoea Prevalence Variations in Mountainous Informal Settlements of Kigali City, Rwanda

Authors: Dieudonne Uwizeye

Abstract:

Introduction: Diarrhoea is one of the major causes of morbidity and mortality among communities living in urban informal settlements of developing countries. It is assumed that mountainous environment introduces variations of the burden among residents of the same settlements. Design and Objective: A cross-sectional study was done in Kigali to explore the effect of mountainous informal settlements on diarrhoea risk variations. Data were collected among 1,152 households through household survey and transect walk to observe the status of sanitation. The outcome variable was the incidence of diarrhoea among household members of any age. The study used the most knowledgeable person in the household as the main respondent. Mostly this was the woman of the house as she was more likely to know the health status of every household member as she plays various roles: mother, wife, and head of the household among others. The analysis used cross tabulation and logistic regression analysis. Results: Results suggest that risks for diarrhoea vary depending on home location in the settlements. Diarrhoea risk increased as the distance from the road increased. The results of the logistic regression analysis indicate the adjusted odds ratio of 2.97 with 95% confidence interval being 1.35-6.55 and 3.50 adjusted odds ratio with 95% confidence interval being 1.61-7.60 in level two and three respectively compared with level one. The status of sanitation within and around homes was also significantly associated with the increase of diarrhoea. Equally, it is indicated that stable households were less likely to have diarrhoea. The logistic regression analysis indicated the adjusted odds ratio of 0.45 with 95% confidence interval being 0.25-0.81. However, the study did not find evidence for a significant association between diarrhoea risks and household socioeconomic status in the multivariable model. It is assumed that environmental factors in mountainous settings prevailed. Households using the available public water sources were more likely to have diarrhoea in their households. Recommendation: The study recommends the provision and extension of infrastructure for improved water, drainage, sanitation and wastes management facilities. Equally, studies should be done to identify the level of contamination and potential origin of contaminants for water sources in the valleys to adequately control the risks for diarrhoea in mountainous urban settings.

Keywords: urbanisation, diarrhoea risk, mountainous environment, urban informal settlements in Rwanda

Procedia PDF Downloads 169
354 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.

Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification

Procedia PDF Downloads 237
353 A Non-Invasive Neonatal Jaundice Screening Device Measuring Bilirubin on Eyes

Authors: Li Shihao, Dieter Trau

Abstract:

Bilirubin is a yellow substance that is made when the body breaks down old red blood cells. High levels of bilirubin can cause jaundice, a condition that makes the newborn's skin and the white part of the eyes look yellow. Jaundice is a serial-killer in developing countries in Southeast Asia such as Myanmar and most parts of Africa where jaundice screening is largely unavailable. Worldwide, 60% of newborns experience infant jaundice. One in ten will require therapy to prevent serious complications and lifelong neurologic sequelae. Limitations of current solutions: - Blood test: Blood tests are painful may largely unavailable in poor areas of developing countries, and also can be costly and unsafe due to the insufficient investment and lack of access to health care systems. - Transcutaneous jaundice-meter: 1) can only provide reliable results to caucasian newborns, due to skin pigmentations since current technologies measure bilirubin by the color of the skin. Basically, the darker the skin is, the harder to measure, 2) current jaundice meters are not affordable for most underdeveloped areas in Africa like Kenya and Togo, 3) fat tissue under the skin also influences the accuracy, which will give overestimated results, 4) current jaundice meters are not reliable after treatment (phototherapy) because bilirubin levels underneath the skin will be reduced first, while overall levels may be quite high. Thus, there is an urgent need for a low-cost non-invasive device, which can be effective not only for caucasian babies but also Asian and African newborns, to save lives at the most vulnerable time and prevent any complications like brain damage. Instead of measuring bilirubin on skin, we proposed a new method to do the measurement on the sclera, which can avoid the difference of skin pigmentations and ethnicities, due to the necessity for the sclera to be white regardless of racial background. This is a novel approach for measuring bilirubin by an optical method of light reflection off the white part of the eye. Moreover, the device is connected to a smart device, which can provide a user-friendly interface and the ability to record the clinical data continuously A disposable eye cap will be provided avoiding contamination and fixing the distance to the eye.

