Search results for: cardio-metabolic risk factors
13090 The Real Estate Market Sustainability Concept and Its Implementation in Management of Real Estate Companies
Authors: Linda Kauškale, Ineta Geipele
Abstract:
Due to the rapidly changing external environment, portfolio management strategies became closely interconnected with real estate industry development and macroeconomic development tendencies. The aim of the research is to analyze sustainable real estate market development influencing factors, with particular focus on its economic and management aspects that influences real estate investment decisions as well. Scientific literature and article analysis, data analysis, expert evaluation, and other quantitative and qualitative research methods were used in the research. Developed real estate market sustainability model and index analysis approach can be applied by investors and real estate companies in real estate asset management and can help in risk minimization activities in international entrepreneurship. Future research directions have been identified in the research as well.Keywords: indexes, investment decisions, real estate market, sustainability
Procedia PDF Downloads 36313089 Foreseen the Future: Human Factors Integration in European Horizon Projects
Authors: José Manuel Palma, Paula Pereira, Margarida Tomás
Abstract:
Foreseen the future: Human factors integration in European Horizon Projects The development of new technology as artificial intelligence, smart sensing, robotics, cobotics or intelligent machinery must integrate human factors to address the need to optimize systems and processes, thereby contributing to the creation of a safe and accident-free work environment. Human Factors Integration (HFI) consistently pose a challenge for organizations when applied to daily operations. AGILEHAND and FORTIS projects are grounded in the development of cutting-edge technology - industry 4.0 and 5.0. AGILEHAND aims to create advanced technologies for autonomously sort, handle, and package soft and deformable products, whereas FORTIS focuses on developing a comprehensive Human-Robot Interaction (HRI) solution. Both projects employ different approaches to explore HFI. AGILEHAND is mainly empirical, involving a comparison between the current and future work conditions reality, coupled with an understanding of best practices and the enhancement of safety aspects, primarily through management. FORTIS applies HFI throughout the project, developing a human-centric approach that includes understanding human behavior, perceiving activities, and facilitating contextual human-robot information exchange. it intervention is holistic, merging technology with the physical and social contexts, based on a total safety culture model. In AGILEHAND we will identify safety emergent risks, challenges, their causes and how to overcome them by resorting to interviews, questionnaires, literature review and case studies. Findings and results will be presented in “Strategies for Workers’ Skills Development, Health and Safety, Communication and Engagement” Handbook. The FORTIS project will implement continuous monitoring and guidance of activities, with a critical focus on early detection and elimination (or mitigation) of risks associated with the new technology, as well as guidance to adhere correctly with European Union safety and privacy regulations, ensuring HFI, thereby contributing to an optimized safe work environment. To achieve this, we will embed safety by design, and apply questionnaires, perform site visits, provide risk assessments, and closely track progress while suggesting and recommending best practices. The outcomes of these measures will be compiled in the project deliverable titled “Human Safety and Privacy Measures”. These projects received funding from European Union’s Horizon 2020/Horizon Europe research and innovation program under grant agreement No101092043 (AGILEHAND) and No 101135707 (FORTIS).Keywords: human factors integration, automation, digitalization, human robot interaction, industry 4.0 and 5.0
Procedia PDF Downloads 6613088 Data Mining in Healthcare for Predictive Analytics
Authors: Ruzanna Muradyan
Abstract:
Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health
Procedia PDF Downloads 6313087 A Model of the Adoption of Maritime Autonomous Surface Ship
Authors: Chin-Shan Lu, Yi-Pei Liu
Abstract:
This study examines the factors influencing the adoption of MASS in Taiwan's shipping industry. Digital technology and unmanned vehicle advancements have enhanced efficiency and reduced environmental impact in the shipping industry. The IMO has set regulations to promote low-carbon emissions and autonomous ship technology. Using the TOE framework and DOI theory, a research model was constructed, and data from 132 Taiwanese shipping companies were collected via a questionnaire survey. A structural equation modeling (SEM) was conducted to examine the relationships between variables. Results show that technological and environmental factors significantly influence operators' attitudes toward MASS, while organizational factors impact their willingness to adopt. Enhancing technological support, internal resource allocation, top management support, and cost management are crucial for promoting adoption. This study identifies key factors and provides recommendations for adopting autonomous ships in Taiwan's shipping industry.Keywords: MASS, technology-organization-environment, diffusion of innovations theory, shipping industry
Procedia PDF Downloads 2613086 The Relationship Between Military Expenditure and International Trade: A Selection of African Countries
Authors: Andre C Jordaan
Abstract:
The end of the Cold War and rivalry between super powers has changed the nature of military build-up in many countries. A call from international institutions like the United Nations, International Monetary Fund and the World Bank to reduce the levels of military expenditure was the order of the day. However, this bid to cut military expenditure has not been forthright. Recently, active armed conflicts occurred in at least 46 states in 2021 with 8 in the Americas, 9 in Asia and Oceania, 3 in Europe, 8 in the Middle East and North Africa and 18 in sub-Saharan Africa. Global military expenditure in 2022 was estimated to be US$2,2 trillion, representing 2.2 per cent of global gross domestic product. Particularly sharp rises in military spending have followed in African countries and the Middle East. Global military expenditure currently follows two divergent trends, either a declining trend in the West caused mainly by austerity, efforts to control budget deficits and the wrapping up of prolonged wars. However, some parts of the world shows an increasing trend on the back of security concerns, geopolitical ambitions and some internal political factors. Conflict related fatalities in sub-Saharan Africa alone increased by 19 per cent between 2020 and 2021. The interaction between military expenditure (read conflict) and international trade is generally the cause of much debate. Some argue that countries’ fear of losing trade opportunities causes political decision makers to refrain from engaging in conflict when important trading partners are involved. However, three main arguments are always present when discussing the relationship between military expenditure or conflicts and international trade: Free trade could promote peaceful cooperation, it could trigger tension between trading blocs and partners, and trade could have no effect because conflict is based on issues that are more important. Military expenditure remains an important element of the overall government expenditure in many African countries. On the other hand, numerous researchers perceive increased international trade to be one of the main factors promoting economic growth in these countries. The purpose of this paper is therefore to determine what effect, if any, exist between the level of military expenditure and international trade within a selection of 19 African countries. Applying an augmented gravity model to explore the relationship between military expenditure and international trade, evidence is found to confirm the existence of an inverse relationship between these two variables. It seems that the results are in line with the Liberal school of thought where trade is seen as an instrument of conflict prevention. Trade is therefore perceived as a symptom of peace and not a cause thereof. In general, conflict or rumors of conflict tend to reduce trade. If conflict did not impede trade, economic agents would be indifferent to risk. Many claim that trade brings peace, however, it seems that it is rather peace that brings trade. From the results, it appears that trade reduces the risk of conflict and that conflict reduces trade.Keywords: African countries, conflict, international trade, military expenditure
Procedia PDF Downloads 6513085 Prevalence and Comparison for Detection Methods of Candida Species in Vaginal Specimens from Pregnant and Non-Pregnant Saudi Women
Authors: Yazeed Al-Sheikh
Abstract:
Pregnancy represents a risk factor in the occurrence of vulvovaginal candidiasis. To investigate the prevalence rate of vaginal carriage of Candida species in Saudi pregnant and non-pregnant women, high vaginal swab (HVS) specimens (707) were examined by direct microscopy (10% KOH and Giemsa staining) and parallel cultured on Sabouraud Dextrose Agar (SDA) as well as on “CHROM agar Candida” medium. As expected, Candida-positive cultures were frequently observed in pregnant-test group (24%) than in non-pregnant group (17%). The frequency of culture positive was correlated to pregnancy (P=0.047), parity (P=0.001), use of contraceptive (P=0.146), or antibiotics (P=0.128), and diabetic-patients (P < 0.0001). Out of 707 HVS examined specimens, 157 specimens were yeast-positive culture (22%) on Sabouraud Dextrose Agar or “CHROM agar Candida”. In comparison, the sensitivities of the direct 10% KOH and the Giemsa stain microscopic examination methods were 84% (132/157) and 95% (149/157) respectively but both with 100% specificity. As for the identity of recovered 157 yeast isolates, based on API 20C biotype carbohydrate assimilation, germ tube and chlamydospore formation, C. albicansand C. glabrata constitute 80.3 and 12.7% respectively. Rates of C. tropicalis, C. kefyr, C. famata or C. utilis were 2.6, 1.3, and 0.6% respectively. Sachromyces cerevisiae and Rhodotorula mucilaginosa yeasts were also encountered at a frequency of 1.3 and 0.6% respectively. Finally, among all recovered 157 yeast-isolates, strains resistant to ketoconazole were not detected, whereas 5% of the C. albicans and as high as 55% of the non-albicans yeast isolates (majority C. glabrata) showed resistance to fluconazole. Our findings may prove helpful for continuous determination of the existing vaginal candidiasis causative species during pregnancy, its lab-diagnosis and/or control and possible measures to minimize the incidence of the disease-associated pre-term delivery.Keywords: vaginal candidiasis, Candida spp., pregnancy, risk factors, API 20C-yeast biotypes, giemsa stain, antifungal agents
Procedia PDF Downloads 24413084 Predicting Student Performance Based on Coding Behavior in STEAMplug
Authors: Giovanni Gonzalez Araujo, Michael Kyrilov, Angelo Kyrilov
Abstract:
STEAMplug is a web-based innovative educational platform which makes teaching easier and learning more effective. It requires no setup, eliminating the barriers to entry, allowing students to focus on their learning throughreal-world development environments. The student-centric tools enable easy collaboration between peers and teachers. Analyzing user interactions with the system enables us to predict student performance and identify at-risk students, allowing early instructor intervention.Keywords: plagiarism detection, identifying at-Risk Students, education technology, e-learning system, collaborative development, learning and teaching with technology
Procedia PDF Downloads 15213083 Antecedents of Teaching Skill for Students’ Psychological Enhancement in University Lecturers
Authors: Duangduen L. Bhanthumnavin, Duchduen E. Bhanthumnavin
Abstract:
Widening gap between new academic knowledge in all areas and habit of exploring and exploiting this precious information by students causes an alarm and need for urgent prevention. At present, all advanced nations are committed to WHO’s Sustainable Development Goals (SDGs), which require some objective achievements by the year 2030 and further. The responsibility has been enforced on university lecturers, in addition to the higher education learning outcomes (HELO). The two groups of goals (SDGs and HELO) can be realized if most university instructors are capable of inculcating some important psychological characteristics and behavioral change in the new generations. Thus, this study aimed at pinpointing the significant factors for additional teaching skills of instructors regardless of the area of study. University lecturers from various parts of Thailand, with the total of 540 persons, participated in this cross-sectional study. Based on interactionism model of behavior antecedents, it covers psychological situational factors, as well as their interaction. Most measuring instruments were summated rating with 10 or more items, each accompanied by a six-point rating scale. All these measures were constructed with acceptable standards. Most of the respondents were volunteers who gave their written responses in a meeting room or conference hall. By applying Multiple Regression Analysis in the total sample as well as in the subsamples of these university instructors, about 70 to 73 predictive percentages with 4 to 6 significant predictors were found. The major dependent variable was instructor’s teaching behavior for inculcating the psycho-moral strength for academic exploration and knowledge application. By performing ANOVA, the less-active instructors were identified as the ones with lower education (Master’s level or lower), the minimal research producers, and the ones with less in-service trainings. The preventive factors for these three groups of instructors were intention to increase the students’ psychological development as well as moral development in their regular teaching classes. In addition, social support from their supervisors and coworkers was also necessary. Recommendations for further research and training are offered and welcomed.Keywords: psychological inculcation, at-risk instructors, preventive measures, undergraduate teaching
Procedia PDF Downloads 6113082 Revisiting the Fiscal Theory of Sovereign Risk from the DSGE View
Authors: Eiji Okano, Kazuyuki Inagaki
Abstract:
We revisit Uribe's `Fiscal Theory of Sovereign Risk' advocating that there is a trade-off between stabilizing inflation and suppressing default. We develop a class of dynamic stochastic general equilibrium (DSGE) model with nominal rigidities and compare two de facto inflation stabilization policies, optimal monetary policy and optimal monetary and fiscal policy with the minimizing interest rate spread policy which completely suppress the default. Under the optimal monetary and fiscal policy, not only the nominal interest rate but also the tax rate work to minimize welfare costs through stabilizing inflation. Under the optimal monetary both inflation and output gap are completely stabilized although those are fluctuating under the optimal monetary policy. In addition, volatility in the default rate under the optimal monetary policy is considerably lower than one under the optimal monetary policy. Thus, there is not the SI-SD trade-off. In addition, while the minimizing interest rate spread policy makes inflation rate severely volatile, the optimal monetary and fiscal policy stabilize both the inflation and the default. A trade-off between stabilizing inflation and suppressing default is not so severe what pointed out by Uribe.Keywords: sovereign risk, optimal monetary policy, fiscal theory of the price level, DSGE
Procedia PDF Downloads 32113081 Assessment of the Two-Way Relationship between Capital Structure and Operation Performance of Listed Companies on Vietnam’s Stock
Authors: Uyen Tran Tu
Abstract:
The decision on capital structure is one of the most important and sophisticated decisions in financial management in order to improve firm performance. This article would study the two-way impact between capital structure and firm performance. The study use EVIEWS 6.0 software to determine a two-way relationship between the capital structure and firm performance based on two-stage regression (2SLS - Two-Stage Least Squares). The findings are: capital structure has the opposite effect on the business efficiency and vice versa, factors that effect on business efficiency include Size and Opportunities. Factors effects on the capital structure are size; liquidity. These factors also affect the ratio of capital structure (total debt/ total asset) of companies. In particular, liquidity has the opposite effect; and the size of the business has the same impact. The results of the study are in line with the theory and empirical studies presented, and the results of the study are unchanged for all three years 2015-2017.Keywords: capital structure, firm performance, factors, two-way relationship
Procedia PDF Downloads 16013080 Representation of Dalits and Tribal Communities in Psychological Autopsy in India: A Systematic Scoping Review
Authors: Anagha Pavithran Vattamparambil, Niranjana Regimon
Abstract:
Dalit and tribal communities in India have the largest suicide rate; however, the current literature does not reflect this reality. While existing research acknowledges socio-cultural risk factors, it fails to discuss structural issues pertaining to marginalized communities in India. Furthermore, the language is framed in an individualistic manner which denies room for recognizing systemic violence and injustice among causative agents of suicide. We aim to examine the representation of Dalit and tribal identities and their experiences of marginalisation as a contributive factor of suicide, as well as discuss the epistemic injustice involved in its exclusion. Electronic searches of PubMed, PsychInfo, and Web of Science databases will be carried out from inception till January 2023 to conduct a systematic scoping review of peer-reviewed articles; it will include all studies involving psychological autopsy in India. A narrative synthesis will be performed to gain insight into the inclusion of the experiences of Dalits and Tribals, the absence of which indicates a lacking understanding of suicide in India. It is also expected to highlight the alienation of lived experiences and narratives of marginalisation from mainstream discourse on suicide that constitutes epistemic injustice. There is a complex interplay of psychological, socio-cultural, economic, and political factors for suicide in the Indian setting. But, political and systemic issues are often downplayed in suicide etiology, including casteist assault, rape, violence, public humiliation, and discrimination which deserves more research attention.Keywords: dalits, marginalisation, psychological autopsy, suicide, tribals
Procedia PDF Downloads 9013079 TNFRSF11B Gene Polymorphisms A163G and G11811C in Prediction of Osteoporosis Risk
Authors: I. Boroňová, J.Bernasovská, J. Kľoc, Z. Tomková, E. Petrejčíková, D. Gabriková, S. Mačeková
Abstract:
Osteoporosis is a complex health disease characterized by low bone mineral density, which is determined by an interaction of genetics with metabolic and environmental factors. Current research in genetics of osteoporosis is focused on identification of responsible genes and polymorphisms. TNFRSF11B gene plays a key role in bone remodeling. The aim of this study was to investigate the genotype and allele distribution of A163G (rs3102735) osteoprotegerin gene promoter and G1181C (rs2073618) osteoprotegerin first exon polymorphisms in the group of 180 unrelated postmenopausal women with diagnosed osteoporosis and 180 normal controls. Genomic DNA was isolated from peripheral blood leukocytes using standard methodology. Genotyping for presence of different polymorphisms was performed using the Custom Taqman®SNP Genotyping assays. Hardy-Weinberg equilibrium was tested for each SNP in the groups of participants using the chi-square (χ2) test. The distribution of investigated genotypes in the group of patients with osteoporosis were as follows: AA (66.7%), AG (32.2%), GG (1.1%) for A163G polymorphism; GG (19.4%), CG (44.4%), CC (36.1%) for G1181C polymorphism. The distribution of genotypes in normal controls were follows: AA (71.1%), AG (26.1%), GG (2.8%) for A163G polymorphism; GG (22.2%), CG (48.9%), CC (28.9%) for G1181C polymorphism. In A163G polymorphism the variant G allele was more common among patients with osteoporosis: 17.2% versus 15.8% in normal controls. Also, in G1181C polymorphism the phenomenon of more frequent occurrence of C allele in the group of patients with osteoporosis was observed (58.3% versus 53.3%). Genotype and allele distributions showed no significant differences (A163G: χ2=0.270, p=0.605; χ2=0.250, p=0.616; G1181C: χ2= 1.730, p=0.188; χ2=1.820, p=0.177). Our results represents an initial study, further studies of more numerous file and associations studies will be carried out. Knowing the distribution of genotypes is important for assessing the impact of these polymorphisms on various parameters associated with osteoporosis. Screening for identification of “at-risk” women likely to develop osteoporosis and initiating subsequent early intervention appears to be most effective strategy to substantially reduce the risks of osteoporosis.Keywords: osteoporosis, real-time PCR method, SNP polymorphisms
Procedia PDF Downloads 33413078 Simon Says: What Should I Study?
Authors: Fonteyne Lot
Abstract:
SIMON (Study capacities and Interest Monitor is a freely accessible online self-assessment tool that allows secondary education pupils to evaluate their interests and capacities in order to choose a post-secondary major that maximally suits their potential. The tool consists of two broad domains that correspond with two general questions pupils ask: 'What study fields interest me?' and 'Am I capable to succeed in this field of study?'. The first question is addressed by a RIASEC-type interest inventory that links personal interests to post-secondary majors. Pupils are provided with a personal profile and an overview of majors with their degree of congruence. The output is dynamic: respondents can manipulate their score and they can compare their results to the profile of all fields of study. That way they are stimulated to explore the broad range of majors. To answer whether pupils are capable of succeeding in a preferred major, a battery of tests is provided. This battery comprises a range of factors that are predictive of academic success. Traditional predictors such as (educational) background and cognitive variables (mathematical and verbal skills) are included. Moreover, non-cognitive predictors of academic success (such as 'motivation', 'test anxiety', 'academic self-efficacy' and 'study skills') are assessed. These non-cognitive factors are generally not included in admission decisions although research shows they are incrementally predictive of success and are less discriminating. These tests inform pupils on potential causes of success and failure. More important, pupils receive their personal chances of success per major. These differential probabilities are validated through the underlying research on academic success of students. For example, the research has shown that we can identify 22 % of the failing students in psychology and educational sciences. In this group, our prediction is 95% accurate. SIMON leads more students to a suitable major which in turn alleviates student success and retention. Apart from these benefits, the instrument grants insight into risk factors of academic failure. It also supports and fosters the development of evidence-based remedial interventions and therefore gives way to a more efficient use of means.Keywords: academic success, online self-assessment, student retention, vocational choice
Procedia PDF Downloads 40513077 Business Process Management and Organizational Culture in Big Companies: Cross-Country Analysis
Authors: Dalia Suša Vugec
Abstract:
Business process management (BPM) is widely used approach focused on designing, mapping, changing, managing and analyzing business processes of an organization, which eventually leads to better performance and derives many other benefits. Since every organization strives to improve its performance in order to be sustainable and to remain competitive on the market in long-term period, numerous organizations are nowadays adopting and implementing BPM. However, not all organizations are equally successful in that. One of the ways of measuring BPM success is by measuring its maturity by calculating Process Performance Index (PPI) using ten BPM success factors. Still, although BPM is a holistic concept, organizational culture is not taken into consideration in calculating PPI. Hence, aim of this paper is twofold; first, it aims to explore and analyze the current state of BPM success factors within the big organizations from Slovenia, Croatia, and Austria and second, it aims to analyze the structure of organizational culture within the observed companies, focusing on the link with BPM success factors as well. The presented study is based on the results of the questionnaire conducted as the part of the PROSPER project (IP-2014-09-3729) and financed by Croatian Science Foundation. The results of the questionnaire reveal differences in the achieved levels of BPM success factors and therefore BPM maturity in total between the three observed countries. Moreover, the structure of organizational culture across three countries also differs. This paper discusses the revealed differences between countries as well as the link between organizational culture and BPM success factors.Keywords: business process management, BPM maturity, BPM success factors, organizational culture, process performance index
