Search results for: soil erosion control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13583

Search results for: soil erosion control

11693 Effect of Two Different Biochars on Germination and Seedlings Growth of Salad, Cress and Barley

Authors: L. Bouqbis, H.W. Koyro, M. C. Harrouni, S. Daoud, L. F. Z. Ainlhout, C. I. Kammann

Abstract:

The application of biochar to soils is becoming more and more common. Its application which is generally reported to improve the physical, chemical, and biological properties of soils, has an indirect effect on soil health and increased crop yields. However, many of the previous results are highly variable and dependent mainly on the initial soil properties, biochar characteristics, and production conditions. In this study, two biochars which are biochar II (BC II) derived from a blend of paper sludge and wheat husks and biochar 005 (BC 005) derived from sewage sludge with a KCl additive, are used, and the physical and chemical properties of BC II are characterized. To determine the potential impact of salt stress and toxic and volatile substances, the second part of this study focused on the effect biochars have on germination of salad (Lactuca sativa L.), barley (Hordeum vulgare), and cress (Lepidium sativum) respectively. Our results indicate that Biochar II showed some unique properties compared to the soil, such as high EC, high content of K, Na, Mg, and low content of heavy metals. Concerning salad and barley germination test, no negative effect of BC II and BC 005 was observed. However, a negative effect of BC 005 at 8% level was revealed. The test of the effect of volatile substances on germination of cress revealed a positive effect of BC II, while a negative effect was observed for BC 005. Moreover, the water holding capacities of biochar-sand mixtures increased with increasing biochar application. Collectively, BC II could be safely used for agriculture and could provide the potential for a better plant growth.

Keywords: biochar, phytotoxic tests, seedlings growth, water holding capacity

Procedia PDF Downloads 252
11692 The Effect of Spatial Variability on Axial Pile Design of Closed Ended Piles in Sand

Authors: Cormac Reale, Luke J. Prendergast, Kenneth Gavin

Abstract:

While significant improvements have been made in axial pile design methods over recent years, the influence of soils natural variability has not been adequately accounted for within them. Soil variability is a crucial parameter to consider as it can account for large variations in pile capacity across the same site. This paper seeks to address this knowledge deficit, by demonstrating how soil spatial variability can be accommodated into existing cone penetration test (CPT) based pile design methods, in the form of layered non-homogeneous random fields. These random fields model the scope of a given property’s variance and define how it varies spatially. A Monte Carlo analysis of the pile will be performed taking into account parameter uncertainty and spatial variability, described using the measured scales of fluctuation. The results will be discussed in light of Eurocode 7 and the effect of spatial averaging on design capacities will be analysed.

Keywords: pile axial design, reliability, spatial variability, CPT

Procedia PDF Downloads 246
11691 Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms

Authors: Seulki Lee, Seoung Bum Kim

Abstract:

Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing.

Keywords: multivariate control chart, nonparametric method, support vector data description, time-varying process

Procedia PDF Downloads 299
11690 Navigating Uncertainties in Project Control: A Predictive Tracking Framework

Authors: Byung Cheol Kim

Abstract:

This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.

Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference

Procedia PDF Downloads 19
11689 Soil Parameters Identification around PMT Test by Inverse Analysis

Authors: I. Toumi, Y. Abed, A. Bouafia

Abstract:

This paper presents a methodology for identifying the cohesive soil parameters that takes into account different constitutive equations. The procedure, applied to identify the parameters of generalized Prager model associated to the Drucker & Prager failure criterion from a pressuremeter expansion curve, is based on an inverse analysis approach, which consists of minimizing the function representing the difference between the experimental curve and the simulated curve using a simplex algorithm. The model response on pressuremeter path and its identification from experimental data lead to the determination of the friction angle, the cohesion and the Young modulus. Some parameters effects on the simulated curves and stresses path around pressuremeter probe are presented. Comparisons between the parameters determined with the proposed method and those obtained by other means are also presented.

