Search results for: motor for washing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3909

Search results for: motor for washing machine

2019 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 93
2018 Oil-Oil Correlation Using Polar and Non-Polar Fractions of Crude Oil: A Case Study in Iranian Oil Fields

Authors: Morteza Taherinezhad, Ahmad Reza Rabbani, Morteza Asemani, Rudy Swennen

Abstract:

Oil-oil correlation is one of the most important issues in geochemical studies that enables to classify oils genetically. Oil-oil correlation is generally estimated based on non-polar fractions of crude oil (e.g., saturate and aromatic compounds). Despite several advantages, the drawback of using these compounds is their susceptibility of being affected by secondary processes. The polar fraction of crude oil (e.g., asphaltenes) has similar characteristics to kerogen, and this structural similarity is preserved during migration, thermal maturation, biodegradation, and water washing. Therefore, these structural characteristics can be considered as a useful correlation parameter, and it can be concluded that asphaltenes from different reservoirs with the same genetic signatures have a similar origin. Hence in this contribution, an integrated study by using both non-polar and polar fractions of oil was performed to use the merits of both fractions. Therefore, five oil samples from oil fields in the Persian Gulf were studied. Structural characteristics of extracted asphaltenes were investigated by Fourier transform infrared (FTIR) spectroscopy. Graphs based on aliphatic and aromatic compounds (predominant compounds in asphaltenes structure) and sulphoxide and carbonyl functional groups (which are representatives of sulphur and oxygen abundance in asphaltenes) were used for comparison of asphaltenes structures in different samples. Non-polar fractions were analyzed by GC-MS. The study of asphaltenes showed the studied oil samples comprise two oil families with distinct genetic characteristics. The first oil family consists of Salman and Reshadat oil samples, and the second oil family consists of Resalat, Siri E, and Siri D oil samples. To validate our results, biomarker parameters were employed, and this approach completely confirmed previous results. Based on biomarker analyses, both oil families have a marine source rock, whereby marl and carbonate source rocks are the source rock for the first and the second oil family, respectively.

Keywords: biomarker, non-polar fraction, oil-oil correlation, petroleum geochemistry, polar fraction

Procedia PDF Downloads 134
2017 Retrofitted Semi-Active Suspension System for a Eelectric Model Vehicle

Authors: Shiuh-Jer Huang, Yun-Han Yeh

Abstract:

A 40 steps manual adjusting shock absorber was refitted with DC motor driving mechanism to construct as a semi-active suspension system for a four-wheel drive electric vehicle. Accelerometer and potentiometer sensors are installed to measure the sprung mass acceleration and suspension system compression or rebound states for control purpose. A fuzzy logic controller was designed to derive appropriate damping target based on vehicle running condition for semi-active suspension system to follow. The damping ratio control of each wheel axis suspension system is executed with a robust fuzzy sliding mode controller (FSMC). Different road surface conditions are chosen to evaluate the control performance of this semi-active suspension system based on wheel axis acceleration signal.

Keywords: semi-active suspension, electric vehicle, fuzzy sliding mode control, accelerometer

Procedia PDF Downloads 479
2016 Research on the Public Policy of Vehicle Restriction under Traffic Control

Authors: Wang Qian, Bian Cheng Xiang

Abstract:

In recent years, with the improvement of China's urbanization level, the number of urban motor vehicles has grown rapidly. As residents' daily commuting necessities, cars cause a lot of exhaust emissions and urban traffic congestion. In the "Fourteenth Five Year Plan" of China, it is proposed to strive to reach the peak of carbon dioxide emissions by 2030 and achieve carbon neutrality by 2060. Urban transport accounts for a high proportion of carbon emission sources. It is an important driving force for the realization of China's carbon peak strategy. Some cities have introduced and implemented the policy of "car restriction" to solve related urban problems by reducing the use of cars. This paper analyzes the implementation of the "automobile restriction" policy, evaluates the relevant effects of the automobile restriction policy, and discusses how to better optimize the "automobile restriction" policy in the process of urban governance.

Keywords: carbon emission, traffic jams, vehicle restrictions, evaluate

Procedia PDF Downloads 159
2015 Effectiveness of Imagery Compared with Exercise Training on Hip Abductor Strength and EMG Production in Healthy Adults

Authors: Majid Manawer Alenezi, Gavin Lawrence, Hans-Peter Kubis

Abstract:

Imagery training could be an important treatment for muscle function improvements in patients who are facing limitations in exercise training by pain or other adverse symptoms. However, recent studies are mostly limited to small muscle groups and are often contradictory. Moreover, a possible bilateral transfer effect of imagery training has not been examined. We, therefore, investigated the effectiveness of unilateral imagery training in comparison with exercise training on hip abductor muscle strength and EMG. Additionally, both limbs were assessed to investigate bilateral transfer effects. Healthy individuals took part in an imagery or exercise training intervention for two weeks and were assesses pre and post training. Participants (n=30), after randomization into an imagery and an exercise group, trained 5 times a week under supervision with additional self-performed training on the weekends. The training consisted of performing, or to imagine, 5 maximal isometric hip abductor contractions (= one set), repeating the set 7 times. All measurements and trainings were performed laying on the side on a dynamometer table. The imagery script combined kinesthetic and visual imagery with internal perspective for producing imagined maximal hip abduction contractions. The exercise group performed the same number of tasks but performing the maximal hip abductor contractions. Maximal hip abduction strength and EMG amplitudes were measured of right and left limbs pre- and post-training period. Additionally, handgrip strength and right shoulder abduction (Strength and EMG) were measured. Using mixed model ANOVA (strength measures) and Wilcoxen-tests (EMGs), data revealed a significant increase in hip abductor strength production in the imagery group on the trained right limb (~6%). However, this was not reported for the exercise group. Additionally, the left hip abduction strength (not used for training) did not show a main effect in strength, however, there was a significant interaction of group and time revealing that the strength increased in the imagery group while it remained constant in the exercise group. EMG recordings supported the strength findings showing significant elevation of EMG amplitudes after imagery training on right and left side, while the exercise training group did not show any changes. Moreover, measures of handgrip strength and shoulder abduction showed no effects over time and no interactions in both groups. Experiments showed that imagery training is a suitable method for effectively increasing functional parameters of larger limb muscles (strength and EMG) which were enhanced on both sides (trained and untrained) confirming a bilateral transfer effect. Indeed, exercise training did not reveal any increases in the parameters above omitting functional improvements. The healthy individuals tested might not easily achieve benefits from exercise training within the time tested. However, it is evident that imagery training is effective in increasing the central motor command towards the muscles and that the effect seems to be segmental (no increase in handgrip strength and shoulder abduction parameters) and affects both sides (trained and untrained). In conclusion, imagery training was effective in functional improvements in limb muscles and produced a bilateral transfer on strength and EMG measures.

Keywords: imagery, exercise, physiotherapy, motor imagery

Procedia PDF Downloads 232
2014 Contrastive Analysis of Parameters Registered in Training Rowers and the Impact on the Olympic Performance

Authors: Gheorghe Braniste

Abstract:

The management of the training process in sports is closely related to the awareness of the close connection between performance and the morphological, functional and psychological characteristics of the athlete's body. Achieving high results in Olympic sports is influenced, on the one hand, by the genetically determined characteristics of the body and, on the other hand, by the morphological, functional and motor abilities of the athlete. Taking into account the importance of properly understanding the evolutionary specificity of athletes to assess their competitive potential, this study provides a comparative analysis of the parameters that characterize the growth and development of the level of adaptation of sweeping rowers, considering the growth interval between 12 and 20 years. The study established that, in the multi-annual training process, the bodies of the targeted athletes register significant adaptive changes while analyzing parameters of the morphological, functional, psychomotor and sports-technical spheres. As a result of the influence of physical efforts, both specific and non-specific, there is an increase in the adaptability of the body, its transfer to a much higher level of functionality within the parameters, useful and economical adaptive reactions influenced by environmental factors, be they internal or external. The research was carried out for 7 years, on a group of 28 athletes, following their evolution and recording the specific parameters of each age stage. In order to determine the level of physical, morpho-functional, psychomotor development and technical training of rowers, the screening data were applied at the State University of Physical Education and Sports in the Republic of Moldova. During the research, measurements were made on the waist, in the standing and sitting position, arm span, weight, circumference and chest perimeter, vital capacity of the lungs, with the subsequent determination of the vital index (tolerance level to oxygen deficiency in venous blood in Stange and Genchi breath-taking tests that characterize the level of oxygen saturation, absolute and relative strength of the hand and back, calculation of body mass and morphological maturity indices (Kettle index), body surface area (body gait), psychomotor tests (Romberg test), test-tepping 10 s., reaction to a moving object, visual and auditory-motor reaction, recording of technical parameters of rowing on a competitive distance of 200 m. At the end of the study it was found that highly performance is sports is to be associated on the one hand with the genetically determined characteristics of the body and, on the other hand, with favorable adaptive reactions and energy saving, as well as morphofunctional changes influenced by internal and external environmental factors. The importance of the results obtained at the end of the study was positively reflected in obtaining the maximum level of training of athletes in order to demonstrate performance in large-scale competitions and mostly in the Olympic Games.

Keywords: olympics, parameters, performance, peak

Procedia PDF Downloads 122
2013 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen

Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev

Abstract:

The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).

Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms

Procedia PDF Downloads 88
2012 Energy Efficiency Analysis of Electrical Submersible Pump on Mature Oil Field Offshore Java Sea

Authors: Marda Vidrianto, Tania Surya Utami

Abstract:

Electrical Submersible Pump (ESP) is an artificial lift of choice to produce oil on Offshore Java Sea. It is selected based on the production rate capacity and running life expectation. ESP performance in a mature field is highly affected by oil well conditions. The presence of sand, scale, gas, and low influx will create unstable ESP operation hence lowering the run life expectation and system efficiency. This paper reviews the current energy usage and efficiency on every part of the ESP system. The hydraulic and electrical losses, as well as system efficiency for each well, are calculated to identify energy losses and the possibility for improvement. It is shown that high back pressure on the system and low-efficiency pump are the major contributors to energy losses. It was found that optimized production rate and the use of advanced technology on pump and motor unit could improve energy efficiency.