Procedia PDF Downloads 11913076 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings
Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi
Abstract:
Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden
Procedia PDF Downloads 8613075 Synthesis of Human Factors Theories and Industry 4.0
Authors: Andrew Couch, Nicholas Loyd, Nathan Tenhundfeld
Abstract:
The rapid emergence of technology observably induces disruptive effects that carry implications for internal organizational dynamics as well as external market opportunities, strategic pressures, and threats. An examination of the historical tendencies of technology innovation shows that the body of managerial knowledge for addressing such disruption is underdeveloped. Fundamentally speaking, the impacts of innovation are unique and situationally oriented. Hence, the appropriate managerial response becomes a complex function that depends on the nature of the emerging technology, the posturing of internal organizational dynamics, the rate of technological growth, and much more. This research considers a particular case of mismanagement, the BP Texas City Refinery explosion of 2005, that carries notable discrepancies on the basis of human factors principles. Moreover, this research considers the modern technological climate (shaped by Industry 4.0 technologies) and seeks to arrive at an appropriate conceptual lens by which human factors principles and Industry 4.0 may be favorably integrated. In this manner, the careful examination of these phenomena helps to better support the sustainment of human factors principles despite the disruptive impacts that are imparted by technological innovation. In essence, human factors considerations are assessed through the application of principles that stem from usability engineering, the Swiss Cheese Model of accident causation, human-automation interaction, signal detection theory, alarm design, and other factors. Notably, this stream of research supports a broader framework in seeking to guide organizations amid the uncertainties of Industry 4.0 to capture higher levels of adoption, implementation, and transparency.Keywords: Industry 4.0, human factors engineering, management, case study
Procedia PDF Downloads 6913074 Assessment Using Copulas of Simultaneous Damage to Multiple Buildings Due to Tsunamis
Authors: Yo Fukutani, Shuji Moriguchi, Takuma Kotani, Terada Kenjiro
Abstract:
If risk management of the assets owned by companies, risk assessment of real estate portfolio, and risk identification of the entire region are to be implemented, it is necessary to consider simultaneous damage to multiple buildings. In this research, the Sagami Trough earthquake tsunami that could have a significant effect on the Japanese capital region is focused on, and a method is proposed for simultaneous damage assessment using copulas that can take into consideration the correlation of tsunami depths and building damage between two sites. First, the tsunami inundation depths at two sites were simulated by using a nonlinear long-wave equation. The tsunamis were simulated by varying the slip amount (five cases) and the depths (five cases) for each of 10 sources of the Sagami Trough. For each source, the frequency distributions of the tsunami inundation depth were evaluated by using the response surface method. Then, Monte-Carlo simulation was conducted, and frequency distributions of tsunami inundation depth were evaluated at the target sites for all sources of the Sagami Trough. These are marginal distributions. Kendall’s tau for the tsunami inundation simulation at two sites was 0.83. Based on this value, the Gaussian copula, t-copula, Clayton copula, and Gumbel copula (n = 10,000) were generated. Then, the simultaneous distributions of the damage rate were evaluated using the marginal distributions and the copulas. For the correlation of the tsunami inundation depth at the two sites, the expected value hardly changed compared with the case of no correlation, but the damage rate of the ninety-ninth percentile value was approximately 2%, and the maximum value was approximately 6% when using the Gumbel copula.Keywords: copulas, Monte-Carlo simulation, probabilistic risk assessment, tsunamis
Procedia PDF Downloads 14513073 Contrasted Mean and Median Models in Egyptian Stock Markets
Authors: Mai A. Ibrahim, Mohammed El-Beltagy, Motaz Khorshid
Abstract:
Emerging Markets return distributions have shown significance departure from normality were they are characterized by fatter tails relative to the normal distribution and exhibit levels of skewness and kurtosis that constitute a significant departure from normality. Therefore, the classical Markowitz Mean-Variance is not applicable for emerging markets since it assumes normally-distributed returns (with zero skewness and kurtosis) and a quadratic utility function. Moreover, the Markowitz mean-variance analysis can be used in cases of moderate non-normality and it still provides a good approximation of the expected utility, but it may be ineffective under large departure from normality. Higher moments models and median models have been suggested in the literature for asset allocation in this case. Higher moments models have been introduced to account for the insufficiency of the description of a portfolio by only its first two moments while the median model has been introduced as a robust statistic which is less affected by outliers than the mean. Tail risk measures such as Value-at Risk (VaR) and Conditional Value-at-Risk (CVaR) have been introduced instead of Variance to capture the effect of risk. In this research, higher moment models including the Mean-Variance-Skewness (MVS) and Mean-Variance-Skewness-Kurtosis (MVSK) are formulated as single-objective non-linear programming problems (NLP) and median models including the Median-Value at Risk (MedVaR) and Median-Mean Absolute Deviation (MedMAD) are formulated as a single-objective mixed-integer linear programming (MILP) problems. The higher moment models and median models are compared to some benchmark portfolios and tested on real financial data in the Egyptian main Index EGX30. The results show that all the median models outperform the higher moment models were they provide higher final wealth for the investor over the entire period of study. In addition, the results have confirmed the inapplicability of the classical Markowitz Mean-Variance to the Egyptian stock market as it resulted in very low realized profits.Keywords: Egyptian stock exchange, emerging markets, higher moment models, median models, mixed-integer linear programming, non-linear programming