Keywords: Jaundice, bilirubin, non-invasive, sclera

Procedia PDF Downloads 235
352 Effectiveness of Self-Learning Module on the Academic Performance of Students in Statistics and Probability

Authors: Aneia Rajiel Busmente, Renato Gunio Jr., Jazin Mautante, Denise Joy Mendoza, Raymond Benedict Tagorio, Gabriel Uy, Natalie Quinn Valenzuela, Ma. Elayza Villa, Francine Yezha Vizcarra, Sofia Madelle Yapan, Eugene Kurt Yboa

Abstract:

COVID-19’s rapid spread caused a dramatic change in the nation, especially the educational system. The Department of Education was forced to adopt a practical learning platform without neglecting health, a printed modular distance learning. The Philippines' K–12 curriculum includes Statistics and Probability as one of the key courses as it offers students the knowledge to evaluate and comprehend data. Due to student’s difficulty and lack of understanding of the concepts of Statistics and Probability in Normal Distribution. The Self-Learning Module in Statistics and Probability about the Normal Distribution created by the Department of Education has several problems, including many activities, unclear illustrations, and insufficient examples of concepts which enables learners to have a difficulty accomplishing the module. The purpose of this study is to determine the effectiveness of self-learning module on the academic performance of students in the subject Statistics and Probability, it will also explore students’ perception towards the quality of created Self-Learning Module in Statistics and Probability. Despite the availability of Self-Learning Modules in Statistics and Probability in the Philippines, there are still few literatures that discuss its effectiveness in improving the performance of Senior High School students in Statistics and Probability. In this study, a Self-Learning Module on Normal Distribution is evaluated using a quasi-experimental design. STEM students in Grade 11 from National University's Nazareth School will be the study's participants, chosen by purposive sampling. Google Forms will be utilized to find at least 100 STEM students in Grade 11. The research instrument consists of 20-item pre- and post-test to assess participants' knowledge and performance regarding Normal Distribution, and a Likert scale survey to evaluate how the students perceived the self-learning module. Pre-test, post-test, and Likert scale surveys will be utilized to gather data, with Jeffreys' Amazing Statistics Program (JASP) software being used for analysis.

Keywords: self-learning module, academic performance, statistics and probability, normal distribution

Procedia PDF Downloads 111
351 Human Health Risk Assessment of Mercury-Contaminated Soils in Alebediah Mining Community, Sudan

Authors: Ahmed Elwaleed, Huiho Jeong, Ali H. Abdelbagi, Nguyen Thi Quynh, Koji Arizono, Yasuhiro Ishibashi

Abstract:

Artisanal and small-scale gold mining (ASGM) poses substantial risks to both human health and the environment, particularly through contamination of soil, water, and air. Prolonged exposure to ASGM-contaminated soils can lead to acute or chronic mercury toxicity. This study assesses the human health risks associated with mercury-contaminated soils and tailings in the Alebediah mining community in Sudan. Soil samples were collected from various locations within Alebediah, including ASGM areas, farmlands, and residential areas, along with tailings samples commonly found within ASGM sites. The evaluation of potential health risks to humans included the computation of the estimated daily intake (AvDI), the hazard quotient (HQ), and the hazard index (HI) for both adults and children. The primary exposure route identified as potentially posing a significant health risk was the volatilization of mercury from tailings samples, where mercury concentrations reached up to 25.5 mg/kg. In contrast, other samples within the ASGM area showed elevated mercury levels but did not present significant health risks, with HI values below 1. However, all areas indicated HI values above 1 for the remaining exposure routes. The study observed a decrease in mercury concentration with increasing distance from the ASGM community. Additionally, soil samples revealed elevated mercury levels exceeding background values, prompting an assessment of contamination levels using the enrichment factor (EF). The findings indicated that farmlands and residential areas exhibited depleted EF, while areas surrounding the ASGM community showed none to moderate pollution. In contrast, ASGM areas exhibited significant to extreme pollution. A GIS map was generated to visually depict the extent of mercury pollution, facilitating communication with stakeholders and decision-makers.