Keywords: cohesive soils, cavity expansion, pressuremeter test, finite element method, optimization procedure, simplex algorithm

Procedia PDF Downloads 294
11688 Assessment of Nurse's Knowledge Toward Infection Control for Wound Care in Governmental Hospital at Amran City-Yemen

Authors: Fares Mahdi

Abstract:

Background: Infection control is an important concern for all health care professionals, especially nurses. Nurses have a higher risk for both self-acquiring and transmitting infections to other patients. Aim of this study: to assess nurses' knowledge regarding infection control for wound care. Methodology: a descriptive research design was used in the study. The total number studied sample was 200 nurses, were conducting in Amran Public Hospitals in Amran City- Yemen. The study covered sample nurses in the hospital according to the study population; a standard closed-ended questionnaire was used to collect the data. Results: The results showed less than half (37.5 %) of nurses were from 22 May Hospital, also followed by (62.5%) of them were from Maternal and Child Hospital. Also according to the department name. Most (22.5%) of nurses worked in an intensive care unit, followed by (20%) of them were working in the pediatric world, also about (19%) of them were working in the surgical department. While in finally, only about (8.5%) of them worked from another department. According to course training, The results showed about (21%) of nurses had course training in wound care management. At the same time, others (79%) of them have not had course training in wound care management. According to the total nurse's knowledge of infection control for wound care, that find more than two-thirds (68%) of nurses had fair knowledge according to total all of nurse's knowledge of infection control wound care. Conclusion:The results showed that more than two-thirds (68%) of nurses had fair knowledge according to total all of the nurse's knowledge of infection control for wound care. Recommendations: There should be providing training program about infection control masseurs and it's important for new employees of nurses. Providing continuing refreshment training courses about infection control programs and about evidence-based practice in infection control for all health care teams.

Keywords: assessment, knowledge, infection control, wound care, nurses, amran hospitals

Procedia PDF Downloads 95
11687 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone

Authors: Xinhuang Wu, Yousef Sardahi

Abstract:

A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.

Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones

Procedia PDF Downloads 73
11686 Design of Control System Based On PLC and Kingview for Granulation Product Line

Authors: Mei-Feng, Yude-Fan, Min-Zhu

Abstract:

Based on PLC and kingview, this paper proposed a method that designed a set of the automatic control system according to the craft flow and demands for granulation product line. There were the main station and subordinate stations in PLC which were communicated by PROFIBUS network. PLC and computer were communicated by Ethernet network. The conversation function between human and machine was realized by kingview software, including actual time craft flows, historic report curves and product report forms. The construction of the control system, hardware collocation and software design were introduced. Besides these, PROFIBUS network frequency conversion control, the difficult points and configuration software design were elaborated. The running results showed that there were several advantages in the control system. They were high automatic degree, perfect function, perfect steady and convenient operation.

Keywords: PLC, PROFIBUS, configuration, frequency

Procedia PDF Downloads 402
11685 Effect of Climate Change on Groundwater Recharge in a Sub-Humid Sub-Tropical Region of Eastern India

Authors: Suraj Jena, Rabindra Kumar Panda

Abstract:

The study region of the reported study was in Eastern India, having a sub-humid sub-tropical climate and sandy loam soil. The rainfall in this region has wide temporal and spatial variation. Due to lack of adequate surface water to meet the irrigation and household demands, groundwater is being over exploited in that region leading to continuous depletion of groundwater level. Therefore, there is an obvious urgency in reversing the depleting groundwater level through induced recharge, which becomes more critical under the climate change scenarios. The major goal of the reported study was to investigate the effects of climate change on groundwater recharge and subsequent adaptation strategies. Groundwater recharge was modelled using HELP3, a quasi-two-dimensional, deterministic, water-routing model along with global climate models (GCMs) and three global warming scenarios, to examine the changes in groundwater recharge rates for a 2030 climate under a variety of soil and vegetation covers. The relationship between the changing mean annual recharge and mean annual rainfall was evaluated for every combination of soil and vegetation using sensitivity analysis. The relationship was found to be statistically significant (p<0.05) with a coefficient of determination of 0.81. Vegetation dynamics and water-use affected by the increase in potential evapotranspiration for large climate variability scenario led to significant decrease in recharge from 49–658 mm to 18–179 mm respectively. Therefore, appropriate conjunctive use, irrigation schedule and enhanced recharge practices under the climate variability and land use/land cover change scenarios impacting the groundwater recharge needs to be understood properly for groundwater sustainability.

Keywords: Groundwater recharge, climate variability, Land use/cover, GCM

Procedia PDF Downloads 283
11684 Waste Recovery: A Sustainable Way for Application of Solid Waste from WTP's in Building Materials

Authors: Flavio Araujo, Livia Dias, Fabiolla Lima, Paulo Scalize, Antonio Albuquerque

Abstract:

Water treatment residues (WTR) are solid waste produced during drinking water treatment and have recently been seen as a reusable material. The aim of this research was show how to use the residue generated in a Water Treatment Plant, located in Goiania, Brazil, following the considerations of the law of solid waste to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.