Keywords: advance technology, energy efficiency, ESP, mature field, production rate

Procedia PDF Downloads 340
2011 Autism Awareness Among School Students and the Violent Reaction of the Autist Toward Society in Egypt

Authors: Naglaa Baskhroun Thabet Wasef

Abstract:

Specific education services for students with Autism remains in its early developmental stages in Egypt. In spite of many more children with autism are attending schools since The Egyptian government introduced the Education Provision for Students with Disabilities Act in 2010, the services students with autism and their families receive are generally not enough. This pointed study used Attitude and Reaction to Teach Students with Autism Scale to investigate 50 primary school teachers’ attitude and reaction to teach students with autism in the general education classroom. Statistical analysis of the data found that student behavior was the most noticeable factor in building teachers’ wrong attitudes students with autism. The minority of teachers also indicated that their service education did not prepare them to meet the learning needs of children with autism in special, those who are non-vocal. The study is descriptive and provides direction for increasing teacher awareness for inclusivity in Egypt.

Keywords: attitude, autism, teachers, sports activates, movement skills, motor skills, autism attitude

Procedia PDF Downloads 62
2010 Lexical Based Method for Opinion Detection on Tripadvisor Collection

Authors: Faiza Belbachir, Thibault Schienhinski

Abstract:

The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.

Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score

Procedia PDF Downloads 198
2009 Electrochemical Top-Down Synthesis of Nanostructured Support and Catalyst Materials for Energy Applications

Authors: Peter M. Schneider, Batyr Garlyyev, Sebastian A. Watzele, Aliaksandr S. Bandarenka

Abstract:

Functional nanostructures such as nanoparticles are a promising class of materials for energy applications due to their unique properties. Bottom-up synthetic routes for nanostructured materials often involve multiple synthesis steps and the use of surfactants, reducing agents, or stabilizers. This results in complex and extensive synthesis protocols. In recent years, a novel top-down synthesis approach to form metal nanoparticles has been established, in which bulk metal wires are immersed in an electrolyte (primarily alkali earth metal based) and subsequently subjected to a high alternating potential. This leads to the generation of nanoparticles dispersed in the electrolyte. The main advantage of this facile top-down approach is that there are no reducing agents, surfactants, or precursor solutions. The complete synthesis can be performed in one pot involving one main step with consequent washing and drying of the nanoparticles. More recent studies investigated the effect of synthesis parameters such as potential amplitude, frequency, electrolyte composition, and concentration on the size and shape of the nanoparticles. Here, we investigate the electrochemical erosion of various metal wires such as Ti, Pt, Pd, and Sn in various electrolyte compositions via this facile top-down technique and its experimental optimization to successfully synthesize nanostructured materials for various energy applications. As an example, for Pt and Pd, homogeneously distributed nanoparticles on carbon support can be obtained. These materials can be used as electrocatalyst materials for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER), respectively. In comparison, the top-down erosion of Sn wires leads to the formation of nanoparticles, which have great potential as oxygen evolution reaction (OER) support materials. The application of the technique on Ti wires surprisingly leads to the formation of nanowires, which show a high surface area and demonstrate great potential as an alternative support material to carbon.

Keywords: ORR, electrochemistry, electrocatalyst, synthesis

Procedia PDF Downloads 79
2008 Rating Agreement: Machine Learning for Environmental, Social, and Governance Disclosure

Authors: Nico Rosamilia

Abstract:

The study evaluates the importance of non-financial disclosure practices for regulators, investors, businesses, and markets. It aims to create a sector-specific set of indicators for environmental, social, and governance (ESG) performances alternative to the ratings of the agencies. The existing literature extensively studies the implementation of ESG rating systems. Conversely, this study has a twofold outcome. Firstly, it should generalize incentive systems and governance policies for ESG and sustainable principles. Therefore, it should contribute to the EU Sustainable Finance Disclosure Regulation. Secondly, it concerns the market and the investors by highlighting successful sustainable investing. Indeed, the study contemplates the effect of ESG adoption practices on corporate value. The research explores the asset pricing angle in order to shed light on the fragmented argument on the finance of ESG. Investors may be misguided about the positive or negative effects of ESG on performances. The paper proposes a different method to evaluate ESG performances. By comparing the results of a traditional econometric approach (Lasso) with a machine learning algorithm (Random Forest), the study establishes a set of indicators for ESG performance. Therefore, the research also empirically contributes to the theoretical strands of literature regarding model selection and variable importance in a finance framework. The algorithms will spit out sector-specific indicators. This set of indicators defines an alternative to the compounded scores of ESG rating agencies and avoids the possible offsetting effect of scores. With this approach, the paper defines a sector-specific set of indicators to standardize ESG disclosure. Additionally, it tries to shed light on the absence of a clear understanding of the direction of the ESG effect on corporate value (the problem of endogeneity).