Keywords: mercury pollution, artisanal and small-scale gold mining, health risk assessment, hazard index, soil and tailings, enrichment factor

Procedia PDF Downloads 83
350 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 46
349 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: border of the Universe, causality violation, perfect isolation, quantum jumps

Procedia PDF Downloads 424
348 Non-intrusive Hand Control of Drone Using an Inexpensive and Streamlined Convolutional Neural Network Approach

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

The purpose of this work is to develop a method for classifying hand signals and using the output in a drone control algorithm. To achieve this, methods based on Convolutional Neural Networks (CNN) were applied. CNN's are a subset of deep learning, which allows grid-like inputs to be processed and passed through a neural network to be trained for classification. This type of neural network allows for classification via imaging, which is less intrusive than previous methods using biosensors, such as EMG sensors. Classification CNN's operate purely from the pixel values in an image; therefore they can be used without additional exteroceptive sensors. A development bench was constructed using a desktop computer connected to a high-definition webcam mounted on a scissor arm. This allowed the camera to be pointed downwards at the desk to provide a constant solid background for the dataset and a clear detection area for the user. A MATLAB script was created to automate dataset image capture at the development bench and save the images to the desktop. This allowed the user to create their own dataset of 12,000 images within three hours. These images were evenly distributed among seven classes. The defined classes include forward, backward, left, right, idle, and land. The drone has a popular flip function which was also included as an additional class. To simplify control, the corresponding hand signals chosen were the numerical hand signs for one through five for movements, a fist for land, and the universal “ok” sign for the flip command. Transfer learning with PyTorch (Python) was performed using a pre-trained 18-layer residual learning network (ResNet-18) to retrain the network for custom classification. An algorithm was created to interpret the classification and send encoded messages to a Ryze Tello drone over its 2.4 GHz Wi-Fi connection. The drone’s movements were performed in half-meter distance increments at a constant speed. When combined with the drone control algorithm, the classification performed as desired with negligible latency when compared to the delay in the drone’s movement commands.

Keywords: classification, computer vision, convolutional neural networks, drone control

Procedia PDF Downloads 209
347 Aerodynamic Interaction between Two Speed Skaters Measured in a Closed Wind Tunnel

Authors: Ola Elfmark, Lars M. Bardal, Luca Oggiano, H˚avard Myklebust

Abstract:

Team pursuit is a relatively new event in international long track speed skating. For a single speed skater the aerodynamic drag will account for up to 80% of the braking force, thus reducing the drag can greatly improve the performance. In a team pursuit the interactions between athletes in near proximity will also be essential, but is not well studied. In this study, systematic measurements of the aerodynamic drag, body posture and relative positioning of speed skaters have been performed in the low speed wind tunnel at the Norwegian University of Science and Technology, in order to investigate the aerodynamic interaction between two speed skaters. Drag measurements of static speed skaters drafting, leading, side-by-side, and dynamic drag measurements in a synchronized and unsynchronized movement at different distances, were performed. The projected frontal area was measured for all postures and movements and a blockage correction was performed, as the blockage ratio ranged from 5-15% in the different setups. The static drag measurements where performed on two test subjects in two different postures, a low posture and a high posture, and two different distances between the test subjects 1.5T and 3T where T being the length of the torso (T=0.63m). A drag reduction was observed for all distances and configurations, from 39% to 11.4%, for the drafting test subject. The drag of the leading test subject was only influenced at -1.5T, with the biggest drag reduction of 5.6%. An increase in drag was seen for all side-by-side measurements, the biggest increase was observed to be 25.7%, at the closest distance between the test subjects, and the lowest at 2.7% with ∼ 0.7 m between the test subjects. A clear aerodynamic interaction between the test subjects and their postures was observed for most measurements during static measurements, with results corresponding well to recent studies. For the dynamic measurements, the leading test subject had a drag reduction of 3% even at -3T. The drafting showed a drag reduction of 15% when being in a synchronized (sync) motion with the leading test subject at 4.5T. The maximal drag reduction for both the leading and the drafting test subject were observed when being as close as possible in sync, with a drag reduction of 8.5% and 25.7% respectively. This study emphasize the importance of keeping a synchronized movement by showing that the maximal gain for the leading and drafting dropped to 3.2% and 3.3% respectively when the skaters are in opposite phase. Individual differences in technique also appear to influence the drag of the other test subject.