Keywords: residue, sustainable, water treatment plants, WTR, WTP

Procedia PDF Downloads 494
11683 Agriculture Yield Prediction Using Predictive Analytic Techniques

Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee

Abstract:

India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.

Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models

Procedia PDF Downloads 315
11682 The Use of the TRIGRS Model and Geophysics Methodologies to Identify Landslides Susceptible Areas: Case Study of Campos do Jordao-SP, Brazil

Authors: Tehrrie Konig, Cassiano Bortolozo, Daniel Metodiev, Rodolfo Mendes, Marcio Andrade, Marcio Moraes

Abstract:

Gravitational mass movements are recurrent events in Brazil, usually triggered by intense rainfall. When these events occur in urban areas, they end up becoming disasters due to the economic damage, social impact, and loss of human life. To identify the landslide-susceptible areas, it is important to know the geotechnical parameters of the soil, such as cohesion, internal friction angle, unit weight, hydraulic conductivity, and hydraulic diffusivity. The measurement of these parameters is made by collecting soil samples to analyze in the laboratory and by using geophysical methodologies, such as Vertical Electrical Survey (VES). The geophysical surveys analyze the soil properties with minimal impact in its initial structure. Statistical analysis and mathematical models of physical basis are used to model and calculate the Factor of Safety for steep slope areas. In general, such mathematical models work from the combination of slope stability models and hydrological models. One example is the mathematical model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope- Stability Model) which calculates the variation of the Factor of Safety of a determined study area. The model relies on changes in pore-pressure and soil moisture during a rainfall event. TRIGRS was written in the Fortran programming language and associates the hydrological model, which is based on the Richards Equation, with the stability model based on the principle of equilibrium limit. Therefore, the aims of this work are modeling the slope stability of Campos do Jordão with TRIGRS, using geotechnical and geophysical methodologies to acquire the soil properties. The study area is located at southern-east of Sao Paulo State in the Mantiqueira Mountains and has a historic landslide register. During the fieldwork, soil samples were collected, and the VES method applied. These procedures provide the soil properties, which were used as input data in the TRIGRS model. The hydrological data (infiltration rate and initial water table height) and rainfall duration and intensity, were acquired from the eight rain gauges installed by Cemaden in the study area. A very high spatial resolution digital terrain model was used to identify the slopes declivity. The analyzed period is from March 6th to March 8th of 2017. As results, the TRIGRS model calculates the variation of the Factor of Safety within a 72-hour period in which two heavy rainfall events stroke the area and six landslides were registered. After each rainfall, the Factor of Safety declined, as expected. The landslides happened in areas identified by the model with low values of Factor of Safety, proving its efficiency on the identification of landslides susceptible areas. This study presents a critical threshold for landslides, in which an accumulated rainfall higher than 80mm/m² in 72 hours might trigger landslides in urban and natural slopes. The geotechnical and geophysics methods are shown to be very useful to identify the soil properties and provide the geological characteristics of the area. Therefore, the combine geotechnical and geophysical methods for soil characterization and the modeling of landslides susceptible areas with TRIGRS are useful for urban planning. Furthermore, early warning systems can be developed by combining the TRIGRS model and weather forecast, to prevent disasters in urban slopes.

Keywords: landslides, susceptibility, TRIGRS, vertical electrical survey

Procedia PDF Downloads 173
11681 Evaluating of Chemical Extractants for Assessment of Bioavailable Heavy Metals in Polluted Soils

Authors: Violina Angelova, Krasimir Ivanov, Stefan Krustev, Dimitar Dimitrov

Abstract:

Availability of a metal is characterised by its quantity transgressing from soil into different extractants or by its content in plants. In literature, the terms 'available forms of compounds' and 'mobile' are often considered as equivalents of the term 'accessible' to plants. Rapid and a sufficiently reliable method for defining the accessible for plants forms turns out to be their extraction through different extractants, imitating the functioning of the root system. As a criterion for the pertinence of the extractant to this purpose usually serves the significant statistic correlation between the extracted quantities of the element from soil and its content in plants. The aim of this work was to evaluate the effectiveness of various extractions (DTPA-TEA, AB-DTPA, Mehlich 3, 0.01 M CaCl₂, 1M NH₄NO₃) for the determination of bioavailability of heavy metals in industrially polluted soils from the metallurgical activity near Plovdiv and Kardjali, Bulgaria. Quantity measurements for contents of heavy metals were performed with ICP-OES. The results showed that extraction capacity was as follows: Mehlich 3>ABDTPA>DTPA-TEA>CaCl₂>NaNO₃. The content of the mobile form of heavy metals depends on the nature of metal ion, the nature of extractant and pH. The obtained results show that CaCl₂ extracts a greater quantity of mobile forms of heavy metals than NH₄NO₃. DTPA-TEA and AB-DTPA are capable of extracting from the soil not only the heavy metals participating in the exchange processes but also the heavy metals bound in carbonates and organic complexes, as well as bound and occluded in oxide and secondary clay minerals. AB-DTPA extracts a bit more heavy metals than DTPA-TEA. The darker color of the solutions obtained with AB-DTPA indicates that considerable quantities organic matter are being destructed. A comparison of the mobile forms of heavy metals extracted from clean and highly polluted soils has revealed that in the polluted soils the greater portion of heavy metals exists in a mobile form. High correlation coefficients are obtained between the metals extracted with different extractants and their total content in soil (r=0.9). A positive correlation between the pH, soil organic matter and the extracted quantities of heavy metals has been found. The results of correlation analysis revealed that the heavy metals extracted by DTPA-TEA, AB-DTPA, Mehlich 3, CaCl₂ and NaNO₃ correlated significantly with plant uptake. Significant correlation was found between DTPA-TEA, AB-DTPA, and CaCl₂ with heavy metals concentration in plants. Application of extracting methods contains chelating agents would be recommended in the future research onthe availabilityof heavy metals in polluted soils.

Keywords: availability, chemical extractants, heavy metals, mobile forms

Procedia PDF Downloads 356
11680 Potential of Pyrolytic Tire Char Use in Agriculture

Authors: M. L. Moyo

Abstract:

Concerns about climate change, food productivity, and the ever-increasing cost of commercial fertilizer products is forcing have spurred interest in the production of alternatives or substitutes for commercial fertilizer products. In this study, the potential of pyrolytic tire char (PT-char) to improve soil productivity was investigated. The use of carbonized biomass, which is commonly termed biochar or biofertilizer and exhibits similar properties to PT-char in agriculture is not new, with historical evidence pointing to the use of charcoal for soil improvement by indigenous Amazon people for several centuries. Due to minimal market value or use of PT-char, huge quantities are currently stockpiled in South Africa. This successively reduces revenue and decreases investments in waste tire recycling efforts as PT-char constitutes 40 % weight of the total waste tire pyrolysis products. The physicochemical analysis results reported in this study showed that PT-char contains a low concentration of essential plant elements (P and K) and, therefore, cannot be used for increasing nutrient availability in soils. A low presence of heavy metals (Ni, Pb, and Cd), which may be harmful to the environment at high application rates was also observed. In addition, the results revealed that PT-char contains very high levels of Zn, a widely known phytotoxicity causing agents in plants. However, the study also illustrated that PT-char is made up of a highly aromatic and condensed carbon structure. PT-char is therefore highly stable, less prone to microbial degradation, and has a low chemical reactivity in soils. Considering these characteristics, PT-char meets the requirements for use as a carbon sequestration agent, which may be useful in mitigating climate change.

Keywords: agriculture, carbon sequestration, physicochemical analysis, pyrolytic tire char, soil amendment.

Procedia PDF Downloads 122
11679 Control of an Asymmetrical Design of a Pneumatically Actuated Ambidextrous Robot Hand

Authors: Emre Akyürek, Anthony Huynh, Tatiana Kalganova

Abstract:

The Ambidextrous Robot Hand is a robotic device with the purpose to mimic either the gestures of a right or a left hand. The symmetrical behavior of its fingers allows them to bend in one way or another keeping a compliant and anthropomorphic shape. However, in addition to gestures they can reproduce on both sides, an asymmetrical mechanical design with a three tendons routing has been engineered to reduce the number of actuators. As a consequence, control algorithms must be adapted to drive efficiently the ambidextrous fingers from one position to another and to include grasping features. These movements are controlled by pneumatic muscles, which are nonlinear actuators. As their elasticity constantly varies when they are under actuation, the length of pneumatic muscles and the force they provide may differ for a same value of pressurized air. The control algorithms introduced in this paper take both the fingers asymmetrical design and the pneumatic muscles nonlinearity into account to permit an accurate control of the Ambidextrous Robot Hand. The finger motion is achieved by combining a classic PID controller with a phase plane switching control that turns the gain constants into dynamic values. The grasping ability is made possible because of a sliding mode control that makes the fingers adapt to the shape of an object before strengthening their positions.