Procedia PDF Downloads 31513072 Factors Influencing Site Overhead Cost of Construction Projects in Egypt: A Comparative Analysis
Authors: Aya Effat, Ossama A. Hosny, Elkhayam M. Dorra
Abstract:
Estimating costs is a crucial step in construction management and should be completed at the beginning of every project to establish the project's budget. The precision of the cost estimate plays a significant role in the success of construction projects as it allows project managers to effectively manage the project's costs. Site overhead costs constitute a significant portion of construction project budgets, necessitating accurate prediction and management. These costs are influenced by a multitude of factors, requiring a thorough examination and analysis to understand their relative importance and impact. Thus, the main aim of this research is to enhance the contractor’s ability to predict and manage site overheads by identifying and analyzing the main factors influencing the site overheads costs in the Egyptian construction industry. Through a comprehensive literature review, key factors were first identified and subsequently validated using a thorough comparative analysis of data from 55 real-life construction projects. Through this comparative analysis, the relationship between each factor and site overheads percentage as well as each site overheads subcategory and each project construction phase was identified and examined. Furthermore, correlation analysis was done to check for multicollinearity and identify factors with the highest impact. The findings of this research offer valuable insights into the key drivers of site overhead costs in the Egyptian construction industry. By understanding these factors, construction professionals can make informed decisions regarding the estimation and management of site overhead costs.Keywords: comparative analysis, cost estimation, construction management, site overheads
Procedia PDF Downloads 2213071 A Review of the Literature on Factors Impacting Women’s Retention in Science, Technology, Engineering, Mathematics: A Critical Analysis of Nigeria and Georgia
Authors: Josephine O. Okocha, Ifeanyi Adigwe
Abstract:
This research aims to examine the factors impacting women's retention in STEM in Nigeria and Georgia. In a bid to come up with strategies to enhance women’s participation in STEM, this study identifies and juxtaposes the factors impacting the retention of women in STEM and how they vary from one country to another are discussed. This study adopted the literature review method to perform the critical analysis. A total of 76 papers were retrieved from the Scopus database and were published between 2018 and 2023. Only 12 papers met the criteria for inclusion in the analysis. The findings reveal that the factors impacting women’s retention in STEM include funding (NGOs and government agencies), scholarship, specialized recruitment, mentoring, the establishment of women-only higher institutions, creating a balanced work and family environment, combating stereotypes, and enabling policies and laws. The paper highlights some key recommendations to help improve the retention of women in STEM in Africa and Nigeria in particular.Keywords: STEM, women, retention, career, Nigeria, Georgia, women’s retention, women representation
Procedia PDF Downloads 7313070 Physical Activity Self-Efficacy among Pregnant Women with High Risk for Gestational Diabetes Mellitus: A Cross-Sectional Study
Authors: Xiao Yang, Ji Zhang, Yingli Song, Hui Huang, Jing Zhang, Yan Wang, Rongrong Han, Zhixuan Xiang, Lu Chen, Lingling Gao
Abstract:
Aim and Objectives: To examine physical activity self-efficacy, identify its predictors, and further explore the mechanism of action among the predictors in mainland Chinese pregnant women with high risk for gestational diabetes mellitus (GDM). Background: Physical activity could protect pregnant women from developing GDM. Physical activity self-efficacy was the key predictor of physical activity. Design: A cross-sectional study was conducted from October 2021 to May 2022 in Zhengzhou, China. Methods: 252 eligible pregnant women completed the Pregnancy Physical Activity Self-efficacy Scale, the Social Support for Physical Activity Scale, the Knowledge on Physical Activity Questionnaire, the 7-item Generalized Anxiety Disorder scale, the Edinburgh Postnatal Depression Scale, and a socio-demographic data sheet. Multiple linear regression was applied to explore the predictors of physical activity self-efficacy. Structural equation modeling was used to explore the mechanism of action among the predictors. Results: Chinese pregnant women with a high risk for GDM reported a moderate level of physical activity self-efficacy. The best-fit regression analysis revealed four variables explained 17.5% of the variance in physical activity self-efficacy. Social support for physical activity was the strongest predictor, followed by knowledge of the physical activity, intention to do physical activity, and anxiety symptoms. The model analysis indicated that knowledge of physical activity could release anxiety and depressive symptoms and then increase physical activity self-efficacy. Conclusion: The present study revealed a moderate level of physical activity self-efficacy. Interventions targeting pregnant women with high risk for GDM need to include the predictors of physical activity self-efficacy. Relevance to clinical practice: To facilitate pregnant women with high risk for GDM to engage in physical activity, healthcare professionals may find assess physical activity self-efficacy and intervene as soon as possible on their first antenatal visit. Physical activity intervention programs focused on self-efficacy may be conducted in further research.Keywords: physical activity, gestational diabetes, self-efficacy, predictors
Procedia PDF Downloads 10413069 Exploring Factors Associated with Substance Use among Pregnant Women in a Cape Town Community
Authors: Mutshinye Manguvhewa, Maria Florence, Mansoo Yu, Elize Koch, Kamal Kamaloodien
Abstract:
Substance use among pregnant women is a perennial problem in the Western Cape Province of South Africa. There are many influential factors are associated with substance use among women of childbearing age. The study explored factors associated with substance use among pregnant women using a qualitative research design and the bio-ecological theoretical framework to explore and guide the researcher throughout the study. Participants were selected using purposive sampling. Only participants accessed from the Department of Social Development meeting the inclusion criteria of the study were interviewed using semi structured interviews. Immediate referral for psychological intervention during the interview was available for participants who needed it. Braun and Clarke's six phases of thematic analysis were utilised to analyse the data. The study adheres to ethical guidelines for the participants' protection. Participants were informed about the study before the initiation of the interviews and the details of their voluntary participation were explained. The key findings from this study illustrate that socio-cultural factors, personal factors, emotional response and intimate relationships are the major contributing factors to substance use among pregnant women in this sample. The results outline the preventative measures that pregnant women implement. Lastly, the study reveals the positive and negative perceptions of substance use programmes that participants share. Some of the study findings are similar to the existing literature and some of the findings differed. Recommendations emanating from the study include that the stakeholders, rehabilitation centres, Department of Health and future researchers should act proactively against substance use during pregnancy.Keywords: substance addiction, antenatal care, pregnancy, substance use
Procedia PDF Downloads 12213068 A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data
Authors: N. Borjalilu, P. Rabiei, A. Enjoo
Abstract:
Flight Data Monitoring (FDM) program assists an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM is a powerful tool for an aircraft operator integrated into the operator’s Safety Management System (SMS), allowing to detect, confirm, and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in four categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained.Keywords: F-topsis, fuzzy set, flight data monitoring (FDM), flight safety
Procedia PDF Downloads 16813067 Check Factors Contributing to the Increase or Decrease in Labor Productivity in Employees Applied Science Center Municipal Andimeshk
Authors: Hossein Boromandfar, Ahmad Ghalavandi
Abstract:
This paper examines the importance of human resources as a strategic resource and the factors that lead to increased Labor productivity in Applied Science Center Andimeshk pay. First, the concepts and definitions of productivity and factors affecting it, and then determine the center Recommendations for improving the productivity of the university at a high level its improvement. What leads to increased productivity of labor is worth. The most competent human resources infrastructure is set, because by moving towards the development and promotion. The use of qualified employees in the university with a focus on specific objectives can be effective on its promotion.Keywords: productivity, manage, human resources, center for applied science
Procedia PDF Downloads 41813066 Protection from Risks of Natural Disasters and Social and Economic Support to the Native Population
Authors: Maria Angela Bedini, Fabio Bronzini
Abstract:
The risk of natural disasters affects all the countries of the world, whether it refers to seismic events or tsunamis or hydrogeological disasters. In most cases, the risk can be considered in its three components: hazard, exposure, vulnerability (and urban vulnerability). The aim of this paper is to evaluate how the Italian scientific community has related the contribution of these three components, superimposing the three different maps that summarize the fundamental structure of the risk. Based on the three components considered, the study applies the Regional Planning methodology on the three phases of the risk protection and mitigation process: the prevention phase, the emergency intervention phase, the post-disaster phase. The paper illustrates the Italian experience of the pre-during-post-earthquake intervention. Main results: The study deepens these aspects in the belief that “a historical center” and an “island” can present similar problems at the international level, both in the phase of prevention (earthquake, tsunamis, hydrogeological disasters), in emergency phase (protocols and procedures of intervention) and in the post-disaster phase. The conclusions of the research identify the need to plan in advance how to deal with the post-disaster phase and consider it a priority with respect to the simple reconstruction of destroyed buildings. In fact the main result of the post-disaster intervention must be the return and the social and economic support of the indigenous population, and not only the construction of new housing and equipment. In this sense, the results of the research show that the elderly inhabitants of a historic center can be compared to the indigenous population of an atoll of fishermen, as both constitute the most important resource: the human resource. Their return in conditions of security testifies, with their presence, the culture, customs, and values rooted in the history of a people.Keywords: post-disaster interventions, risk of natural disasters in Italy and abroad, seismic events in Italy, social and economic protection and support for the native population of historical centers
Procedia PDF Downloads 10213065 The Effect of Aerobic Training and Aqueous Extract of C. monogyna (Hawthorn) on Plasma and Heart Angiogenic Mediators in Male Wistar Rats
Authors: Asieh Abbassi Daloii, Ahmad Abdi
Abstract:
Introduction: Sports information suggests that physical inactivity increases the risk of many diseases, including atherosclerosis. Coronary heart disease, stroke and peripheral vascular disease, atherosclerosis and clinical protests. However, exercise can have beneficial effects on risk factors for atherosclerosis by reducing hyperlipidemia, hypertension, obesity, plaque density, increased insulin sensitivity and glucose tolerance is improved. Despite these findings, there is little information about the molecular mechanisms of interaction between the body and its relation to sport and there arteriosclerosis. The present study aims to investigate the effect of six weeks of progressive aerobic training and aqueous extract of crataegus monogyna on vascular endothelial growth factor (VEGF) variations and angiopoetin-1/2 (ANG- 1/2) in plasma and heart tissue in male Wistar rats. Methods: 30 male Wistar rats, 4-6 months old, were randomly divided into four groups: control crataegus monogyna (N=8), training crataegus monogyna (N=8), control saline (N=6), and training saline (N=8). The aerobic training program included running on treadmill at the speed of 34 meters per minute for 60 minutes per day. The training was conducted for six weeks, five days a week. Following each training session, both experimental and control subjects of crataegus monogyna groups were orally fed with 0.5 mg crataegus monogyna extract per gram of the body weight. The normal saline group was given the same amount of the normal saline solution (NS). Eventually, 72 hours after the last training session, blood samples were taken from inferior Verna cava. Conclusion: It is likely that crataegus monogyna extract compared with aerobic training and even combination of both training and crataegus monogyna extract is more effective on angiogenesis.Keywords: angiopoietin 1, 2, vascular endothelial growth factor, aerobic exercise
Procedia PDF Downloads 38613064 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 10213063 Slope Effect in Emission Evaluation to Assess Real Pollutant Factors
Authors: G. Meccariello, L. Della Ragione
Abstract:
The exposure to outdoor air pollution causes lung cancer and increases the risk of bladder cancer. Because air pollution in urban areas is mainly caused by transportation, it is necessary to evaluate pollutant exhaust emissions from vehicles during their real-world use. Nevertheless their evaluation and reduction is a key problem, especially in the cities, that account for more than 50% of world population. A particular attention was given to the slope variability along the streets during each journey performed by the instrumented vehicle. In this paper we dealt with the problem of describing a quantitatively approach for the reconstruction of GPS coordinates and altitude, in the context of correlation study between driving cycles / emission / geographical location, during an experimental campaign realized with some instrumented cars. Finally the slope analysis can be correlated to the emission and consumption values in a specific road position, and it could be evaluated its influence on their behaviour.Keywords: air pollution, driving cycles, GPS signal, slope, emission factor, fuel consumption
Procedia PDF Downloads 39313062 Capacities of Early Childhood Education Professionals for the Prevention of Social Exclusion of Children
Authors: Dejana Bouillet, Vlatka Domović
Abstract:
Both policymakers and researchers recognize that participating in early childhood education and care (ECEC) is useful for all children, especially for those who are exposed to the high risk of social exclusion. Social exclusion of children is understood as a multidimensional construct including economic, social, cultural, health, and other aspects of disadvantage and deprivation, which individually or combined can have an unfavorable effect on the current life and development of a child, as well as on the child’s development and on disadvantaged life chances in adult life. ECEC institutions should be able to promote educational approaches that portray developmental, cultural, language, and other diversity amongst children. However, little is known about the ways in which Croatian ECEC institutions recognize and respect the diversity of children and their families and how they respond to their educational needs. That is why this paper is dedicated to the analysis of the capacities of ECEC professionals to respond to the demands of educational needs of this very diverse group of children and their families. The results obtained in the frame of the project “Models of response to educational needs of children at risk of social exclusion in ECEC institutions,” funded by the Croatian Science Foundation, will be presented. The research methodology arises from explanations of educational processes and risks of social exclusion as a complex and heterogeneous phenomenon. The preliminary results of the qualitative data analysis of educational practices regarding capacities to identify and appropriately respond to the requirements of children at risk of social exclusion will be presented. The data have been collected by interviewing educational staff in 10 Croatian ECEC institutions (n = 10). The questions in the interviews were related to various aspects of inclusive institutional policy, culture, and practices. According to the analysis, it is possible to conclude that Croatian ECEC professionals are still faced with great challenges in the process of implementation of inclusive policies, culture, and practices. There are several baselines of this conclusion. The interviewed educational professionals are not familiar enough with the whole complexity and diversity of needs of children at risk of social exclusion, and the ECEC institutions do not have enough resources to provide all interventions that these children and their families need.Keywords: children at risk of social exclusion, ECEC professionals, inclusive policies, culture and practices, quallitative analysis
Procedia PDF Downloads 11513061 Analysis of OPG Gene Polymorphism T245G (rs3134069) in Slovak Postmenopausal Women
Authors: I. Boroňová, J. Bernasovská, J. Kľoc, Z. Tomková, E. Petrejčíková, S. Mačeková, J. Poráčová, M. M. Blaščáková
Abstract:
Osteoporosis is a common multifactorial disease with a strong genetic component characterized by reduced bone mass and increased risk of fractures. Genetic factors play an important role in the pathogenesis of osteoporosis. The aim of our study was to identify the genotype and allele distribution of T245G polymorphism in OPG gene in Slovak postmenopausal women. A total of 200 unrelated Slovak postmenopausal women with diagnosed osteoporosis and 200 normal controls were genotyped for T245G (rs3134069) polymorphism of OPG gene. Genotyping was performed using the Custom Taqman®SNP Genotyping assays. Genotypes and alleles frequencies showed no significant differences (p=0.5551; p=0.6022). The results of the present study confirm the importance of T245G polymorphism in OPG gene in the pathogenesis of osteoporosis.Keywords: OPG gene, T245G polymorphism, osteoporosis, T245G polymorphism, real-time PCR
Procedia PDF Downloads 413