Keywords: aerodynamic interaction, drag force, frontal area, speed skating

Procedia PDF Downloads 130
346 Identifying the Effects of the COVID-19 Pandemic on Syrian and Congolese Refugees’ Health and Economic Access in Central Pennsylvania

Authors: Mariam Shalaby, Kayla Krause, Raisha Ismail, Daniel George

Abstract:

Introduction: The Pennsylvania State College of Medicine Refugee Initiative is a student-run organization that works with eleven Syrian and Congolese refugee families. Since 2016, it has used grant funding to make weekly produce purchases at a local market, provide tutoring services, and develop trusting relationships. This case study explains how the Refugee Initiative shifted focus to face new challenges due to the COVID-19 pandemic in 2020. Methodology: When refugees who had previously attained stability found themselves unable to pay the bills, the organization shifted focus from food security to direct assistance such as applying for unemployment compensation since many had recently lost jobs. When refugee families additionally struggled to access hygiene supplies, funding was redirected to purchase them. Funds were also raised from the community to provide financial relief from unpaid rent and bills. Findings: Systemic challenges were encountered in navigating federal/state unemployment and social welfare systems, and there was a conspicuous absence of affordable, language-accessible assistance that could help refugees. Finally, as struggling public schools failed to maintain adequate English as a Second Language (ESL) education, the group’s tutoring services were hindered by social distancing and inconsistent access to distance-learning platforms. Conclusion: Ultimately, the pandemic highlighted that a charity-based arrangement is helpful but not sustainable, and challenges persist for refugee families. Based on the Refugee Initiative's experiences over the past year of the COVID-19 pandemic, several needs must be addressed to aid refugee families at this time, including: increased access to affordable and language-accessible social services, educational resources, and simpler options for grant-based financial assistance. Interventions to increase these resources will aid refugee families in need in Central Pennsylvania and internationally

Keywords: COVID-19, health, pandemic, refugees

Procedia PDF Downloads 129
345 Automatic Vertical Wicking Tester Based on Optoelectronic Techniques

Authors: Chi-Wai Kan, Kam-Hong Chau, Ho-Shing Law

Abstract:

Wicking property is important for textile finishing and wears comfort. Good wicking properties can ensure uniformity and efficiency of the textiles treatment. In view of wear comfort, quick wicking fabrics facilitate the evaporation of sweat. Therefore, the wetness sensation of the skin is minimised to prevent discomfort. The testing method for vertical wicking was standardised by the American Association of Textile Chemists and Colorists (AATCC) in 2011. The traditional vertical wicking test involves human error to observe fast changing and/or unclear wicking height. This study introduces optoelectronic devices to achieve an automatic Vertical Wicking Tester (VWT) and reduce human error. The VWT can record the wicking time and wicking height of samples. By reducing the difficulties of manual judgment, the reliability of the vertical wicking experiment is highly increased. Furthermore, labour is greatly decreased by using the VWT. The automatic measurement of the VWT has optoelectronic devices to trace the liquid wicking with a simple operation procedure. The optoelectronic devices detect the colour difference between dry and wet samples. This allows high sensitivity to a difference in irradiance down to 10 μW/cm². Therefore, the VWT is capable of testing dark fabric. The VWT gives a wicking distance (wicking height) of 1 mm resolution and a wicking time of one-second resolution. Acknowledgment: This is a research project of HKRITA funded by Innovation and Technology Fund (ITF) with title “Development of an Automatic Measuring System for Vertical Wicking” (ITP/055/20TP). Author would like to thank the financial support by ITF. Any opinions, findings, conclusions or recommendations expressed in this material/event (or by members of the project team) do not reflect the views of the Government of the Hong Kong Special Administrative Region, the Innovation and Technology Commission or the Panel of Assessors for the Innovation and Technology Support Programme of the Innovation and Technology Fund and the Hong Kong Research Institute of Textiles and Apparel. Also, we would like to thank the support and sponsorship from Lai Tak Enterprises Limited, Kingis Development Limited and Wing Yue Textile Company Limited.