Keywords: ambidextrous hand, intelligent algorithms, nonlinear actuators, pneumatic muscles, robotics, sliding control

Procedia PDF Downloads 296
11678 An Attribute Based Access Control Model with POL Module for Dynamically Granting and Revoking Authorizations

Authors: Gang Liu, Huimin Song, Can Wang, Runnan Zhang, Lu Fang

Abstract:

Currently, resource sharing and system security are critical issues. This paper proposes a POL module composed of PRIV ILEGE attribute (PA), obligation and log which improves attribute based access control (ABAC) model in dynamically granting authorizations and revoking authorizations. The following describes the new model termed PABAC in terms of the POL module structure, attribute definitions, policy formulation and authorization architecture, which demonstrate the advantages of it. The POL module addresses the problems which are not predicted before and not described by access control policy. It can be one of the subject attributes or resource attributes according to the practical application, which enhances the flexibility of the model compared with ABAC. A scenario that illustrates how this model is applied to the real world is provided.

Keywords: access control, attribute based access control, granting authorizations, privilege, revoking authorizations, system security

Procedia PDF Downloads 359
11677 Fuzzy Logic for Control and Automatic Operation of Natural Ventilation in Buildings

Authors: Ekpeti Bukola Grace, Mahmoudi Sabar Esmail, Chaer Issa

Abstract:

Global energy consumption has been increasing steadily over the last half - century, and this trend is projected to continue. As energy demand rises in many countries throughout the world due to population growth, natural ventilation in buildings has been identified as a viable option for lowering these demands, saving costs, and also lowering CO2 emissions. However, natural ventilation is driven by forces that are generally unpredictable in nature thus, it is important to manage the resulting airflow in order to maintain pleasant indoor conditions, making it a complex system that necessitates specific control approaches. The effective application of fuzzy logic technique amidst other intelligent systems is one of the best ways to bridge this gap, as its control dynamics relates more to human reasoning and linguistic descriptions. This article reviewed existing literature and presented practical solutions by applying fuzzy logic control with optimized techniques, selected input parameters, and expert rules to design a more effective control system. The control monitors used indoor temperature, outdoor temperature, carbon-dioxide levels, wind velocity, and rain as input variables to the system, while the output variable remains the control of window opening. This is achieved through the use of fuzzy logic control tool box in MATLAB and running simulations on SIMULINK to validate the effectiveness of the proposed system. Comparison analysis model via simulation is carried out, and with the data obtained, an improvement in control actions and energy savings was recorded.

Keywords: fuzzy logic, intelligent control systems, natural ventilation, optimization

Procedia PDF Downloads 130
11676 The Effect of Salinity on Symbiotic Nitrogen Fixation in Alfalfa and Faba Bean

Authors: Mouffok Ahlem, Belhamra Mohamed, Mouffok Sihem

Abstract:

The use of nitrogen fertilizers inevitable consequence, the increase in the nitrate content of water, which may contribute to the production of nitrite and the formation of carcinogenic nitrosamines. The nitrogen fertilizer may also affect the structure and function of the microbial community. And the fight against eutrophication of aquatic environments represents a cost to the student statements. The agronomic, ecological and economic legumes such as faba beans and alfalfa are not demonstrated, especially in the case of semi-arid and arid areas. Osmotic stress due to drought and / or salinity deficit, nutritional deficiencies is the major factors limiting symbiotic nitrogen fixation and productivity of pulses. To study the symbiotic nitrogen fixation in faba bean (Vicia faba L.) and alfalfa (Medicago sativa L.) in the region of Biskra, we used soil samples collected from 30 locations. This work has identified several issues of ecological and agronomic interest. Evaluation of symbiotic potential of soils in the region of Biskra; by trapping technique, show different levels of susceptibility to rhizobial microflora. The effectiveness of the rhizobial symbiosis in both legumes indicates that air dry biomass and the amount of nitrogen accumulated in the aerial part, depends mainly on the rate of nodulation and regardless of the species and locality. The correlation between symbiotic nitrogen fixation and some physico-chemical properties of soils shows that symbiotic nitrogen fixation in both legumes is strongly related to soil conditions of the soil. Salinity disrupts the physiological process of growth, development and more particularly that of the symbiotic fixation of atmospheric nitrogen. Against by phosphorus promotes rhizobial symbiosis.