Keywords: ESG ratings, non-financial information, value of firms, sustainable finance

Procedia PDF Downloads 82
2007 Realizing the Rights of Prisoners with Disabilities in Nigeria: A Case Study of Four Lagos State Prisons

Authors: Jacob Bogart, Adaobi Egboka

Abstract:

Nigeria signed and ratified the Convention on the Rights of Persons with Disabilities in 2010, which was heralded as a much-needed step towards protecting the rights of persons with disabilities (PWDs). However, even with such progress, incarcerated PWDs have been left behind. The current legal framework in Nigeria does not consider the particular challenges PWDs face in prison nor make provisions to address them, despite the need for such reforms. Indeed, given the closed and restricted nature of prisons, and the violence that results from overcrowding, lack of supervision, and poor facilities, prisoners with disabilities often face significant challenges while incarcerated. While every prisoner is affected by these issues, PWDs are disproportionately harmed by them due to the nature of their disability. A study of four prisons in Lagos State, Nigeria was carried out by interviewing prisoners with disabilities, prison officials, advocates, and academics. The study found that for prisoners with physical disabilities, inaccessible prison facilities and a lack of mobility, hearing, or seeing assistance can often cause them to be dependent on the mercy of the other inmates for assistance in performing such basic functions as using the restroom, going to church, or washing themselves. Prison officials do not assist these PWDs or provide them with aids, such as crutches or a cane. Relatedly, prisoners with psychosocial disabilities (mental health conditions) often are not removed to health care facilities, despite a law to that effect, and are left to languish in prisons without the mental health care treatment they need. This presentation argues that reforms addressing the rights of PWDs must consider and make provisions for prisoners with disabilities, such as ensuring that prison facilities are accessible, providing PWDs with mobility, seeing or hearing aids as needed, and conducting mental health screenings for persons awaiting trial immediately upon entering the prison. These reforms, among others, are necessary first steps toward realizing the rights of prisoners with disabilities in Nigeria.

Keywords: disability rights, human rights, Lagos, Nigeria, prisoners with disabilities

Procedia PDF Downloads 355
2006 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks

Authors: Hyunsun Lee, Yi Zhu

Abstract:

Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.

Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles

Procedia PDF Downloads 122
2005 Plasma Pretreatment for Improving the Durability of Antibacterial Activity of Cotton Using ZnO Nanoparticles

Authors: Sheila Shahidi, Hootan Rezaee, Abosaeed Rashidi, Mahmood Ghoranneviss

Abstract:

Plasma treatment has an explosive increase in interest and use in industrial applications as for example in medical, biomedical, automobile, electronics, semiconductor and textile industry. A lot of intensive basic research has been performed in the last decade in the field of textiles along with technical textiles. Textile manufacturers and end-users alike have been searching for ways to improve the surface properties of natural and man-made fibers. Specifically, there is a need to improve adhesion and wettability. Functional groups may be introduced onto the fiber surface by using gas plasma treatments, improving fiber surface properties without affecting the fiber’s bulk properties. In this research work, ZnO nanoparticles (ZnO-NPs) were insitue synthesized by sonochemical method at room temperature on both untreated and plasma pretreated cotton woven fabric. Oxygen and nitrogen plasmas were used for pre-functionalization of cotton fabric. And the effect of oxygen and nitrogen pre-functionalization on adhesion properties between ZnO nanoparticles and cotton surface were studied. The results show that nanoparticles with average sizes of 20-100 nm with different morphologies have been created on the surface of samples. Synthesis of ZnO-NPs was varied in the morphological transformation by changes in zinc acetate dehydrate concentration. Characterizations were carried out using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Inductive coupled plasma (ICP) and Spectrophotometery. The antibacterial activities of the fabrics were assessed semi-quantitatively by the colonies count method. The results show that the finished fabric demonstrated significant antibacterial activity against S. aureus in antibacterial test. The wash fastness of both untreated and plasma pretreated samples after 30 times of washing was investigated. The results showed that the parameters of plasma reactor plays very important role for improving the antibacterial durability.

Keywords: antibacterial activity, cotton, fabric, nanoparticles, plasma

Procedia PDF Downloads 537
2004 Development and Characterisation of Nonwoven Fabrics for Apparel Applications

Authors: Muhammad Cheema, Tahir Shah, Subhash Anand

Abstract:

The cost of making apparel fabrics for garment manufacturing is very high because of their conventional manufacturing processes and new methods/processes are being constantly developed for making fabrics by unconventional methods. With the advancements in technology and the availability of the innovative fibres, durable nonwoven fabrics by using the hydroentanglement process that can compete with the woven fabrics in terms of their aesthetic and tensile properties are being developed. In the work reported here, the hydroentangled nonwoven fabrics were developed through a hybrid nonwoven manufacturing processes by using fibrillated Tencel® and bi-component (sheath/core) polyethylene/polyester (PE/PET) fibres, in which the initial nonwoven fabrics were prepared by the needle-punching method followed by hydroentanglement process carried out at optimal pressures of 50 to 250bars. The prepared fabrics were characterized according to the British Standards (BS 3356:1990, BS 9237:1995, BS 13934-1:1999) and the attained results were compared with those for a standard plain-weave cotton, polyester woven fabric and commercially available nonwoven fabric (Evolon®). The developed hydroentangled fabrics showed better drape properties owing to their flexural rigidity of 252 mg.cm in the machine direction, while the corresponding commercial hydroentangled fabric displayed a value of 1340 mg.cm in the machine direction. The tensile strength of the developed hydroentangled fabrics showed an approximately 200% increase than the commercial hydroentangled fabrics. Similarly, the developed hydroentangled fabrics showed higher properties in term of air permeability, such as the developed hydroentangled fabric exhibited 448 mm/sec and Evolon fabric exhibited 69 mm/sec at 100 Pa pressure. Thus for apparel fabrics, the work combining the existing methods of nonwoven production, provides additional benefits in terms of cost, time and also helps in reducing the carbon footprint for the apparel fabric manufacture.