Keywords: AATCC method, comfort, textile measurement, wetness sensation

Procedia PDF Downloads 98
344 Habitat Preference of Lepidoptera (Butterflies), Using Geospatial Analysis in Diyasaru Wetland Park, Western Province, Sri Lanka

Authors: Hiripurage Mallika Sandamali Dissanayaka

Abstract:

Butterflies are found everywhere on Earth, helping flowering plants reproduce through pollination. Wetlands perform many valuable functions such as providing wildlife habitat. Diyasaru Wetland Park was chosen as the study site. It is located in a highly urbanized area of Sri Jayawardenepura Kotte, Sri Lanka. A distribution map was prepared to increase butterfly habitat in the urbanized area, and research was conducted to determine the most suitable sections for using it. As this wetland has footpaths for walking, line transect surveys were used to mark species within the sampling area, and directly observed species were recorded. All data collection was done from 0900 to 1200 hours and 1300 to 1600 hours and fieldwork was done from 11 February 2020 to 20 January 2021. ED binoculars (10.5x45), DSLR cameras (Canon EOS/EFS5 mm 3.5-5.6), and Garmin GPS (Etrex 10) were used to observe butterfly species, identify locations, and take photographs as evidence. Analyzing their habitats using GIS (ArcGIS Pro) to identify their distribution within the park premises, the distribution density of the known size of the population was calculated for each point by kernel density, and local similarity values were calculated for each pair of corresponding features through hotspot analysis, and cell values were determined by inverse distance weighting (IDW) using a linearly weighted combination of a set of sample points. According to the maps prepared to predict the distribution of butterflies in this park, the high level of distribution or favorable areas were near flower gardens and meadows, but some individual species prefer habitats that are more suitable for their life activities, so they live in other areas. Sixty-six (66) species belonging to six (6) families have been recorded in the premises. Sixty (60) species of least concern (LC), two (2) near threatened (NT), and four (4) vulnerable (VU) species have been recorded, and several new species, such as Plum Judy (Abisara echerius), were reported. The outcome of the study will form the basis for decision-making by the Sri Lanka Land Development (SLLD) Corporation for the future development and maintenance of the park.

Keywords: wetland, Lepidoptera, habitat, urban, west

Procedia PDF Downloads 48
343 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 49
342 Non-Linear Finite Element Investigation on the Behavior of CFRP Strengthened Steel Square HSS Columns under Eccentric Loading

Authors: Tasnuba Binte Jamal, Khan Mahmud Amanat

Abstract:

Carbon Fiber-Reinforced Polymer (CFRP) composite materials have proven to have valuable properties and suitability to be used in the construction of new buildings and in upgrading the existing ones due to its effectiveness, ease of implementation and many more. In the present study, a numerical finite element investigation has been conducted using ANSYS 18.1 to study the behavior of square HSS AISC sections under eccentric compressive loading strengthened with CFRP materials. A three-dimensional finite element model for square HSS section using shell element was developed. Application of CFRP strengthening was incorporated in the finite element model by adding an additional layer of shell elements. Both material and geometric nonlinearities were incorporated in the model. The developed finite element model was applied to simulate experimental studies done by past researchers and it was found that good agreement exists between the current analysis and past experimental results, which established the acceptability and validity of the developed finite element model to carry out further investigation. Study was then focused on some selected non-compact AISC square HSS columns and the effects of number of CFRP layers, amount of eccentricities and cross-sectional geometry on the strength gain of those columns were observed. Load was applied at a distance equal to the column dimension and twice that of column dimension. It was observed that CFRP strengthening is comparatively effective for smaller eccentricities. For medium sized sections, strengthening tends to be effective at smaller eccentricities as well. For relatively large AISC square HSS columns, with increasing number of CFRP layers (from 1 to 3 layers) the gain in strength is approximately 1 to 38% to that of unstrengthened section for smaller eccentricities and slenderness ratio ranging from 27 to 54. For medium sized square HSS sections, effectiveness of CFRP strengthening increases approximately by about 12 to 162%. The findings of the present study provide a better understanding of the behavior of HSS sections strengthened with CFRP subjected to eccentric compressive load.