Keywords: rhizobia, faba bean, alfalfa, salinity

Procedia PDF Downloads 460
11675 The Mediator Role of Social Competence in the Relation between Effortful Control and Maths Achievement

Authors: M. A. Fernández-Vilar, M. D. Galián, E. Ato

Abstract:

The aim of this work was to analyze the relation between children´s effortful control and Maths achievement in a sample of 447 Spanish children aged between 6 and 8 years. Traditionally, the literature confirms that higher level of effortful control has been associated with higher academic achievement, but there are few studies that include the effect that children´s social competence exert to this relation. To measure children’s effortful control parents were given the TMCQ (Temperament in Middle Childhood Questionnaire), and Maths achievement was taken from teacher´s rates. To measure social competence, we used the nominations method in the classroom context. Results confirmed that higher effortful control predicted a better maths achievement, whereas lower effortful control scores predicted lower Maths scores. Using a statistical modeling approach, we tested a mediation model that revealed the mediating role of social competence (popularity and rejection) in the relation between effortful control and Maths achievement. Concretely, higher social competence (higher popularity and lower rejection) seems to mediate the better Maths achievement showed by better self´regulated children. Therefore, an adequate social competence mediates the positive effect that self-regulatory capacity exerts to academic achievement. The clinical implications of the present findings should be considered. Specifically, rejected children must be detected and evaluated in community settings, such as school or community programs, due the relevant role of social competence in the relation between temperament and academic achievement.

Keywords: effortful control, maths achievement, social competence, mediation

Procedia PDF Downloads 389
11674 Sliding Mode Position Control for Permanent Magnet Synchronous Motors Based on Passivity Approach

Authors: Jenn-Yih Chen, Bean-Yin Lee, Yuan-Chuan Hsu, Jui-Cheng Lin, Kuang-Chyi Lee

Abstract:

In this paper, a sliding mode control method based on the passivity approach is proposed to control the position of surface-mounted permanent magnet synchronous motors (PMSMs). Firstly, the dynamics of a PMSM was proved to be strictly passive. The position controller with an adaptive law was used to estimate the load torque to eliminate the chattering effects associated with the conventional sliding mode controller. The stability analysis of the overall position control system was carried out by adopting the passivity theorem instead of Lyapunov-type arguments. Finally, experimental results were provided to show that the good position tracking can be obtained, and exhibit robustness in the variations of the motor parameters and load torque disturbances.

Keywords: adaptive law, passivity theorem, permanent magnet synchronous motor, sliding mode control

Procedia PDF Downloads 468
11673 UBCSAND Model Calibration for Generic Liquefaction Triggering Curves

Authors: Jui-Ching Chou

Abstract:

Numerical simulation is a popular method used to evaluate the effects of soil liquefaction on a structure or the effectiveness of a mitigation plan. Many constitutive models (UBCSAND model, PM4 model, SANISAND model, etc.) were presented to model the liquefaction phenomenon. In general, inputs of a constitutive model need to be calibrated against the soil cyclic resistance before being applied to the numerical simulation model. Then, simulation results can be compared with results from simplified liquefaction potential assessing methods. In this article, inputs of the UBCSAND model, a simple elastic-plastic stress-strain model, are calibrated against several popular generic liquefaction triggering curves of simplified liquefaction potential assessing methods via FLAC program. Calibrated inputs can provide engineers to perform a preliminary evaluation of an existing structure or a new design project.

Keywords: calibration, liquefaction, numerical simulation, UBCSAND Model

Procedia PDF Downloads 174
11672 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 184
11671 Experimental Study on Shaft Grouting Bearing Capacity of Small Diameter Bored Piles

Authors: Trung Le Thanh

Abstract:

Bored piles are always the optimal solution for high-rise building foundations. They have many advantages, such as large diameter, large pile length and construction in all different geological conditions. However, due to construction characteristics, the load-bearing capacity of bored piles is not optimal because wall friction is reduced due to poor contact between the pile and the surrounding soil. Therefore, grouting technology along the pile body helps improve the load-bearing capacity of bored piles significantly through increasing the skin resistance of the pile and surrounding soil. The improvement of pile skin resistance depends on the parameters of grouting technology, especially grouting volume, mortar viscosity, mortar strength,... and different geological conditions. Studies show that the technology of grouting piles on sandy soil is more effective than on clay. This article presents an experimental model to determine the load-bearing capacity of bored piles with a diameter of 400 mm and a length of 3 m on sand with different slurry volume in Tan Uyen city, Binh Duong province. On that basis, analyze the correlation between the increase in load-bearing capacity of bored piles without and with shaft grouting pile. Research results show that the wall resistance of shaft grouted piles increases 2-3 times compared to piles without grouting, and the pile's load-bearing capacity increases significantly. The article's research provides scientific value for consulting work on the design of bored piles when grouted along the pile body.