Keywords: hydroentanglement, nonwoven apparel, durable nonwoven, wearable nonwoven

Procedia PDF Downloads 267
2003 Microwave Assisted Rapid Synthesis of Nano-Binder from Renewable Resource and Their Application in Textile Printing

Authors: K. Haggag, N. S. Elshemy

Abstract:

Due to limited fossil resource and an increased need for environmentally friendly, sustainable technologies, the importance of using renewable feed stocks in textile industry area will increase in the decades to come. This research highlights some of the perspectives in this area. Alkyd resins for high characterization and reactive properties, completely based on commercially available renewable resources (sunflower and/or soybean oil) were prepared and characterized. In this work, we present results on the synthesis of various alkyd resins according to the alcoholysis – polyesterification process under different preparation conditions using a microwave synthesis as energy source to determine suitable reaction conditions. Effects of polymerization parameters, such as catalyst ratio, reaction temperature and microwave power level have been studied. The prepared binder was characterized via FT-IR, scanning electron microscope (SEM) and transmission electron microscope (TEM), in addition to acid value (AV), iodine value (IV), water absorbance, weight loss, and glass transition temperature. The prepared binder showed high performance physico-mechanical properties. TEM analysis showed that the polymer latex nanoparticle within range of 20–200 nm. The study involved the application of the prepared alkyd resins as binder for pigment printing process onto cotton fabric by using a flat screen technique and the prints were dried and thermal cured. The optimum curing conditions were determined, color strength and fastness properties of pigment printed areas to light, washing, perspiration and crocking were evaluated. The rheological properties and apparent viscosity of prepared binders were measured in addition roughness of the prints was also determined.

Keywords: nano-binder, microwave heating, renewable resource, alkyd resins, sunflower oil, soybean oil

Procedia PDF Downloads 372
2002 A High Step-Up DC-DC Converter for Renewable Energy System Applications

Authors: Sopida Vacharasukpo, Sudarat Khwan-On

Abstract:

This paper proposes a high step-up DC-DC converter topology for renewable energy system applications. The proposed converter employs only a single power switch instead of using several switches. Compared to the conventional DC-DC step-up converters the higher voltage gain with small output ripples can be achieved by using the proposed high step-up DC-DC converter topology. It can step up the low input voltage (20-50Vdc) generated from the photovoltaic modules to the high output voltage level approximately 600Vdc in order to supply the three-phase inverter fed the three-phase motor drive. In this paper, the operating principle of the proposed converter topology and its control strategy under the continuous conduction mode (CCM) are described. Finally, simulation results are shown to demonstrate the effectiveness of the proposed high step-up DC-DC converter with its control strategy to increase the voltage step-up conversion ratio.

Keywords: DC-DC converter, high step-up ratio, renewable energy, single switch

Procedia PDF Downloads 1191
2001 Day Ahead and Intraday Electricity Demand Forecasting in Himachal Region using Machine Learning

Authors: Milan Joshi, Harsh Agrawal, Pallaw Mishra, Sanand Sule

Abstract:

Predicting electricity usage is a crucial aspect of organizing and controlling sustainable energy systems. The task of forecasting electricity load is intricate and requires a lot of effort due to the combined impact of social, economic, technical, environmental, and cultural factors on power consumption in communities. As a result, it is important to create strong models that can handle the significant non-linear and complex nature of the task. The objective of this study is to create and compare three machine learning techniques for predicting electricity load for both the day ahead and intraday, taking into account various factors such as meteorological data and social events including holidays and festivals. The proposed methods include a LightGBM, FBProphet, combination of FBProphet and LightGBM for day ahead and Motifs( Stumpy) based on Mueens algorithm for similarity search for intraday. We utilize these techniques to predict electricity usage during normal days and social events in the Himachal Region. We then assess their performance by measuring the MSE, RMSE, and MAPE values. The outcomes demonstrate that the combination of FBProphet and LightGBM method is the most accurate for day ahead and Motifs for intraday forecasting of electricity usage, surpassing other models in terms of MAPE, RMSE, and MSE. Moreover, the FBProphet - LightGBM approach proves to be highly effective in forecasting electricity load during social events, exhibiting precise day ahead predictions. In summary, our proposed electricity forecasting techniques display excellent performance in predicting electricity usage during normal days and special events in the Himachal Region.