Keywords: CFRP strengthening, eccentricity, finite element model, square hollow section

Procedia PDF Downloads 142
341 Development of a Wound Dressing Material Based on Microbial Polyhydroxybutyrate Electrospun Microfibers Containing Curcumin

Authors: Ariel Vilchez, Francisca Acevedo, Rodrigo Navia

Abstract:

The wound healing process can be accelerated and improved by the action of antioxidants such as curcumin (Cur) over the tissues; however, the efficacy of curcumin used through the digestive system is not enough to exploit its benefits. Electrospinning presents an alternative to carry curcumin directly to the wounds, and polyhydroxybutyrate (PHB) is proposed as the matrix to load curcumin owing to its biodegradable and biocompatible properties. PHB is among 150 types of Polyhydroxyalkanoates (PHAs) identified, it is a natural thermoplastic polyester produced by microbial fermentation obtained from microorganisms. The proposed objective is to develop electrospun bacterial PHB-based microfibers containing curcumin for possible biomedical applications. Commercial PHB was solved in Chloroform: Dimethylformamide (4:1) to a final concentration of 7% m/V. Curcumin was added to the polymeric solution at 1%, and 7% m/m regarding PHB. The electrospinning equipment (NEU-BM, China) with a rotary collector was used to obtain Cur-PHB fibers at different voltages and flow rate of the polymeric solution considering a distance of 20 cm from the needle to the collector. Scanning electron microscopy (SEM) was used to determine the diameter and morphology of the obtained fibers. Thermal stability was obtained from Thermogravimetric (TGA) analysis, and Fourier Transform Infrared Spectroscopy (FT-IR) was carried out in order to study the chemical bonds and interactions. A preliminary curcumin release to Phosphate Buffer Saline (PBS) pH = 7.4 was obtained in vitro and measured by spectrophotometry. PHB fibers presented an intact chemical composition regarding the original condition (dust) according to FTIR spectra, the diameter fluctuates between 0.761 ± 0.123 and 2.157 ± 0.882 μm, with different qualities according to their morphology. The best fibers in terms of quality and diameter resulted in sample 2 and sample 6, obtained at 0-10kV and 0.5 mL/hr, and 0-10kV and 1.5 mL/hr, respectively. The melting temperature resulted near 178 °C, according to the bibliography. The crystallinity of fibers decreases while curcumin concentration increases for the studied interval. The curcumin release reaches near 14% at 37 °C at 54h in PBS adjusted to a quasi-Fickian Diffusion. We conclude that it is possible to load curcumin in PHB to obtain continuous, homogeneous, and solvent-free microfibers by electrospinning. Between 0% and 7% of curcumin, the crystallinity of fibers decreases as the concentration of curcumin increases. Thus, curcumin enhances the flexibility of the obtained material. HPLC should be used in further analysis of curcumin release.