Keywords: bored pile, shaft grouting, bearing capacity, pile shaft resistance

Procedia PDF Downloads 65
11670 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances

Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun

Abstract:

In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.

Keywords: hydropower, high order neural network, Kalman filter, optimal control

Procedia PDF Downloads 298
11669 Threshold Sand Detection Limits for Acoustic Monitors in Multiphase Flow

Authors: Vinod Ponnagandla, Brenton McLaury, Siamack Shirazi

Abstract:

Sand production can lead to deposition of particles or erosion. Low production rates resulting in deposition can partially clog systems and cause under deposit corrosion. Commercially available nonintrusive acoustic sand detectors are attractive as they claim to detect sand production. Acoustic sand detectors are used during oil and gas production; however, operators often do not know the threshold detection limits of these devices. It is imperative to know the detection limits to appropriately plan for cleaning of separation equipment or examine risk of erosion. These monitors are based on detecting the acoustic signature of sand as the particles impact the pipe walls. The objective of this work is to determine threshold detection limits for acoustic sand monitors that are commercially available. The minimum threshold sand concentration that can be detected in a pipe are determined as a function of flowing gas and liquid velocities. A large scale flow loop with a 4-inch test section is utilized. Commercially available sand monitors (ClampOn and Roxar) are evaluated for different flow regimes, sand sizes and pipe orientation (vertical and horizontal). The manufacturers’ recommend that the monitors be placed on a bend to maximize the number of particle impacts, so results are shown for monitors placed at 45 and 90 degree positions in a bend. Acoustic sand monitors that clamp to the outside of pipe are passive and listen for solid particle impact noise. The threshold sand rate is calculated by eliminating the background noise created by the flow of gas and liquid in the pipe for various flow regimes that are generated in horizontal and vertical test sections. The average sand sizes examined are 150 and 300 microns. For stratified and bubbly flows the threshold sand rates are much higher than other flow regimes such as slug and annular flow regimes that are investigated. However, the background noise generated by slug flow regime is very high and cause a high uncertainty in detection limits. The threshold sand rates for annular flow and dry gas conditions are the lowest because of high gas velocities. The effects of monitor placement around elbows that are in vertical and horizontal pipes are also examined for 150 micron. The results show that the threshold sand rates that are detected in vertical orientation are generally lower for all various flow regimes that are investigated.

Keywords: acoustic monitor, sand, multiphase flow, threshold

Procedia PDF Downloads 407
11668 Carbon Dioxide (CO₂) and Methane (CH₄) Fluxes from Irrigated Wheat in a Subtropical Floodplain Soil Increased by Reduced Tillage, Residue Retention, and Nitrogen Application Rate

Authors: R. Begum, M. M. R. Jahangir, M. Jahiruddin, M. R. Islam, M. M. Rahman, M. B. Hossain, P. Hossain

Abstract:

Quantifying carbon (C) sequestration in soils is necessary to help better understand the effect of agricultural practices on the C cycle. The estimated contribution of agricultural carbon dioxide (CO₂) and methane (CH₄) to global warming potential (GWP) has a wide range. The underlying causes of this huge uncertainty are the difficulties to predict the regional CO₂ and CH₄ loss due to the lack of experimental evidence on CO₂ and CH₄ emissions and associated drivers. The CH₄ and CO₂ emissions were measured in irrigated wheat in subtropical floodplain soils which have been under two soil disturbance levels (strip vs. conventional tillage; ST vs. CT being both with 30% residue retention) and three N fertilizer rates (60, 100, and 140% of the recommended N fertilizer dose, RD) in annual wheat (Triticum aestivum)-mungbean (Vigna radiata)-rice (Oryza sativa L) for seven consecutive years. The highest CH₄ and CO₂ emission peak was observed on day 3 after urea application in both tillages except CO₂ flux in CT. Nitrogen fertilizer application rate significantly influenced mean and cumulative CH₄ and CO₂ fluxes. The CH₄ and CO₂ fluxes decreased in an optimum dose of N fertilizer except for ST for CH₄. The CO₂ emission significantly showed higher emission at minimum (60% of RD) fertilizer application at both tillages. Soil microbial biomass carbon (MBC), organic carbon (SOC), Particulate organic carbon (POC), permanganate oxidisable carbon (POXC), basal respiration (BR) were significantly higher in ST which were negative and significantly correlated with CO₂. However, POC and POXC were positively and significantly correlated with CH₄ emission.