Keywords: feature engineering, FBProphet, LightGBM, MASS, Motifs, MAPE

Procedia PDF Downloads 70
2000 A Comparative Study of the Tribological Behavior of Bilayer Coatings for Machine Protection

Authors: Cristina Diaz, Lucia Perez-Gandarillas, Gonzalo Garcia-Fuentes, Simone Visigalli, Roberto Canziani, Giuseppe Di Florio, Paolo Gronchi

Abstract:

During their lifetime, industrial machines are often subjected to chemical, mechanical and thermal extreme conditions. In some cases, the loss of efficiency comes from the degradation of the surface as a result of its exposition to abrasive environments that can cause wear. This is a common problem to be solved in industries of diverse nature such as food, paper or concrete industries, among others. For this reason, a good selection of the material is of high importance. In the machine design context, stainless steels such as AISI 304 and 316 are widely used. However, the severity of the external conditions can require additional protection for the steel and sometimes coating solutions are demanded in order to extend the lifespan of these materials. Therefore, the development of effective coatings with high wear resistance is of utmost technological relevance. In this research, bilayer coatings made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium, and Titanium-Zirconium have been developed using magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology. Their tribological behavior has been measured and evaluated under different environmental conditions. Two kinds of steels were used as substrates: AISI 304, AISI 316. For the comparison with these materials, titanium alloy substrate was also employed. Regarding the characterization, wear rate and friction coefficient were evaluated by a tribo-tester, using a pin-on-ball configuration with different lubricants such as tomato sauce, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl to approximate the results to real extreme conditions. In addition, topographical images of the wear tracks were obtained in order to get more insight of the wear behavior and scanning electron microscope (SEM) images were taken to evaluate the adhesion and quality of the coating. The characterization was completed with the measurement of nanoindentation hardness and elastic modulus. Concerning the results, thicknesses of the samples varied from 100 nm (Ti-Zr layer) to 1.4 µm (Ti-Hf layer) and SEM images confirmed that the addition of the Ti layer improved the adhesion of the coatings. Moreover, results have pointed out that these coatings have increased the wear resistance in comparison with the original substrates under environments of different severity. Furthermore, nanoindentation hardness results showed an improvement of the elastic strain to failure and a high modulus of elasticity (approximately 200 GPa). As a conclusion, Ti-Ta, Ti-Zr, Ti-Nb, and Ti-Hf are very promising and effective coatings in terms of tribological behavior, improving considerably the wear resistance and friction coefficient of typically used machine materials.

Keywords: coating, stainless steel, tribology, wear

Procedia PDF Downloads 148
1999 The Influence of Bacteriocins Producing Lactic Acid Bacteria Multiplied in an Alternative Substrate on Calves Blood Parameters

Authors: E. Bartkiene, V. Krungleviciute, J. Kucinskiene, R. Antanaitis, A. Kucinskas

Abstract:

In calves less than 10-day-old, infection commonly cause severe diarrhoea and high mortality. To prevention of calves diseases a common practice is to treat calves with prophylactic antibiotics, in this case the use of lactic acid bacteria (LAB) is promising. Often LAB strains are incubated in comercial de Man-Rogosa-Sharpe (MRS) medium, the culture are centrifuged, the cells are washing with sterile water, and this suspension is used as a starter culture for animal health care. Juice of potatoe tubers is industrial wastes, wich may constitute a source of digestible nutrients for microorganisms. In our study the ability of LAB to utilize potatoe tubers juice in cell synthesis without external nutrient supplement was investigated, and the influence of multiplied LAB on calves blood parameters was evaluated. Calves were selected based on the analogy principle (treatment group (n=6), control group (n=8)). For the treatment group 14 days was given a 50 ml of fermented potatoe tubers juice containing 9.6 log10 cfu/ml of LAB. Blood parameters (gas and biochemical) were assessed by use of an auto-analyzers (Hitachi 705 and EPOC). Before the experiment, blood pH of treatment group calves was 7.33, control – 7.36, whereas, after 14 days, 7.28 and 7.36, respectively. Calves blood pH in the treatment group remained stable over the all experiment period. Concentration of PCO2 in control calves group blood increased from 63.95 to 70.93, whereas, in the treatment group decreased from 63.08 to 60.71. Concentration of lactate in the treatment group decreased from 3.20 mmol/l to 2.64 mmol/l, whereas, in control - increased from 3.95 mmol/l to 4.29 mmol/l. Concentration of AST in the control calves group increased from 50.18 IU/L to 58.9 IU/L, whereas, in treatment group decreased from 49.82 IU/L to 33.1 IU/L. We conclude that the 50 ml of fermented potatoe tubers juice containing 9.6 log10 cfu/ml of LAB per day, by using 14 days, reduced risk of developing acidosis (stabilizes blood pH (p < 0.05)), reduces lactates and PCO2 concentration (p < 0.05) and risk of liver lesions (reduces AST concentration (p < 0.005)) in blood of calves.