Keywords: antioxidant, curcumin, polyhydroxybutyrate, wound healing

Procedia PDF Downloads 130
340 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 90
339 Welcome to 'Almanya': Effects of Displacement among Refugee Women

Authors: Carmen Nechita

Abstract:

This research explores the world of Syrian refugee women living in Dresden and their efforts to reconstruct their lives in the state of Saxony in Germany. The focus is on the initial period of adjustment and understanding how refugee women use culture, family ties, and tradition to contest and rebuild new relationships with the host country. Faced with a new status as “the refugee”, women have to re-imagine their ethno-cultural identity in order to cope with life in Diaspora. In order to understand the coping mechanism and the displacement effects on Syrian women, interviews with twelve refugee women were conducted. Traumatic experiences of loss and oppression are at the core of their confessions. While gender violence, abuse and patriarchal framework shape their narratives, this research argues that there is a need to look at this from a cultural perspective and try to distance ourselves from the western paradigm. The way Syrian women refute and rebuild their national and ethno-cultural identity in order to negotiate for themselves new space within German borders is explored. Two discourses are bridged: one of multiculturalism and one of tradition in order to explain how Syrian women experience western notions of family, womanhood and spousal dynamics. The process is painful, traumatic and marked by feelings of low self-worth, but in the end, new codes emerge and these women come out more empowered. The paper includes the migration experience and explores the ways in which Syrian refugee women tend to tell their complex stories, and how they reconstruct their identity in a new territory while faced with a different culture that discriminates against them. During the research, four distinct phases in the acculturation period were identified: “the survival”, “the honeymoon period”, “the isolation period” and “the anger period”. Each phase is analyzed in order to understand what triggers them, how women migrate from one phase to another and what can be done to make the process easier. This paper contributes to the field of refugee studies by offering a thorough understanding of the initial phases of the acculturation process in the case of Syrian refugee women. The study examines the fleeing and settlement experience in order to understand the complex ways that refugee women cope with the traumatic experience of settlement in another country and in a different culture. *Almanya: The Arabic word for Germany.

Keywords: displacement, migration, refugee women, Syria

Procedia PDF Downloads 250
338 Determination of Genotypic Relationship among 12 Sugarcane (Saccharum officinarum) Varieties

Authors: Faith Eweluegim Enahoro-Ofagbe, Alika Eke Joseph

Abstract:

Information on genetic variation within a population is crucial for utilizing heterozygosity for breeding programs that aim to improve crop species. The study was conducted to ascertain the genotypic similarities among twelve sugarcane (Saccharum officinarum) varieties to group them for purposes of hybridizations for cane yield improvement. The experiment was conducted at the University of Benin, Faculty of Agriculture Teaching and Research Farm, Benin City. Twelve sugarcane varieties obtained from National Cereals Research Institute, Badeggi, Niger State, Nigeria, were planted in three replications in a randomized complete block design. Each variety was planted on a five-row plot of 5.0 m in length. Data were collected on 12 agronomic traits, including; the number of millable cane, cane girth, internode length, number of male and female flowers (fuss), days to flag leaf, days to flowering, brix%, cane yield, and others. There were significant differences, according to the findings among the twelve genotypes for the number of days to flag leaf, number of male and female flowers (fuss), and cane yield. The relationship between the twelve sugarcane varieties was expressed using hierarchical cluster analysis. The twelve genotypes were grouped into three major clusters based on hierarchical classification. Cluster I had five genotypes, cluster II had four, and cluster III had three. Cluster III was dominated by varieties characterized by higher cane yield, number of leaves, internode length, brix%, number of millable stalks, stalk/stool, cane girth, and cane length. Cluster II contained genotypes with early maturity characteristics, such as early flowering, early flag leaf development, growth rate, and the number of female and male flowers (fuss). The maximum inter-cluster distance between clusters III and I indicated higher genetic diversity between the two groups. Hybridization between the two groups could result in transgressive recombinants for agronomically important traits.