Keywords: carbon dioxide emissions, methane emission, nitrogen rate, tillage

Procedia PDF Downloads 116
11667 Characterizing Compressive Strength of Compressed Stabilized Earth Blocks as a Function of Mix Design

Authors: Robert K. Hillyard, Jonathan Thomas, Brett A. Story

Abstract:

Compressed Stabilized Earth Blocks (CSEB) are masonry units that combine soil, sand, stabilizer, and water under pressure to form an earth block. These CSEB’s offer a cost-effective building solution for remote construction, using local resources and labor to minimize transportation and material costs. However, CSEB’s, and earthen construction generally have not been widely adopted as standardized construction materials. One shortcoming is the difficulty in standardizing strength values of CSEB units and systems due to the inherent variations in mix design, including production compression. This research presents findings on compressive strengths of full-scale CSEB’s from 60 different mix designs as a function of the amount of cement, sand, soil, and water added to the mixture. The full-scale results are compared with CSEB cylinder cores.

Keywords: CSEB, compressive strength, earth construction, mix design

Procedia PDF Downloads 100
11666 The Effect of Potassium Hydroxide on Fine Soil Treated with Olivine

Authors: Abdelmaoula Mahamoud Tahir, Sedat Sert

Abstract:

The possibility of improving the shear strength of unsaturated clayey soil with the addition of olivine was investigated in this paper. Unconsolidated undrained triaxial tests (UU), under different cell pressures (namely: 100 kPa and 200 kPa), with varying percentages of olivine (10% and 20% by weight) and with one day, 28 days, and 56 days curing times, were performed to determine the shear strength of the soil. The increase in strength was observed as a function of the increase in olivine content. An olivine content of 25% was determined as the optimum value to achieve the targeted improvement for both cure times. A comparative study was also conducted between clay samples treated with only olivine and others in the presence of potassium hydroxide (KOH). Clay samples treated with olivine and activated with potassium hydroxide (KOH) had higher shear strength than non-activated olivine-treated samples. It was determined that the strength of the clay samples treated with only olivine did not increase over time and added resistance only with the high specific gravity of olivine. On the other hand, the samples activated with potassium hydroxide (KOH) added to the resistance with high specific gravity and the chemical bonds of olivine. Morphological and mineralogical analyzes were carried out in this study to see and analyze the chemical bonds formed after the reaction. The main components of this improvement were the formation of magnesium-aluminate-hydrate and magnesium-silicate-hydrate. Compared to older methods such as cement addition, these results show that in stabilizing clayey soils, olivine additive offers an energy-efficient alternative for reducing carbon dioxide emissions.

Keywords: ground stabilization, clay, olivine additive, KOH, microstructure

Procedia PDF Downloads 117
11665 A Comparative Study of Various Control Methods for Rendezvous of a Satellite Couple

Authors: Hasan Basaran, Emre Unal

Abstract:

Formation flying of satellites is a mission that involves a relative position keeping of different satellites in the constellation. In this study, different control algorithms are compared with one another in terms of ΔV, velocity increment, and tracking error. Various control methods, covering continuous and impulsive approaches are implemented and tested for satellites flying in low Earth orbit. Feedback linearization, sliding mode control, and model predictive control are designed and compared with an impulsive feedback law, which is based on mean orbital elements. Feedback linearization and sliding mode control approaches have identical mathematical models that include second order Earth oblateness effects. The model predictive control, on the other hand, does not include any perturbations and assumes circular chief orbit. The comparison is done with 4 different initial errors and achieved with velocity increment, root mean square error, maximum steady state error, and settling time. It was observed that impulsive law consumed the least ΔV, while produced the highest maximum error in the steady state. The continuous control laws, however, consumed higher velocity increments and produced lower amounts of tracking errors. Finally, the inversely proportional relationship between tracking error and velocity increment was established.

Keywords: chief-deputy satellites, feedback linearization, follower-leader satellites, formation flight, fuel consumption, model predictive control, rendezvous, sliding mode

Procedia PDF Downloads 105
11664 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils

Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul

Abstract:

In this study, an application was carried out to determine the Volcanic Soils by using remote sensing.  The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.

Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils

Procedia PDF Downloads 306