Keywords: alternative substrate, blood parameters, calves, lactic acid bacteria

Procedia PDF Downloads 312
1998 Inverter IGBT Open–Circuit Fault Detection Using Park's Vectors Enhanced by Polar Coordinates

Authors: Bendiabdellah Azzeddine, Cherif Bilal Djamal Eddine

Abstract:

The three-phase power converter voltage structure is widely used in many power applications but its failure can lead to partial or total loss of control of the phase currents and can cause serious system malfunctions or even a complete system shutdown. To ensure continuity of service in all circumstances, effective and rapid techniques of detection and location of inverter fault is to be implemented. The present paper is dedicated to open-circuit fault detection in a three-phase two-level inverter fed induction motor. For detection purpose, the proposed contribution addresses the Park’s current vectors associated to a polar coordinates calculation tool to compute the exact value of the fault angle corresponding directly to the faulty IGBT switch. The merit of the proposed contribution is illustrated by experimental results.

Keywords: diagnosis, detection, Park’s vectors, polar coordinates, open-circuit fault, inverter, IGBT switch

Procedia PDF Downloads 400
1997 Modelling Insider Attacks in Public Cloud

Authors: Roman Kulikov, Svetlana Kolesnikova

Abstract:

Last decade Cloud Computing technologies have been rapidly becoming ubiquitous. Each year more and more organizations, corporations, internet services and social networks trust their business sensitive information to Public Cloud. The data storage in Public Cloud is protected by security mechanisms such as firewalls, cryptography algorithms, backups, etc.. In this way, however, only outsider attacks can be prevented, whereas virtualization tools can be easily compromised by insider. The protection of Public Cloud’s critical elements from internal intruder remains extremely challenging. A hypervisor, also called a virtual machine manager, is a program that allows multiple operating systems (OS) to share a single hardware processor in Cloud Computing. One of the hypervisor's functions is to enforce access control policies. Furthermore, it prevents guest OS from disrupting each other and from accessing each other's memory or disk space. Hypervisor is the one of the most critical and vulnerable elements in Cloud Computing infrastructure. Nevertheless, it has been poorly protected from being compromised by insider. By exploiting certain vulnerabilities, privilege escalation can be easily achieved in insider attacks on hypervisor. In this way, an internal intruder, who has compromised one process, is able to gain control of the entire virtual machine. Thereafter, the consequences of insider attacks in Public Cloud might be more catastrophic and significant to virtual tools and sensitive data than of outsider attacks. So far, almost no preventive security countermeasures have been developed. There has been little attention paid for developing models to assist risks mitigation strategies. In this paper formal model of insider attacks on hypervisor is designed. Our analysis identifies critical hypervisor`s vulnerabilities that can be easily compromised by internal intruder. Consequently, possible conditions for successful attacks implementation are uncovered. Hence, development of preventive security countermeasures can be improved on the basis of the proposed model.

Keywords: insider attack, public cloud, cloud computing, hypervisor

Procedia PDF Downloads 361
1996 Iris Detection on RGB Image for Controlling Side Mirror

Authors: Norzalina Othman, Nurul Na’imy Wan, Azliza Mohd Rusli, Wan Noor Syahirah Meor Idris

Abstract:

Iris detection is a process where the position of the eyes is extracted from the face images. It is a current method used for many applications such as for security purpose and drowsiness detection. This paper proposes the use of eyes detection in controlling side mirror of motor vehicles. The eyes detection method aims to make driver easy to adjust the side mirrors automatically. The system will determine the midpoint coordinate of eyes detection on RGB (color) image and the input signal from y-coordinate will send it to controller in order to rotate the angle of side mirror on vehicle. The eye position was cropped and the coordinate of midpoint was successfully detected from the circle of iris detection using Viola Jones detection and circular Hough transform methods on RGB image. The coordinate of midpoint from the experiment are tested using controller to determine the angle of rotation on the side mirrors.

Keywords: iris detection, midpoint coordinates, RGB images, side mirror

Procedia PDF Downloads 421
1995 Treatment of Interferograms Image of Perturbation Processes in Metallic Samples by Optical Method

Authors: Daira Radouane, Naim Boudmagh, Hamada Adel

Abstract:

The but of this handling is to use the technique of the shearing with a mechanism lapping machine of image: a prism of Wollaston. We want to characterize this prism in order to be able to employ it later on in an analysis by shearing. A prism of Wollaston is a prism produced in a birefringent material i.e. having two indexes of refraction. This prism is cleaved so as to present the directions associated with these indices in its face with entry. It should be noted that these directions are perpendicular between them.

Keywords: non destructive control, aluminium, interferometry, treatment of image

Procedia PDF Downloads 328
1994 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores

Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan

Abstract:

Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.

Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics

Procedia PDF Downloads 128
1993 Sensitizing Bamboo Fabric with Antimicrobial Turmeric Dye

Authors: Varinder Kaur, Amanjit Kaur, Simran Kaur, Samriti Vaid

Abstract:

Coating of fabrics with anti-microbial dyes is an adaptable technique of protection from various diseases. Natural dyes, which are known to possess antibacterial properties, can be used for antibacterial finishing of fibers like cotton, wool, bamboo and so many. Dyeing of fabrics with natural dyes normally requires the use of mordants so that dyes can stay on the fabric as well as into interstices of the fabric during multiple washings. In this study, the mordants used are alum and chitosan for ensuring a reasonable color fastness to light and washing. Chitosan is a natural polysaccharide having significant biological and chemical properties such as biodegradability, biocompatibility, bioactivity, microbial activity and polycationicity. The metal ion of alum mordant can act as electron acceptor for electron donor to form coordination bond with the dye molecule, making them insoluble in water. The dyeing of bamboo fabric using a natural dye extracted from turmeric has been studied using conventional dyeing method. Natural dye was extracted using water as solvent by Soxhlet extraction method. The extracted color was characterized by spectroscopic studies like UV/visible and further tested for antimicrobial activity. The effect of mordants on the dyeing outcome in terms of colour depth as well as fastness properties of the dyeing was investigated. It has been found that employing the conventional dyeing technique at 100 oC, the mordanted samples were deeper in depth than their unmordanted counterparts. The results of fastness properties of the dyed fabrics were fair to good. Turmeric extract was found to enhance microbial resistance of bamboo as well as was itself as a good cause of coloration. These textiles dyed with the turmeric as natural dye can be very useful in developing clothing for infants, elderly and infirm people to protect them against common infections. The outcome of this study will provide a new feature to the interface of dyeing and pharmaceutical industry.

Keywords: antimicrobial activity, bamboo fabric, natural dye, turmeric

Procedia PDF Downloads 169
1992 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 138
1991 Locomotion, Object Exploration, Social Communicative Skills, and Improve in Language Abilities

Authors: Wanqing He

Abstract:

The current study explores aspects of exploratory behaviors and social capacities in urban Chinese infants to examine whether these factors mediate the link between infant walking and receptive and productive vocabularies. The linkage between the onset of walking and language attainment proves solid, but little is known about the factors that drive such link. This study examined whether joint attention, gesture use, and object activities mediate the association between locomotion and language development. Results showed that both the frequency (p = .05) and duration (p = .03) of carrying an object are strong mediators that afford opportunities for word comprehension. Also, accessing distal objects may be beneficial to infants’ language expression. Further studies on why object carrying may account for word comprehension and why infants with autism could not benefit from walking onset in terms of language development may yield valuable clinical implications.

Keywords: exploratory behaviors, infancy, language acquisition, motor development, social communicative skills

Procedia PDF Downloads 119
1990 Effect of Toxic Metals Exposure on Rat Behavior and Brain Morphology: Arsenic, Manganese

Authors: Tamar Bikashvili, Tamar Lordkipanidze, Ilia Lazrishvili

Abstract:

Heavy metals remain one of serious environmental problems due to their toxic effects. The effect of arsenic and manganese compounds on rat behavior and neuromorphology was studied. Wistar rats were assigned to four groups: rats in control group were given regular water, while rats in other groups drank water with final manganese concentration of 10 mg/L (group A), 20 mg/L (group B) and final arsenic concentration 68 mg/L (group C), respectively, for a month. To study exploratory and anxiety behavior and also to evaluate aggressive performance in “home cage” rats were tested in “Open Field” and to estimate learning and memory status multi-branched maze was used. Statistically significant increase of motor and oriental-searching activity in experimental groups was revealed by an open field test, which was expressed in increase of number of lines crossed, rearing and hole reflexes. Obtained results indicated the suppression of fear in rats exposed to manganese. Specifically, this was estimated by the frequency of getting to the central part of the open field. Experiments revealed that 30-day exposure to 10 mg/ml manganese did not stimulate aggressive behavior in rats, while exposure to the higher dose (20 mg/ml), 37% of initially non-aggressive animals manifested aggressive behavior. Furthermore, 25% of rats were extremely aggressive. Obtained data support the hypothesis that excess manganese in the body is one of the immediate causes of enhancement of interspecific predatory aggressive and violent behavior in rats. It was also discovered that manganese intoxication produces non-reversible severe learning disability and insignificant, reversible memory disturbances. Studies of rodents exposed to arsenic also revealed changes in the learning process. As it is known, the distribution of metal ions differs in various brain regions. The principle manganese accumulation was observed in the hippocampus and in the neocortex, while arsenic was predominantly accumulated in nucleus accumbens, striatum, and cortex. These brain regions play an important role in the regulation of emotional state and motor activity. Histopathological analyzes of brain sections illustrated two morphologically distinct altered phenotypes of neurons: (1) shrunk cells with indications of apoptosis - nucleus and cytoplasm were very difficult to be distinguished, the integrity of neuronal cytoplasm was not disturbed; and (2) swollen cells - with indications of necrosis. Pyknotic nucleus, plasma membrane disruption and cytoplasmic vacuoles were observed in swollen neurons and they were surrounded by activated gliocytes. It’s worth to mention that in the cortex the majority of damaged neurons were apoptotic while in subcortical nuclei –neurons were mainly necrotic. Ultrastructural analyses demonstrated that all cell types in the cortex and the nucleus caudatus represent destructed mitochondria, widened neurons’ vacuolar system profiles, increased number of lysosomes and degeneration of axonal endings.

Keywords: arsenic, manganese, behavior, learning, neuron

Procedia PDF Downloads 358