Keywords: sugarcane, Saccharum officinarum, genotype, cluster analysis, principal components analysis

Procedia PDF Downloads 80
337 Alteration Quartz-Kfeldspar-Apatite-Molybdenite at B Anomaly Prospection with Artificial Neural Network to Determining Molydenite Economic Deposits in Malala District, Western Sulawesi

Authors: Ahmad Lutfi, Nikolas Dhega

Abstract:

The Malala deposit in northwest Sulawesi is the only known porphyry molybdenum and the only source for rhenium, occurrence in Indonesia. The neural network method produces results that correspond very closely to those of the knowledge-based fuzzy logic method and weights of evidence method. This method required data of solid geology, regional faults, airborne magnetic, gamma-ray survey data and GIS data. This interpretation of the network output fits with the intuitive notion that a prospective area has characteristics that closely resemble areas known to contain mineral deposits. Contrasts with the weights of evidence and fuzzy logic methods, where, for a given grid location, each input-parameter value automatically results in an increase in the prospective estimated. Malala District indicated molybdenum anomalies in stream sediments from in excess of 15 km2 were obtained, including the Takudan Fault as most prominent structure with striking 40̊ to 60̊ over a distance of about 30 km and in most places weakly at anomaly B, developed over an area of 4 km2, with a ‘shell’ up to 50 m thick at the intrusive contact with minor mineralization occurring in the Tinombo Formation. Series of NW trending, steeply dipping fracture zones, named the East Zone has an estimated resource of 100 Mt at 0.14% MoS2 and minimum target of 150 Mt 0.25%. The Malala porphyries occur as stocks and dykes with predominantly granitic, with fluorine-poor class of molybdenum deposits and belongs to the plutonic sub-type. Unidirectional solidification textures consisting of subparallel, crenulated layers of quartz that area separated by layers of intrusive material textures. The deuteric nature of the molybdenum mineralization and the dominance of carbonate alteration.The nature of the Stage I with alteration barren quartz K‐feldspar; and Stage II with alteration quartz‐K‐feldspar‐apatite-molybdenite veins combined with the presence of disseminated molybdenite with primary biotite in the host intrusive.

Keywords: molybdenite, Malala, porphyries, anomaly B

Procedia PDF Downloads 152
336 Synthesis of Deformed Nuclei 260Rf, 261Rf and 262Rf in the Decay of 266Rf*Formed via Different Fusion Reactions: Entrance Channel Effects

Authors: Niyti, Aman Deep, Rajesh Kharab, Sahila Chopra, Raj. K. Gupta

Abstract:

Relatively long-lived transactinide elements (i.e., elements with atomic number Z≥104) up to Z = 108 have been produced in nuclear reactions between low Z projectiles (C to Al) and actinide targets. Cross sections have been observed to decrease steeply with increasing Z. Recently, production cross sections of several picobarns have been reported for comparatively neutron-rich nuclides of 112 through 118 produced via hot fusion reactions with 48Ca and actinide targets. Some of those heavy nuclides are reported to have lifetimes on the order of seconds or longer. The relatively high cross sections in these hot fusion reactions are not fully understood and this has renewed interest in systematic studies of heavy-ion reactions with actinide targets. The main aim of this work is to understand the dynamics hot fusion reactions 18O+ 248Cm and 22Ne+244Pu (carried out at RIKEN and TASCA respectively) using the collective clusterization technique, carried out by undertaking the decay of the compound nucleus 266Rf∗ into 4n, 5n and 6n neutron evaporation channels. Here we extend our earlier study of the excitation functions (EFs) of 266Rf∗, formed in fusion reaction 18O+248Cm, based on Dynamical Cluster-decay Model (DCM) using the pocket formula for nuclear proximity potential, to the use of other nuclear interaction potentials derived from Skyrme energy density formalism (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach and also study entrance channel effects by considering the synthesis of 266Rf* in 22Ne+244Pu reaction. The Skyrme forces used are the old force SIII, and new forces GSkI and KDE0(v1). Here, the EFs for the production of 260Rf, 261Rf and 262Rf isotope via 6n, 5n and 4n decay channel from the 266Rf∗ compound nucleus are studied at Elab = 88.2 to 125 MeV, including quadrupole deformations β2i and ‘hot-optimum’ orientations θi. The calculations are made within the DCM where the neck-length ∆R is the only parameter representing the relative separation distance between two fragments and/or clusters Ai which assimilates the neck formation effects.

Keywords: entrance channel effects, fusion reactions, skyrme force, superheavy nucleus

Procedia PDF Downloads 252